
Dependency Analysis and

its Use for Evolution Tasks

Lothar Hotz1, Thorsten Krebs2, and Katharina Wolter3

1 HITeC c/o Fachbereich Informatik, Universität Hamburg
Hamburg, Germany, 22527

hotz@informatik.uni-hamburg.de
2 LKI, Fachbereich Informatik, Universität Hamburg

Hamburg, Germany, 22527
krebs@informatik.uni-hamburg.de

3 LKI, Fachbereich Informatik, Universität Hamburg
Hamburg, Germany, 22527

kwolter@informatik.uni-hamburg.de

Abstract. During the life-cycle of products, evolution of the knowledge
used for configuring these products is demanded. Change operations are
introduced to capture modifications to the configuration model. Precon-
ditions and impacts of these operations are explained and motivate a
dependency analysis for supporting change operations on the configura-
tion models. We give a detailed discussion of the dependency analysis
for structure-based configuration models.

1 Introduction

Structure-based configuration is used to configure software-intensive systems in
the European project ConIPF (Configuration of Industrial Product Families).
Since configuration models are used to configure families of products over time,
it is apparent that new functionality is introduced for being able to create new
products. This has an impact on the configuration model: the knowledge has to
evolve in parallel with the components used for product derivation.

Change operations are introduced to capture modifications to the configura-
tion model. But since modifications may lead to inconsistent states of the model,
the need for complex change operations (i.e. a concatenation of basic change op-
erations that are dependent on another) arises. Such complex change operations
are built to avoid inconsistent states within the configuration model. The im-
pacts of certain modifications have to be known for constructing a sequence of
basic operations that fulfills the task of the complex operation and therefore
avoids inconsistencies.

Impacts of modifications can be anticipated by knowing dependencies be-
tween the diverse knowledge entities of the modeling facilities of structure-based
configuration. These dependencies can be computed by analyzing the model.
Therefore, a dependency graph can be generated that helps in predicting im-
pacts of modifications. Evolution tasks can be supported with such dependency
graphs.



2 Lothar Hotz et al.

In this paper, we focus on the dependency analysis for the structure-based
configuration tool KONWERK [3]. The modeling facilities of this configuration
approach and their dependencies are introduced, analyzed and discussed in de-
tail. As an example for applying the dependency analysis we show how evolution
of the configuration model can be enhanced by using dependency graphs. Further
potential application areas are mentioned in the summary.

The remainder of this paper is organized as follows: in Section 2 we describe
the basic modeling facilities and the configuration procedure of structure-based
configuration. In Section 3 evolution of the configured product family and the
configuration model is introduced. Change operations are identified as a mecha-
nism to capture modifications to the model. Section 4 presents the general idea
behind dependency analysis, lists and discusses concrete dependencies we identi-
fied for structure-based configuration and describes how these dependencies can
be computed automatically. In Section 5 we give the evolution of configuration
models as an example for applying dependency analysis. Finally, we conclude
with the summary in Section 6.

2 Structure-based Configuration

2.1 Modeling Facilities

In structure-based configuration, product components and the mapping between
these are formalized in a configuration model. This model is represented with
the Configuration Knowledge Modeling Language (CKML)4 and is used for au-
tomated product configuration. Components of diverse types can be represented
with concepts provided by the modeling facilities of structure-based configura-
tion. A brief definition is given in the following (see [2] for a more detailed view):

– Each concept has a name which represents a uniquely identifiable character
string.

– Attributes of concepts can be represented through parameters. A parameter is
a tuple consisting of a name and a value descriptor. Diverse types of domains
are predefined for value descriptors - e.g. integers, floats, sets and ranges.

– Concepts are related to exactly one other concept in the taxonomic relation.
Thus, the latter concept is the superconcept of the former one – the sub-
concept. Properties (i.e. parameters and relations) of the superconcept are
inherited by the subconcept. The superconcept subsumes the subconcept,
i.e. all properties of the subconcept are subsets of those of the superconcept.

– Partonomies are generated by modeling compositional (has-parts) relations.
Such a relation definition contains a list of parts (i.e. other concept defi-
nitions) that are identified by their names. Each of these parts is assigned
with a minimum and a maximum cardinality that together specify how many
instances of these concepts can be instantiated as parts of the aggregate.
Has-parts relations are a class of compositional relations. Thus, own relations
with new names can be modeled – e.g. a concept can contain a has-hardware

4 CKML is an extension of the language BHIPS used for KONWERK



Dependency Analysis 3

definition next to a has-software definition to emphasize on the difference
between the parts in both relations.

