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Overview

• The Quest for Reliability

• Some areas with deficiencies we worked on

– Role of sampling

– Feature modeling

– Representation and irregular pyramids

• Conclusions
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The Quest for Reliability

• What do I mean by reliability?
– no formal definition yet

– stability: small change in the data leads to small change in the result

• no drastic changes in number of objects, neighborhood and
geometry e.g. upon slight change of viewpoint or scale

– robustness: irrelevant changes do not change the result

• illumination, noise

– avoid error classes that are difficult to “repair”

– criteria to predict quality of results

• classify images / problems according to difficulty

• know the limits of low-level analysis, but

• extract as much information from the original data as possible

• Subsequent algorithms become simpler, faster and less
application specific
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Examples for

Lack of Reliability (1)

• Edge detection so bad that it becomes useless

Original (detail) 

Shen-Castan’s alg. (zero

crossings of diff. of expon.)

Canny’s alg. (local maxima

of Gaussian gradient) 
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Examples for

Lack of Reliability (2)

Topology of contours is incorrect

– region merging due to gaps in edges

– phantom regions at

saddle points

– general: bad junction

representation, contrary

to their high perceptual

significance

gaps 

phantom

regions 
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Examples for

Lack of Reliability (3)

• Slightly different

viewpoint, but

quite different

segmentations

(here: using the

watershed algorithm)

• similar phenomenon:

merging of regions

essentially unpre-

dictable (depends

on subtle gray-value

properties)
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The Role of Sampling

• Theories are often in the continuous domain

• But computers work in the discrete domain

• Sampling changes the data rather drastically

• But little is known about the effect of sampling in

image analysis

– results from other fields cannot simply be transferred

– Shannon’s sampling theory:

• measures function similarity (L2-norm)

• uses band-limiting as criterion

– discretization errors analysis from numeric’s

• give asymptotic error for grid refinement, not absolute error

– need geometrical / topological sampling theorem
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Empirical Result:

Interpolation Helps

• Twofold oversampling (e.g. via interpolation) improves

segmentation results significantly
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Sampling Rate (1)

 (Köthe: DAGM 2003)

• Shannon’s sampling theorem:

                             can be reconstructed from samples at distance

iff Fourier transform

(band-limited function)

• if the image is band-limited, a linearly filtered version is

band-limited as well (at same or smaller frequency)

because                                        (convolution theorem)

                            can still be sampled at

f(x1,x2 ) N

F( 1, 2 ) = 0  for  1 , 2 > N = / N

fx = f
x

g  N

f g  

f * g               F G
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Sampling Rate (2)

• structure tensor calculation involves products of

functions, and                                   (modulation theorem)

• support of              is morphological dilation of the

supports of F and G

         has band-limit

       must be sampled at

otherwise information is lost

F G
f * g               F G

fx
2 2 N

N

2
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Sampling Rate (3)

The sampling problem

is very noticeable!

original

Canny edges at 

original resolution

Canny edges at

doubled resolution
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Sampling Rate (4)

Sub-pixel edgel

resolution doesn’t

help either

original

(line width ~ 2 pixel)

Canny edgels at original resolution

Canny edgels at doubled resolution
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Doubling of the Sampling Rate

• Not: interpolation of original image & standard filtering

• But: convolution of a discrete function with a

continuous filter

is a continuous function

 can be trivially sampled at

twice the original sampling rate

• thus, double resolution

during gradient calculation,

(f g)(x,y) = f(i, j)g(x i,y j)
i,j
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Towards a Geometric Sampling Theory
Step 1: Binary Images

How can we ensure that shape characteristics

are preserved in the digital image,

independent of grid type, rotation and translation?

ReconstructionSampling
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Prior Work

• we directly build upon work of Serra (1982), Pavlidis

(1982), Ronse and Tajine (2000), Latecki et al. (1998)

• geometric sampling theorems based on the notion of

r-regular shapes:

2r
osculating r-balls at each

boundary point of the shape

curvature bounded by 1/r

  shape is invariant under

      opening and closing with

      r-ball structuring element

      (bounded shape diameter)
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Sampling Theorem of Pavlidis (1982)

• Reconstructed shape is topologically equivalent if

– original shape is r-regular

– square grid with sample distance at most           is used

– subset digitization is used

2r

2 r
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Problems with

 Shape Similarity Definition

• Shape similarity criteria sometimes fail:

– topological equivalence (Pavlidis, Latecki & Gross)

– equivalence of homotopy trees (Serra)

