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Overview

* The Quest for Reliability

* Some areas with deficiencies we worked on
— Role of sampling
— Feature modeling
— Representation and irregular pyramids

e Conclusions
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The Quest for Reliability

* What do | mean by reliability?
no formal definition yet
stability: small change in the data leads to small change in the result

* no drastic changes in number of objects, neighborhood and
geometry e.g. upon slight change of viewpoint or scale

robustness: irrelevant changes do not change the result
* illumination, noise
avoid error classes that are difficult to “repair”
criteria to predict quality of results
« classify images / problems according to difficulty
» know the limits of low-level analysis, but
« extract as much information from the original data as possible
* Subsequent algorithms become simpler, faster and less
application specific
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Examples for
Lack of Reliability (1)

» Edge detection so bad that it becomes useless

Canny'’s alg. (local maxima Shen-Castan’s alg. (zero
Original (detail) of Gaussian gradient) crossings of diff. of expon.)
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Examples for
Lack of Reliability (2)

Topology of contours is incorrect
— region merging due to gaps in edges
— phantom regions at &j RITE
saddle points ¢
— general: bad junction Pd@tg .
representation, contrary . ¢4~ phantom
to their high perceptual -M regions ..
L = T, I .
significance o

G
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Examples for
Lack of Reliability (3)

» Slightly different
viewpoint, but
guite different
segmentations
(here: using the
watershed algorithm)

* similar phenomenon:
merging of regions
essentially unpre-
dictable (depends
on subtle gray-value
properties)
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The Role of Sampling

» Theories are often in the continuous domain
* But computers work in the discrete domain
» Sampling changes the data rather drastically

» But little is known about the effect of sampling in
image analysis

results from other fields cannot simply be transferred
Shannon’s sampling theory:

» measures function similarity (L2-norm)

* uses band-limiting as criterion
discretization errors analysis from numeric’s

* give asymptotic error for grid refinement, not absolute error
need geometrical / topological sampling theorem
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Empirical Result:
Interpolation Helps

» Twofold oversampling (e.g. via interpolation) improves
segmentation results significantly
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Sampling Rate (1)

(Kéthe: DAGM 2003)

* Shannon’s sampling theorem:

f(x;;X;) can be reconstructed from samples at distance Ay

iff Fourier transform F((D1,002)f*? 0 for |0)1|’|‘D2| >0y =m/Ay
(band-limited function)

» if the image is band-limited, a linearly filtered version is
band-limited as well (at same or smaller frequency)

because f*g o—e FG (convolution theorem)

0
= fx=f*a—xg can still be sampled at A,
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Sampling Rate (2)

e structure tensor calculation involves products of
functions,and f*g o—e FG (modulation theorem)

» supportof F=*G is morphological dilation of the

supports of Fand G
* vas nand i MV
= f. has band-limit 2w,

must be sampled at )‘2"

otherwise information is lost
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Sampling Rate (3)

 deaeibimg the resf Canny edges at
it 08 0 ferelieq of | original resolution
The sampling problem  puperiangl deserfotson of tat revran.
is very noticeable! segk 0 smnglo zaneoptusl ord fnehem
sefile e wanlih of omaple el rezap
1@ meuweaphysizlegiznlly’=? cnd inferres
describing the response of th eepecinlly if sueh o framerrsri: hos the
ht &= a function of p"*‘ﬁ“i“"_f"dé;{é;ﬁgﬁ A
functional description of thgt *° ng the Fesponse of mj{nﬂ’ nedre
seck a single conceptual an ?E as a function of pesilion—is perhoy
kb The adith o simple-w@@mm;@ﬂ deseription of thet neuren.
id neurophysiolagically’? and @@@q&s e single @@m@@p&wg&ﬂ end mathem
original ¥ if such & fmmewmlzg@ﬂb@ the wcgaﬂ&[hﬂ of simple-cell recay
18 nevrophysielegic Canny edges at
espeeially if sueh & doubled resolution
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Sampling Rate (4)

Sub-pixel edgel — :
. , -.... Canny edgels at original resolution
resolution doesn’t -

help either

original
(line width ~ 2 pixel)

L.