Concepts describe classes of objects from which multiple concept instances
can be generated during the configuration process. The concept is a static de-
scription that is not altered at any time while a concept instance of such a
concept definition is dynamically created during the configuration process and
configured until its properties are fully specified in terms of the task specification.
A concept instance always is instance of exactly one concept definition.

Constraints are used to describe restrictions between properties of distinct
concepts. There are three layers for describing constraints: the conceptual con-
straint consists of a precondition that has to hold in order to be executed. con-
straint relations define the restriction itself. A constraint relation is reusable for
an arbitrary number of conceptual constraints. A conceptual constraint can call
an arbitrary number of constraint relations. Constraint relations can be of dif-
ferent types (e.g. functions, extensional, etc.). Instances of constraint relations
(constraints) are automatically generated during configuration and represent re-
strictions between concept instances. See Figure 3 for an example.

By analyzing the configuration model necessary decisions that have to be
made are inferred during the configuration process. Each decision is represented
by a configuration step. There are 4 types of configuration steps:

1. parameterization represents a decision of setting a parameter.
2. specialization represents a decision of specializing a concept instance to a

more specific concept according to the taxonomy.
3. decomposition represents a decision of decomposing a concept into its parts

(i.e. top-down reasoning). During decomposition appropriate instances of the
parts are generated (instantiation is seen as a sub step of decomposition).

4. integration represents a decision of integrating a part into an aggregate (i.e.
bottom up reasoning). During integration appropriate instances of the aggre-
gates are generated (instantiation is also seen as a sub step of integration.)

Consistency of the model is defined as follows (compare [7]):

Specialization-related: given a super- and a subconcept, all values of the
subconcept’s properties have to be subsets of the corresponding property
(identified by name) of the superconcept.

Composition-related: given an aggregate and its parts, each part has to be
defined as a concept.

Constraint-related: given a constraint and the participating concept proper-
ties, the constraint may only use value ranges defined in the model. Fur-
thermore, only subsets of values of the concept properties are allowed as
propagation results.

2.2 Example Domain

As an example we give the application domain of Car Periphery Supervision
(CPS) systems introduced by [8]. A CPS system consists of automotive sys-
tems that are based on sensors installed around the car to monitor its local



4 Lothar Hotz et al.

environment. Sensor measurement methods and evaluation mechanisms provide
information for various kinds of high-level comfort and safety related applica-
tions like Parking Assistance and Pre-Crash Detection. In CPS systems sensors
are mounted on the vehicle (e.g. ultrasonic sensors hidden in the bumper).

In Figure 1, a small configuration model taken from the CPS domain is pre-
sented. Besides the specialization and decomposition one constraint is given (see
Figure 3), which ensure that the parameters Type of Main and Sensor-Configuration

are equal. This (probably simplifying) example is used in the following sections
for illustrating the notions behind dependency computation.

Sensortype(Main) = Type(Sensor-Configuration)

Decomposition
Specialization

Main
Sensortype = {Single Double}
Memory = [100 120]

Sensor-Configuration 
Sup.Depth = [1 10]
Type =  {Single Double}

Main-1
Memory = 100
Sensortype = Single

Main-2 
Memory = 120
Sensortype = Double

One-Sensor 
Sup.Depth = 3
Type = Single 

Two-Sensor 
Sup.Depth = 10
Type = Double

CPS-System

1..11..1

Fig. 1. Example of a configuration model

Given a configuration model the configuration steps to be resolved during
the configuration process are automatically computed from it. In Figure 2, all
configuration steps are listed (incl. definition of later used short-cuts) which are
identified when the configuration model shown in Figure 1 is given. All configu-
ration steps have to be determined (i.e. configured) in one configuration process.
A terminal value (i.e. a value not further specifiable) for each configuration step
has to be computed by a value determination method (like automatic inferenc-
ing, asking the user, invoking a function etc.). Computing of the dependencies
of configuration steps is presented in the following.

3 Operations for Evolving Configuration Models

Evolution of products and product components is inevitable throughout their
life cycle – driven by advancing technology, increasing customer requirements
or bug fixes. New versions and variants are built and therefore also modeled. It
is common that evolution is anticipated to a certain extent, e.g. by modeling
planned features [4]. But it is impossible to predict all future developments (like
bug fixes) and therefore the model has to be repaired at some time.



