

Some Application Scenarios for High-level Scene Interpretation

- street traffic observations (long history)
- cameras monitoring parking lots, railway platforms, supermarkets, nuclear power plants, ...
- video archiving and retrieval
- soccer commentator
- smart room cameras
- autonomous robot applications
 (e.g. robot watchmen, playmate for children)

Cognitive Vision Projects 5th Framework

ACTIPRET: Interpreting and Understanding Activities of Expert Operators for Teaching and Education CAVIAR: Context Aware Vision Using Image-Based Active Recognition COGVIS: Cognitive Vision Systems COGVISYS: Cognitive Vision Systems DETECT: Real Time Detection of Motion Picture Content in Live Broadcasts ECVISION: European Research Network for Cognitive AI-enabled Computer Vision Systems LAVA: Learning for adaptable visual assistants VAMPIRE: Visual Active Memory Processes and Interactive REtrieval VISATEC: Vision-based Integrated Systems Adaptive to Task and Environment with Cognitive abilities

- · Scene interpretation is a knowledge-heavy task
- Large knowledge bases need well-founded semantics
- Desirable to use standard inferencing procedures
- DLs provide expressive object-oriented knowledge representation
- DLs are well understood
- There exist efficient DL systems with various inference procedures
- Long-standing research at CSL, Hamburg University
 - Expressive DLs, RACER (Haarslev, Möller, Wessel)
 - DLs for spatial reasoning (Haarslev, Möller, Wessel)
 - DLs for scene interpretation (Möller, Neumann, Schröder)
 - DLs for case-based help-desk support (Kamp)

C concept term	CER Concept Lan	concrete-domain concer
$CN \text{concept name} \\ R \text{role term} \\ RN \text{role name} \\ C \rightarrow CN \\ & \text{*top*} \\ & \text{*bottom*} \\ (not C) \\ (and C1 Cn) \\ (or C1 Cn) \\ (or C1 Cn) \\ (some R C) \\ (all R C) \\ (all -least n R) \\ (at-least n R) \\ (at-least n R C) \\ (at-most n R C) \\ (at-most n R C) \\ (at-most n R C) \\ (exactly n R C) \\ (e$	(equivalent CN C) concept axioms (implies CN C) (implies C1 C2) (equivalent C1 C2) (disjoint C1 Cn) roles R -> RN (inv RN)	AN attribute name CDC -> (a AM) (an AN) (no AM) (min AN integ (max AN integ (> aexpr aexp (> aexpr aexp (< aexpr aexp (< aexpr aexp (< aexpr aexp (< aexpr aexp aexpr -> AN real (+ aexpr1 aexp AN

e.g. mixed bottom-up and top-down, context-dependent, task-oriented

DL Support for Interpretation Steps

Aggregate instantiation

Determine aggregates for which an individual is a role filler \Rightarrow RACER query language

Instance specialization Retrieve all specializations of a given concept \Rightarrow use specialization hierarchy

Instance expansion

Instantiate parts of an aggregate instance \Rightarrow easy service by looking up the aggregate definition

Instance merging

Determine whether it is consistent to unify two individual descriptions => unification by recursive specialization can be supported

Important missing service: Preference measure for choosing "promising" alternatives