– small Hausdorff distance (Ronse & Tajine)

ReconstructionSampling

A

A1

A11

A12

A

A1

A11

A12
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Strong r-Similarity

• Why do other criteria fail?
– topological criteria: arbitrary geometric displacements allowed

– Hausdorff distance: arbitrary (non-unique) point correspondences

• restrict both the topological and geometric distortion

• strong r-similarity: bounded homomorphism

    
R

2 : f(
r 
p )

r 
p < r    (r - homomorphism)
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Digitization and Reconstruction

• r-grid: countable point set G  R2 where radius of

Voronoi regions  r

• Pixel( p ) : Voronoi region of point p  G

• Digitization( S, G ) : { p  G U S }

(subset digitization)

• Reconstruction( S, G ):
U Pixel( p  G U S )
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More Realistic Camera Model (1)

• the camera model so far

– assume that the ideal (pinhole) camera image is a binary shape

– subset digitization of the binary shape

– reconstruction by filling the pixels
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More Realistic Camera Model (2)

more realistic model: real cameras blur the analog image with their

point spread function  analog image no longer binary

– assume that the ideal (pinhole) camera image is a binary shape

– blur analog binary shape with PSF

– digitize blurred image (delta functions at sampling points)

– reconstruct gray-scale image

– reconstruct binary shape by thresholding the gray-scale image

(as in Latecki et al. 98)
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Reconstructed shape is (strongly) (r ’+p)-similar if

– points spread function is disc with radius p

– subset digitization with arbitrary r’-grid is used

– original shape is r-regular with   r ’ + p < r

Sampling Theorem for Blurred Images
(Stelldinger & Köthe: DGCI 2003, DAGM 2003)

2r

• Similar to result of Latecki et al. 98, who used square grid and

PSF that exactly matches the pixel shape
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Sampling of Grayscale and Color Images (1)

 (Stelldinger; IWCIA 2003)

• How to define?
– topological equivalence? r-similarity of all level-sets?

• How to proof under realistic assumptions?
– partial results for r-regular level sets, but what about corners?

• How to use in practice
– is there a topological low-pass filter (analogous to Shannon’s)?

– closest candidate: iterative average of opening and closing

radius 1original 2 3
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Sampling of Grayscale and Color Images (2)

regularized original nearest-neighbor rec. linear reconstruction
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Limitations of Feature Models

• Topology is more fundamental than geometry!:

– partitioning of the plane requires to deal with regions, edges, and

corners/junctions simultaneously

– regions and contours must be duals

• Image analysis doesn’t care much about topology:

– regions, edges and junctions are detected separately and only

integrated afterwards

– topological errors of the separate detectors are hard to detect and

repair

– in practice, unreliable heuristics used for integration

• too few systematic investigations of topological errors

in the context of image segmentation
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Errors at Junctions (1)

Analysis of zero-crossing algorithms
e.g. H. Neumann ’88,

       Deriche & Giraudon ‘93

– zero crossings form
closed contours

 T-junctions impossible

– gaps and phantom edges

– complex dependence from
contrast and scale (Florack ‘00)
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Errors at Junctions (2)

Errors of Canny’s Algorithm (oriented  gradient maxima)

(Rohr, Frantz, Hartkens ’92-’97, Beymer ’91, Rothwell et al. ’94, ):

– gradient minimum

at saddle points

 phantom edges

     and regions

– edge orientation

undefined in

2 -neighborhood

around junctions

 gaps

– unreliable heuristic

repair rules
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Integrated Detection of

Edges and Junctions

• Simultaneous detection of different feature types

• Contour strength instead of edge and corner strength

• Decomposition into feature types at the end

• Tensor based approaches

– improved structure tensor

• non-linear integration of the structure tensor

– boundary tensor

• rotationally invariant quadrature filters using the Riesz

transform
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Structure Tensor Definition

• Image gradient by Gaussian derivatives

• Gradient tensor:

• Structure tensor: component-wise spatial averaging of

gradient tensor (calculation of a scatter matrix)

withfx, = f
x

g   fy, = f
y
g g (x,y) =

1
2 2 e

x2 +y 2

2 2

Q =
q11 q12
q21 q22

 

 
 

 

 
 =

fx,
2 fx, fy,

fx, fy, fy,
2

 

 
 

 

 
 

S , © =
s11 s12
s21 s22

 

 
 

 

 
 = g   

q11 q12
q21 q22

 

 
 