Dependency Analysis 5

Instantiate CPS-System (Instant(CPS-System))

Decompose CPS-System (Decompose(CPS-System))

Instantiate Main (Instant(M))

Instantiate Sensor Configuration (Instant(SC))

Specialize Main (Specialize(M))

Specialize Sensor Configuration (Specialize(SC))

Determine the parameter Sensortype of the Main (Param(Type,M))

Determine the parameter Memory of the Main (Param(Memory,M))

Determine the type of the Sensor Configuration (Param(Type,SC))

Determine the parameter Supervision Depth of the Sensor Configuration

(Param(Sup.Depth,SC))

Fig. 2. Configuration Steps of the Example with Short-cuts

Concept

name: M-SC-Equal

precondition:

?c name: CPS-System

?s name: Sensor-Configuration

relation: part-of ?c

?m name: Main

relation: part-of ?c

constraint-call:

equal (?m sensortype) (?s type)

Fig. 3. A Conceptual Constraint

Evolving the configuration model can have diverse effects on its consistency
and on existing or potentially derivable products. Different scenarios like richer
or smaller variety of products (leading to different configuration solutions) are
conceivable. In the following, we confine ourselves to impacts that modifications
to the configuration model can have and how consistency of the model can be
guaranteed (see Section 2).

Modifications to the configuration model are captured through change opera-
tions. Basic operations are those that cannot be further partitioned – i.e. simple
modifications like adding a parameter value. Complex operations are composed
of multiple basic operations or include some additional knowledge about the
modification. They provide a mechanism for grouping basic operations into a
logical unity (compare [6]). This is needed because an operation may lead to
an inconsistent state of the configuration model and thus should be followed by
further operations that correct this situation. Hierarchies of change operations



6 Lothar Hotz et al.

can be formulated to exploit the inheritance mechanism for specifying common
properties.

Standard operations e.g. are adding, deleting and modifying the diverse
knowledge entities. Adding a parameter value and adding a compositional re-
lation have similar characteristics and impacts while they are fundamentally
different from deleting these knowledge entities. Thus, it is obvious that a hi-
erarchy of change operations is reasonable. As an example, in the following we
show our hierarchy of operations for the complex change operation modifying
concept parameters (operations are bold, impacts are in italics):

– Renaming a parameter

• in case of existing subconcepts: also change the name in those
• in case of constraints binding this parameter: change the name in the

precondition of the conceptual constraint
– Changing a parameter value

• in case of existing subconcepts: check that the corresponding parameter
values of subconcepts are subsets of the new value

• in case of constraints binding this parameter: check that the constraint
relation still computes reasonable values

• Enlarging value range

∗ no impacts on inheritance have to be addressed – subconcepts will
keep subsets of values after this operation

• Scaling down value range

∗ impacts on inheritance have to be addressed – the new value might
be a subset of the former subconcept’s values

• Changing value type

∗ check that values are still reasonable

To find out which combination of basic change operations is needed to per-
form a more complex operation, a dependency analysis is needed. Impacts of
modifications are examined and indicate the need for further modifications to
reach a consistent state of the knowledge base.

4 Dependency Analysis

Dependency detection is performed on the configuration model as a whole. It can
be used for computing the impacts a change of the configuration model would
have.

When the configuration model is specified, all possible dependencies are al-
ready present, i.e. it is not necessary to model dependencies, but only to compute
them from the configuration model. Besides the configuration model the depen-
dencies are of course affected by the semantics of CKML, which is implemented
in the inference machine of KONWERK. We identified rules that are based on
the configuration model on the one hand, and on the inference machine that
interprets the configuration model on the other hand. An example rules is:



Dependency Analysis 7

A specialization determines parameterization of all parameters which are new
or changed in c in respect to its superconcept in the taxonomical hierarchy.

There are rules between configuration steps, conceptual constraints and con-
straint relations, and those which are established in the constraint net by in-
stances of constraint relations. However, the rules are not related to a specific
domain (like CPS). Thus, when an arbitrary configuration model expressed in
CKML is given with these rules the dependencies can be computed automati-
cally. All identified rules are given in Section 4.2. But first we present the general
concept of dependency identification.

4.1 General Idea

Two general types of dependencies can be identified: those things that are pre-
requisites for other things, and those things that determine other things.

Looking at the example in Figure 1 the concept Sensor-Configuration can only
be instantiated after the aggregate named CPS-System is decomposed. Thus, the
decomposition of the aggregate is a prerequisite of the instantiation. However,
the value of the instantiation is not determined by such a dependency. On the
other side the parameterization of the parameter Type of an instance of concept
Main determines the specialization of this instance, e.g. when Type = Double

is given, a Main instance would be specialized to Main-2. Thus, when deciding
a parameter value of an instance the specialization of that instance may be
determined. This type of dependency is called determination. Hereby a value in
the partial configuration is changed.

Also for constraints, prerequisites and determination dependencies can be
identified. For conceptual constraints, only if the patterns listed in the condition
part of a conceptual constraint (see Figure 3) are fulfilled, the constraint calls
specified in the constraint-calls part of the conceptual constraint are instantiated.
Thus, the patterns are prerequisites for the constraint-relation instance. The
constraint itself (in our example the constraint equal) determines the values of
the involved parameters.

In Figure 4 the dependencies of the example are presented in a dependency
graph. An arrow means the node at the arrowhead depends on the node at the
end of this arrow. Dependencies of type prerequisite are depicted as v-edges.
Dependencies of type determination are depicted as d-edges.

Given such a dependency graph, when a product is configured, not all de-
pendencies are used for each task. Thus, the dependencies for one configuration
depend on the given task specification. However, one configuration process is a
walk through the general (i.e. not task-specific) dependency graph.

In Figure 5 the decomposition of the CPS-System concept and the specializa-
tion of the Sensor-Configuration is given by the user. The inference machine com-
putes the other configuration steps. This is done by the indicated walk through
the dependency graph. When the values for memory of Main and for Type of
Sensor-Configuration are given by the task specification, the equal constraint con-
cerning the parameters Type of Main and Sensor-Configuration might indicate a



8 Lothar Hotz et al.
Decompose(CPS-System)

Instant(SC)

Param(Type,SC)Param(Memory,M) Param(Type,M)

Instant(M)

Param(Sup.Depth,SC)Specialize(M) Specialize(SC)
Equal

d

v

v v v

d

d

d
d

v v v

v

Fig. 4. Dependencies of the Example with Prerequisites and Determinations

Decompose(CPS-System)

Instant(SC)

Param(Type,SC)Param(Memory,M) Param(Type,M)

Instant(M)

Param(Sup.Depth,SC)Specialize(M) Specialize(SC)
Equal

d

v

v v v

d
d

d
d

v v v

v

System

User

Fig. 5. A Configuration

conflict, i.e. the case when the memory is 100 and the supervision depth is 10
(see Figure 6). In general when a node has two incoming d-edge dependencies
(like Specialize(M), Param(Type,M), Param(Type,SC), Specialize(SC)) a conflict at
this node can probably occur.5

The general idea is, when a configuration model is given, all possible depen-
dencies can be computed in advance and independently of a given task. Thus,
a dependency graph can be directly computed from a configuration model, and
can be used for dependency analysis. For operations that are related to a specific
task (like ”give me the parts of the model, that are considered for this specific
product”) the necessary parts of the dependency graph can be activated. The
prerequisites (v-edges) are considered as conditions for the activation of a sub
graph. Thus, for a given task specification those conditions can or cannot be ful-
filled, which leads to an activation or non-activation of the following sub graph.
Furthermore, patterns of conceptual constraints are used as prerequisites in the
dependency graph. This is presented in detail in the next section.

5 Not considering user interactions which can cause conflicts at any node.



Dependency Analysis 9

Decompose(CPS-System)

Instant(SC)

Param(Type,SC)Param(Memory,M) Param(Type,M)

Instant(M)

Param(Sup.Depth,SC)Specialize(M) Specialize(SC)
Equal

d

v

v v v

d

d

d

d

v v v

v

System

User

Conflict possible

Fig. 6. A Configuration with a Conflict

4.2 Dependencies in Structure-based Configuration

Dependencies between configuration steps and constraints are listed and ex-
plained in detail in the following.

Between configuration steps: In this section for each type of configuration
step the dependencies are listed. A configuration step type, the dependency type,
and the dependent configuration step type is given.