 

 
 sij = g   qij
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Tensor Averaging (1)

• linear averaging causes blurring, despite the

oversampling

gradient sq. magnitude

trace of structure tensor 

(original resolution)

trace of structure tensor 

(doubled resolution)

S ,   = g   

fx,
2 fx, fy,

fx, fy, fy,
2
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Tensor Averaging (2)

 (Köthe: DAGM 2003)

• Solution: use a non-linear filter

 tensor averaging only along edges

• experimented with different possibilities (tensor diffe-

rential equations, elliptic and polar separable kernels)

• best results with hour-glass kernel

• expresses likely continuations of the edge

rotate filter according to local

edge orientation (minor tensor axis)

h   , (r, , 0 ) =
1
N
e

r2

2   
2 e

tan2 ( 0 )

2 2
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Tensor Averaging (3)

• Filter definition:

• Results – no blurring, improved junction response:

gradient sq. magnitude

tensor trace after 

non-linear averaging

  

tij (x,y) = h   , x  x ,y  y ,
r 
n (  x  y )( ) qij  x ,  y ( )

 x ,  y 

i, j {1,2}
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Combination of

1st and 2nd Order Filters (1)

• use different filters to be sensitive for different feature

types:

first order                                           second order

• integrate the filter responses into a common tensor

representation 

• but: make sure that the filters combine reasonably

everywhere quadrature filters, not derivatives
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Combination of

1st and 2nd Order Filters (2)

• straightforward combination:

• but: How to chose v?

– in general, no single v works well on the entire image

– often responses are not unimodal

 try to eliminate v

original                   v = 32                      original                  v = 8

T = I IT + vH2



18

Sommersemester 2005 Ullrich Köthe: Towards Reliable Low-Level Image Analysis 35

Combination of

1st and 2nd Order Filters (3)

• Established method in 1D: quadrature filters

– pair of even and odd filters with same amplitude spectrum

(derivatives have different spectra!)

Hilbert Transform

(in Fourier domain)

-0.8
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0
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1
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u*u*exp(-(u*u)/2)

u*u*u/abs(u)*exp(-(u*u)/2)

Fourier spatial

Kodd =
j
Keven = jsign( )Keven
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Combination of

1st and 2nd Order Filters (4)

• combined energy of even and odd filters is the same

for 1st and 2nd order structure (step edges and ridges)

0

50

100

150

200

250

0 50 100 150 200

0

50

100

150

200

250

300

0 50 100 150 200

Original signal

Energy response of

quadrature filter

Equad = (kodd * f)
2

+ (keven * f)
2
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Combination of

1st and 2nd Order Filters (5)

• How to generalize quadrature filters to 2D?

– usually: define a family of oriented 1D filters

– but: How many orientations? How to combine filter responses, or

select the most salient one?

 new tuning parameters necessary

 prefer parameter free, rotationally invariant generalization

• Generalize Hilbert transform to Riesz transform

Riesz transform

(in Fourier domain)

compare with gradient:

  

KRiesz =
j
r 

 
r 

 
KOriginal

  
KGradient = j

r 
 KOriginal
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2D Quadrature Filters

 (Köthe: ICCV 2004, upcoming tensor book)

• Define 1st order Riesz vector and 2nd order Riesz

matrix from Laplacean of Gaussian filter

• behave like 1D quadrature filters for 1D features

(edges, lines)

• respond to 2D features

q11 + q22

q1 q2

q11 – q22 q12

  

Q(
r 

 ) =
r 

 
2e

r 
 
2 2 / 2

Qi = j
r 

 i
r 

 e
r 

 
2 2 / 2

Qik =
r 

 i
r 

 ke
r 

 
2 2 / 2



20

Sommersemester 2005 Ullrich Köthe: Towards Reliable Low-Level Image Analysis 39

Boundary Tensor (1)

• Combine filter responses into a tensor

• Tensor trace: boundary energy

– is rotationally invariant

– signals step and line edges

gi = qi f Hik = qik f B = ggT +HHT
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Boundary Tensor (2)

• But boundary energy is also high at junctions

• Decomposition into edge and junction contributions

• Compute orientation of 1D structures:

  

B = Bedge + Bjunction

= (µ1 µ2 )
r 
e 1

r 
e 1

T + µ2

1 0

0 1

 

 
 

 

 
 

  

µ1,µ2 :  large and small eigenvalues
r 
e 1 :         eigenvector for µ1

=
1
2
arctan

2B12

B11 B22
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Boundary Tensor

on Test Images
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Accuracy of Corner / Junction