1. Decomposing an aggregate is a prerequisite for existence of the parts as an
instance.

2. Decomposing an aggregate determines the specialization of the aggregate.
3. Existence of an instance is a prerequisite for the parameterization of the

parameters.
4. Existence of an instance is a prerequisite for the specialization of the instance.
5. Existence of an instance is a prerequisite for the decomposition of the in-

stance.
6. Existence of an instance is a prerequisite for the integration of the instance.
7. Specialization of an instance to a concept type c is a prerequisite for further

specializing the instance.
8. Specialization of an instance to a concept type c determines parameterization

of all parameters which are new or changed in c.
9. Specialization of an instance to a concept type c determines decomposition

of all relations which are new or changed in c.
10. Parameterizing a parameter p of an instance determines the specialization

of the instance.
11. Integration of a part in an aggregate determines the decomposition of the

aggregate.
12. Integration of a part in an aggregate determines the specialization of the

aggregate.

Between constraints: At a first glance, dependencies between configuration
steps and conceptual constraints could be considered by depending instantiation



10 Lothar Hotz et al.

steps with the patterns that match the related instance (Figure 7 upper part).
But because only when all patterns of a conceptual constraint are fulfilled the
related constraint relation is instantiated, one can summarize all patterns of a
conceptual constraint to one node (as it is done in Figure 7 lower part). This
node is a prerequisite for the constraint relation. Thus, dependencies between
configuration steps and conceptual constraints can be computed by looking at
all conceptual constraints. The rules between configuration steps and conceptual
constraints are:

1. Instantiating a concept c is a prerequisite for all conceptual constraints,
which contain a pattern that subsumes c.

2. Parameterizing a parameter p of an instance of type c is a prerequisite for
all conceptual constraints, which contain a pattern that subsumes c and
contains p.

3. Decomposing an aggregate via relation r is a prerequisite for all conceptual
constraints, which contain a pattern that subsumes c and contains r.

Between conceptual constraints and constraint relations the rule is:

1. All patterns of a conceptual constraints are prerequisites for all constraint
relations specified in the constraint call!

Param(Type,Sensor-Configuration)

Instant(SC) Pattern(Sensor-Configuration)

Instant(M) Pattern(Main)
Param(Type,Main)

C(Equal)
v

v

d

d

Param(Type,Sensor-Configuration)

Instant(SC)

CC(M-SC-Equal)

Instant(M)
Param(Type,Main)

d

d

v

v

C(Equal)
v

v

v

v

Fig. 7. Representation alternatives for dependencies between instantiation configura-
tion steps and conceptual constraints, only the lower graph is actually necessary

Constraints always restrict parameters, or relations of diverse concepts, which
is done by introducing constraint variables in the constraint net. Those variables
can be identified with the appropriate configuration step, thus, leading from a
situation given in Figure 8 lower part to the situation given in Figure 8 upper
part.

Between configuration steps and constraint relations:

1. Parameterization of a parameter p constraint call contains variable referring
to p.

2. Decomposition of a relation r constraint call contains variable referring to r.



Dependency Analysis 11

Param(Type,Sensor-Configuration)

Param(Type,Main)

d

d

Param(Type,Sensor-Configuration)

Instant(SC)

CC(M-SC-Equal)

Exist(Main)
Param(Type,Main)

d

d

v

v

C(Equal)
v

CV(Type,Sensor-Configuration)

Instant(SC)

CC(M-SC-Equal)

Instant(M)
CV(Type,Sensor-Configuration)

d

d

v

v

C(Equal)
v

Fig. 8. Example: Identifying Constraints and Configuration Steps

3. Specialization of an instance constraint call contains variable referring to
instance− of .

Constraints themselves can be uni-directed or multi-directed. Therefore, the
determination dependencies between the constraint variables are defined accord-
ingly:

1. Uni-directed Constraint of the form: e1 . . . en → em . . . ez:
e1 . . . en determines em . . . ez.

2. Multi-directed Constraint of the form: e1 . . . en ↔ em . . . ez:
e1 determines e2 . . . ez

e2 determines e1, e3, . . . ez

etc.

In Figure 9 the complete dependency graph for the example introduced above
is given.

Decompose(CPS-System)

Instant(SC)

Param(Type,SC)Param(Memory,M) Param(Type,M)

Instant(M)

Param(Sup.Depth,SC)Specialize(M) Specialize(SC)
d

v

v v v

d
d

d

d

v
v v

v

CC(M-SC-Equal)

C(Equal)

d

d

vv

CC(SC-SC-Equal)

C(Equal)

Fig. 9. Dependency graph for the example



12 Lothar Hotz et al.

Value-Related Dependencies: Up to now, only dependencies without con-
sidering values are taken into account. But also value-related dependencies like
optional, alternative, multiple parts, dependencies related to a specific parame-
ter value, number restricting constraints, and alternatives for integration steps
(or-operator in part-of) have to be taken into account. For each part which is
mentioned in any decomposition a graph is generated containing all dependencies
related to that part - i.e. a sub graph for that part is created. In the dependency
graph the v-edge to this graph is indicated with the number restriction of the
decomposition, e.g. [0..1], [1..1], [0..n].

Multiple instances of one concept can occur when conceptual constraints with
patterns filtering the same concept. In such a case:

– Also only one partial graph for each concept is generated, e.g. only one for
Sensor-Configuration!

– Constraints between different parameters of those concepts are indicated
with further d-edges

– Constraints between the same parameters (e.g. Type) are indicated with
numbers on d-nodes

Dependencies for constraints that contain number restrictions can be identi-
fied with decomposition steps. This can be done because with those constraints
the number of parts of an aggregate is determined and the control module in-
stantiates the parts according to those numbers. Thus, the behavior in this case
is like a decomposition step.

4.3 Computing Dependencies

Given a configuration model in a declarative syntax (e.g. in CKML or in a tool-
specific language like EngCon’s XML notation [1] or BHIBS of KONWERK
[3]), the dependencies are already present in the configuration model and can
be transformed to an appropriate representation, e.g. a graph data type. This
can be done by parsing the configuration model by taking the declarative syntax
into account and using the previously explained rules.

Transforming the declarative model into a dependency graph In the
previous section for each situation (i.e. configuration step, conceptual constraint
and constraint relation) the dependencies are identified. By using those rules and
one of the following methods, a complete dependency graph can be computed.

A further opportunity is to compute the dependencies by configuration, thus,
the dependency graph is ”configured” e.g. by using KONWERK. This can be
done by once defining a model which describes the dependency rules in terms of
concepts, i.e. defining a dependency meta model. While configuring with such a
dependency model the concepts of the configuration model (e.g. of the config-
uration model of Figure 1) are inspected with inspection methods. Inspection
methods typically compute information on objects themselves, here on concepts
themselves, like all parameters of concept A, all patterns of conceptual constraint



Dependency Analysis 13

C etc. Configuration with such a meta model would lead to a dependency graph
which represents the dependencies of the configuration model. The dependency
graph can again be used as a configuration model which is activated during con-
figuration with the configuration model activating a task-specific dependency
graph.

Because procedural knowledge defines known dependencies between configu-
ration steps, this knowledge can be incorporated when the dependency graph is
computed. Thus, when computing the dependency graph procedural knowledge
can be used for more restricting the resulting graph. This topic has not yet been
taken into account.

5 Using Dependencies for Evolution

In the previous sections we have discussed how the dependency analysis is real-
ized. In this section we show how the known dependencies can be used to build
complex change operations. The CPS example from Figure 1 in Section 2 will
be extended to show how modifications to the configuration model can lead to
inconsistencies. Therefore, complex change operations are build to prevent such
situations.

We assume that exactly one Sensor-Configuration of type One-Sensor exists –
this one is an Ultrasonic Sensor (see Figure 10).

Sensor-Configuration
Sup.Depth = [1 10]
Type =  {Single Double}

One-Sensor 
Sup.Depth = 3
Type = Single 

Two-Sensor
Sup.Depth = 10
Type = Double

Ultra-Sonic
Sup.Depth = 3
Type = Single 

Fig. 10. The CPS Example with Ultrasonic Sensor

In our example, a new type of sensor is created – a Short-Range Radar. There also
exists a Sensor-Configuration with exactly one of these sensors. Therefore we introduce
SR Radar as a new Specialization of One-Sensor. The short range radar has a supervi-
sion depth of 5 meters (which is not a subset of the corresponding parameter value in
One-Sensor). Thus, the value for the parameter Sup.Depth of the One-Sensor has to
be corrected accordingly. Figure 11 shows the correct new version of the configuration
model.