Localization

• significantly higher accuracy than traditional methods,

e.g. Förstner or Harris (reduced to 30-50%)

• multiple responses much more infrequent

x    correct position

x    hourglass filter

x    junction energy

x    Förstner

x    Harris
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Watershed Algorithm –

Boundary Tensor

    Original gradient 

magnitude
   boundary 

energy

watersheds

of gradient

watersheds

of energy
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Integrated Edge/Junction Detection –

Structure Tensor

edges / 

corners

with linear

averaging

edges / 

corners

non- linear

averaging
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Representation of Image Partitionings
(Köthe, Meine, Stiehl: Dagstuhl 2003, DGCI 2003, BVM 2004)

• Many algorithms create / work with image partitionings

• Usually each algorithm defines its own data

representation

• disadvantages:

– a lot of repeated work (data structures and their consistent

manipulation)

– algorithms are difficult to combine (esp. edge and region segm.)

– good ideas cannot be realized because data structure is too weak

– often: heuristic solutions because proper solutions are more

expensive  consistency (topology!) no longer guaranteed

 problems can be solved by a unified data representation

conforming to topological requirements

Sommersemester 2005 Ullrich Köthe: Towards Reliable Low-Level Image Analysis 46

• (geometric) partitions of the plane are the foundation
of the theory:

– set of vertices V = {Vi: [xi, yi] }

– set of open arcs A that connect the
vertices A = {Ak: (0,1)  �2 }

– regions R: connected components
of the rest

– Vi, Ak, Rm are the elements of the
finite topological space

– a set is open if the corresponding
set in the plane is open under the
Euclidean topology

– ‘open stars’ basis of the topology

– inconvenient because geometry and topology intimately tied

Geometric Definition

of a Finite Topology
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Combinatorial Map Definition

of a Finite Topology

• Combinatorial Map (Tutte ’84, Dufourd/Puitg ’00):

– set of darts (half-edges) D = { di }

– involution  and permutation  of the darts (then  -1  is also a

permutation)

– cycles (“orbits”) of the permutations define the nodes, edges, and faces

of the combinatorial map

• Example:

 = {E1=(1,1’), E2=(2,2’), E3=(3,3’),

E4=(4,4’), E5=(5,5’)}

 = {N1=(1,2), N2=(1’,4), N3=(2’,3),

 N4=(5,4’,3’), N5=(5’)}

 -1  ={F1=(1,4,5,5’,3’,2’), F2=(1’,2,3’,4’)}

• Advantage: explicit coding of structure of imbedding

• Disadvantage: faces may not have holes

1 1’

3 3’

2

2’

4

4’

5

5’

E
1

E
3

E
2

E
4

E
5

F
1

F
2

N
1

N
3

N
2

N
4 N

5

-orbit-orbit
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Khalimsky’s Definition

of a Finite Topology

• Khalimsky’s line (Khalimsky et al. ’90)

– alternate open and a closed points

• Khalimsky’s plane:

– product of two such lines

– consists of open     , closed

and mixed points

– open sets as products of the

open sets of the lines

• Advantage: simple regular

structure

• Disadvantage: can only

represent regular grids
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Block Complex Definition

of a Finite Topology

• Define a new cell complex on the basis of an existing
one (Kovalevsky ’00):
– completely subdivide the cell complex into 0-, 1-, 2-blocks

– n-block is homeomorphic to a n-sphere

– bounding relation: if a cell from Bi bounds a cell from Bk, then Bi

bounds Bk

• Example:
– gray or white squares/rectangles: 2-blocks

– small circles and black lines: 1-blocks

– large circles: 0-blocks

• Advantage: can be defined on
top of any finite topological space

• Disadvantage: n-sphere requirement is too restrictive
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Algorithms to Create a

Combinatorial Map

• Crack insertion algorithm:

– block complex on top of Khalimski grid

– define darts and contains relation to go to XPMap

• Watershed algorithm:

– irreducible 8-connected boundary on pixels

– classification of boundary pixels into cell types

• Sub-pixel watershed algorithm

– smooth interpolation of the image

– find critical points and use Runge-Kutta algorithm for continuous

contour following

• all 3 representations fulfill axioms and can implement

the same abstract data type
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XPMap from

Crack Insertion Algorithm

• start with 4-connected region image

 insert space for cracks  label cracks

 transform block labeling of Khalimksy plane

 merge edges  define orbits

-orbit
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XPMap from

Watershed Algorithm (1)

• start with boundary indicator (e.g. gradient magnitude)

 do non-maxima suppression with watershed algorithm, leave 8-

connected irreducible boundary

 label boundary points as vertex or edge

 define orbits
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XPMap from

Watershed Algorithm (2)

• Point labeling:

– classify point as edge if it has exactly two continuations, e.g.