To avoid the inconsistency mentioned above, complex change operations are built
from the basic change operations add concept and enlarge parameter value. This results



14 Lothar Hotz et al.

Sensor-Configuration
Sup.Depth = [1 10]
Type =  {Single Double}

One-Sensor 
Sup.Depth = [3 5]
Type = Single 

Two-Sensor
Sup.Depth = 10
Type = Double

Ultrasonic
Sup.Depth = 3
Type = Single 

SR Radar 
Sup.Depth = 5
Type = Single 

Fig. 11. The CPS Example with Ultrasonic and SR Radar Sensors

in the following complex change operations:

add concept(Ultrasonic) → add concept(Ultrasonic), apply superconcept(Ultrasonic,
One-Sensor)

add concept(SR Radar) → add concept(SR Radar), apply superconcept(SR Radar,
One-Sensor), enlarge parameter value (One-Sensor Sup.Depth [3 5])

This is of course a very simple example. But it should make clear how the depen-
dency analysis can be used to guarantee consistency for evolving configuration models.
The properties (Type and Sup.Depth) e.g. are defined in the basic concept Sensor-
Configuration and therefore can be automatically processed. The three types of consis-
tency declared in Section 2 have to hold and can be processed separately. Furthermore,
the dependency analysis can be used to inspect other relations and restrictions (that
have been added to more specific concept definitions). This means, when changes are
given, the computed dependent parts of the model have to be considered for corrections
and / or remodeling.

6 Summary

We have shown how dependencies can be computed from the declarative model in
structure-based configuration. Rules according to the interpretation of the configura-
tion model with the inference machine have been defined. They can be computed with
simple graph algorithms and the computed dependencies can be used for computing
impacts of changes of the configuration model. Short implementation experiences show
that the dependency analysis can be easily implemented. However, a full implementa-
tion and integration in the configuration process is not yet available and will be done
in future work.

Given a dependency graph for a configuration model, this graph can be used for
diverse operations and presentations. If, for example, this information is made acces-
sible during the configuration process it could help in reducing configuration effort.
Furthermore, dependency graphs can be used for training purposes, e.g. by clarifying
the relations and dependencies in the model.



Dependency Analysis 15

Further topics are conceivable as potential application areas for the dependency
analysis shown in this paper. Knowing and therefore being able to predict the impacts
of changes, innovative configuration6 can be realized. [5] Another application area is
reconfiguration: knowing the modifications to a configuration model and their temporal
order and knowing with which version of the configuration model a product has been
configured with, it is possible to reconfigure it – e.g. for adapting new development or
bug fixes. These topics have not yet been addressed by our research group and therefore
present future work.

Acknowledgments

This research has been supported by the European Community under the grant IST-
2001-34438, ConIPF - Configuration in Industrial Product Families.

References

1. V. Arlt, A. Günter, O. Hollmann, T. Wagner, and L. Hotz, ‘EngCon - Engineering &
Configuration’, in Proc. of AAAI-99 Workshop on Configuration, Orlando, Florida,
(July 19 1999).

2. A. Günter, Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.
3. A. Günter and L. Hotz, ‘KONWERK - A Domain Independent Configuration Tool’,

Configuration Papers from the AAAI Workshop, 10–19, (July 19 1999).
4. A. Hein, J. MacGregor, and S. Thiel, ‘Configuring Software Product Line Features’,

in Proc. of ECOOP 2001 - Workshop on Feature Interaction in Composed systems,
Budapest, Hungary, (June, 18 2001).

5. L. Hotz and T. Vietze, ‘Innovatives Konfigurieren in technischen Domänen’, in Pro-
ceedings: S. Biundo und W. Tank (Hrsg.): PuK-95 - Beiträge zum 9. Workshop
Planen und Konfigurieren, Kaiserslautern, Germany, (February 28 - March 1 1995).
DFKI Saarbrücken.

6. M. Klein and N.F. Noy, ‘A Component-based Framework for Ontology Evolution’,
in Proceedings of the Workshop on Ontologies and Distributed Systems, IJCAI-03,
Acapulco, Mexico, (2003).

7. T. Krebs, L. Hotz, C. Ranze, and G. Vehring, ‘Towards Evolving Configuration
Models’, in Proc. of 17. Workshop, Planen, Scheduling und Konfigurieren, Entwer-
fen (PuK2003) – KI 2003 Workshop, pp. 123–134, Hamburg, Germany, (September,
15-18 2003).

8. S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick, ‘A Case Study in Applying
a Product Line Approach for Car Periphery Supervision Systems’, in Proceedings of
In-Vehicle Software 2001 (SP-1587), pp. 43–55, Detroit, Michigan, USA, (March,
5-8 2001).

6 A configuration process is called innovative, when a solution is computed that has
not previously been covered by the configuration model