– as vertex otherwise, e.g.
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XPMap from

Watershed Algorithm (3)

• Define -orbit by edge following

• Define -orbit by contour following around vertex

•  = -1 

-orbit-orbit
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Properties of Algorithms

for XPMap Definition

• all 3 algorithms create topologically correct results

• Pixel based algorithms:
+ quite fast, use established algorithms

+ easy access to pixels of all cells (vertices, edge, and regions)

– low geometric accuracy,

– big vertices (several pixels) in watershed

– 4-fold resolution for crack representation

• Sub-pixel algorithm:
+ high geometric accuracy, vertices are points

+ easy access to coordinates of vertices and edges

– much slower

– access to region interior more difficult
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The GeoMap

Abstract Data Type (3)

• Inspection of geometry and photometry:

CellScanIterators

– move over the pixels/points in a given cell

– return current coordinate  can directly derive geometric properties

– access original or derived image at same place  collect any statistic
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Euler Operators

on the GeoMap (1)

• Euler operators: transform an XPMap into another one

– Euler’s relation remains valid:

– elementary modifications: number of cells is changed by at most 1

– complete: any transformation is concatenation of Euler operations

– all necessary changes transparently applied to data structure,

including update of user defined data (e.g. statistics)

vefk

merge faces merge edges
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Euler Operators

on the GeoMap (2)

• can prove: all operations transform a XPMap into

another valid XPMap

insert node move component

contract edge remove bridge
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Euler Operators

on the GeoMap (3)

• on continuous XPMap: remove cells

• on pixel-based XPMap: relabel cells

• only reductions so far

Merge regions

Merge regions

Remove bridge

Remove isolated node

Merge regions

Merge edges
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Irregular Pyramids

using the GeoMap

• Given: an XPMap

• Use application-specific

criteria to define k-

segments

• Reduce the segments

into a simpler XPMap

• Repeat until desired

result is achieved

• Different criteria can be

used at every level

• Can build both regular

and irregular pyramids

(depends on criteria to

define segments)

Ebene 0: ursprünglicher Zellkomplex
(Khalimsky-Ebene eines 6x6-Bildes)

segmentierter Zellkomplex
(Zerlegung der Khalimsky-Ebene)

Ebene 1: kontrahierter Zellkomplex
(Zwischenergebnis, zu viele Regionen)

segmentierter Zellkomplex
(Zerlegung der Struktur aus Ebene 1)

Ebene 2: kontrahierter Zellkomplex
(Endergebnis mit korrekten Regionen)

Segmentierungsverfahren
(z.B. Wasserscheidenverfahren)

Kontraktion

Segmentierungsverfahren
(z.B. Regionenwachstum auf Graphen)

Kontraktion
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                               Demo
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Results (1):

Automatic Edge Remover
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Results (2):

Interactive Paintbrush
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Conclusions (1)

• Noise and low contrast cannot always be blamed for

bed results in low-level segmentation

• We do not fully understand many crucial parts of the

process

– How much information is preserved after discretization?

– What’s an appropriate feature model?

– How to avoid topological inconsistencies?

– How to evaluate algorithms performance?

– and many more…

• We are quick with invoking non-generic knowledge to

avoid or repair errors

• But much of the information in the data is ignored
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Conclusions (2)

What I’ve shown

• Oversampling prevents information loss

• Under certain conditions, topology does not change

during discretization

• Better feature models can be built using tensors

• Topological representation helps to

– eliminate heuristics

– preserve topological correctness during all processing steps

– combine and unify algorithms

• GeoMap abstract data type makes life much easier

– programming at high abstraction level, but still fast
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Conclusions (3)

• But we have barely scratched the surface

– more realistic conditions for the sampling theorem and

handling of more complicated shapes

– tensors should cover all feature configurations and

become less noise sensitive

– better criteria to build irregular pyramids (e.g. gestalt, learning)

– extension to 3D

– systematic evaluation (experiments in batch-mode)

– integration with higher-level vision

• Software (VIGRA) and papers at

http://kogs-www.informatik.uni-hamburg.de/~koethe/papers/
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Thank you!