Sommersemester 2005
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Doubling of the Sampling Rate

* Not: interpolation of original image & standard filtering

* But: convolution of a discrete function with a
continuous filter

(Fxg)xy) = X fh.g(x Ly~ )

is a continuous function

= can be trivially sampled at )
twice the original sampling rate \

* thus, double resolution
during gradient calculation,
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Towards a Geometric Sampling Theory
Step 1: Binary Images

", Reconstruction

—>

Sampling

—>

How can we ensure that shape characteristics
are preserved in the digital image,
independent of grid type, rotation and translation?
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Prior Work

» we directly build upon work of Serra (1982), Pavlidis
(1982), Ronse and Tajine (2000), Latecki et al. (1998)

» geometric sampling theorems based on the notion of
r-regular shapes:

20

osculating r-balls at each
boundary point of the shape

= curvature bounded by 1/r

= shape is invariant under
opening and closing with
r-ball structuring element
(bounded shape diameter)
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Sampling Theorem of Pavlidis (1982)

* Reconstructed shape is topologically equivalent if
— original shape is r-regular
— square grid with sample distance at most -/2 r is used
— subset digitization is used
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Problems with
Shape Similarity Definition

» Shape similarity criteria sometimes fail:
— topological equivalence (Pavlidis, Latecki & Gross)
— equivalence of homotopy trees (Serra)
— small Hausdorff distance (Ronse & Tajine)

Reconstruction

—>

Sampling

—
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Strong r-Similarity

* Why do other criteria fail?
— topological criteria: arbitrary geometric displacements allowed
— Hausdorff distance: arbitrary (non-unique) point correspondences

* restrict both the topological and geometric distortion
» strong r-similarity: bounded homomorphism

€R*: [f(p)-p/<r (r-homomorphism)




Digitization and Reconstruction

» r-grid: countable point set G C R? where radius of
Voronoi regions < r

 Pixel(p): Voronoi region of pointp €G

« Digitization(S,G):{pEGuUS}
_(s_u_bse; Idilaitilza
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More Realistic Camera Model (1)

» the camera model so far
— assume that the ideal (pinhole) camera image is a binary shape
— subset digitization of the binary shape
— reconstruction by filling the pixels

. °
° .
—> ° °
° .
. °
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More Realistic Camera Model (2)

more realistic model: real cameras blur the analog image with their
point spread function = analog image no longer binary

— assume that the ideal (pinhole) camera image is a binary shape

— blur analog binary shape with PSF

— digitize blurred image (delta functions at sampling points)

— reconstruct gray-scale image

— reconstruct binary shape by thresholding the gray-scale image
(as in Latecki et al. 98)

°
. .

o .
. .

o .
. .

.
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Sampling Theorem for Blurred Images

(Stelldinger & Kdthe: DGCI 2003, DAGM 2003)

Reconstructed shape is (strongly) (r '+p)-similar if
— points spread function is disc with radius p
— subset digitization with arbitrary r'-grid is used
— original shape is r-regularwith r’ +p <r

» Similar to result of Latecki et al. 98, who used square grid and
PSF that exactly matches the pixel shape
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Sampling of Grayscale and Color Images (1)

(Stelldinger; IWCIA 2003)

How to define?

— topological equivalence? r-similarity of all level-sets?

How to proof under realistic assumptions?

— partial results for r-regular level sets, but what about corners?
How to use in practice

— is there a topological low-pass filter (analogous to Shannon’s)?
— closest candidate: iterative average of opening and closing
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Sampling of Grayscale and Color Images (2)

IWIIW

regularized original nearest-neighbor rec. linear reconstruction
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Limitations of Feature Models

* Topology is more fundamental than geometry!:

— partitioning of the plane requires to deal with regions, edges, and

corners/junctions simultaneously
— regions and contours must be duals

* Image analysis doesn’t care much about topology:

— regions, edges and junctions are detected separately and only

integrated afterwards

— topological errors of the separate detectors are hard to detect and

repair
— in practice, unreliable heuristics used for integration

* too few systematic investigations of topological errors

in the context of image segmentation
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Errors at Junctions (1)

Analysis of zero-crossing algorithms
e.g. H. Neumann 88,
Deriche & Giraudon ‘93

— zero crossings form
closed contours

=» T-junctions impossible
— gaps and phantom edges

— complex dependence from
contrast and scale (Florack ‘00)

N

S ﬂ eliak

13



Errors at Junctions (2)

Errors of Canny’s Algorithm (oriented gradient maxima)
(Rohr, Frantz, Hartkens '92-'97, Beymer '91, Rothwell et al. '94, ):

— gradient minimum
f ...

at saddle points
= phantom edges
and regions
— edge orientation
undefined in
2p-neighborhood

around junctions
= gaps
— unreliable heuristic A
repair rules
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Integrated Detection of
Edges and Junctions

Simultaneous detection of different feature types
Contour strength instead of edge and corner strength
Decomposition into feature types at the end

Tensor based approaches
— improved structure tensor
* non-linear integration of the structure tensor
— boundary tensor

« rotationally invariant quadrature filters using the Riesz
transform
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Structure Tensor Definition

* Image gradient by Gaussian derivatives

a a _X2+)2'2
= —_ f_ =fx— i = 20
f,=f+ X g, No=T* oy 9, with 9g,(X,Y) - e
« Gradient tensor: . (q" q12) _ 2, f.f,
° q21 q22 fx,ofy,o fy2,0

» Structure tensor: component-wise spatial averaging of
gradient tensor (calculation of a scatter matrix)

Sy S 4y q
so 0c® = " 12) = gc’ *( " 12) si' = go’ * qi'
e (321 s22 q21 q22 : :

Sommersemester 2005 Ullrich Kéthe: Towards Reliable Low-Level Image Analysis 29

Tensor Averaging (1)

» linear averaging causes blurring, despite the
oversampling

2 f f
S = ’ X,0 X,0 'Y,0
o0 = 9o *(f £ )

X,0 'Y,0
gradient sq. magnitude

trace of structure tensor
(original resolution)

trace of structure tensor
(doubled resolution)
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Tensor Averaging (2)

(Kéthe: DAGM 2003)

e Solution: use a non-linear filter
= tensor averaging only along edges

» experimented with different possibilities (tensor diffe-
rential equations, elliptic and polar separable kernels)

* best results with hour-glass kernel
» expresses likely continuations of the edge

1 ;2 2
hc’,p(r’(p!cP0)= Nezc e 2

rotate filter according to local
edge orientation (minor tensor axis)
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—r2  -tan’(p-g,)

Tensor Averaging (3)

* Filter definition:

tij (X,y) = E ho',p (X - X’,y - y’!ﬁ(x’y’)) qii(x’!y’) I!l € {152}

* Results —no blurring, improved junction response:

FH{EES] E||H1Tf gradient sq. magnitude

] | tensor trace after
'H*ggl g"mﬁ non-linear averaging
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Combination of
1st and 2nd Order Filters (1)

* use different filters to be sensitive for different feature

types:
first order second order

* integrate the filter responses into a common tensor
representation = boundary tensor

* but: make sure that the filters combine reasonably
everywhere = quadrature filters, not derivatives
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Combination of
1st and 2nd Order Filters (2)

 straightforward combination: T =VIVI" + vH?
* but: How to chose v?
— in general, no single v works well on the entire image
— often responses are not unimodal
= try to eliminate v

original original
Sommersemester 2005 Ullrich Kéthe: Towards Reliable Low-Level Image Analysis
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Combination of
1st and 2nd Order Filters (3)

» Established method in 1D: quadrature filters

— pair of even and odd filters with same amplitude spectrum
(derivatives have different spectra!)

Hilbert Transform _Jo i
. . . Kodd - Keven = ISIQn(m)Keven
(in Fourier domain) |(D|
=N/ |\
02 \\/ \ -/
Fourier spatial
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Combination of
1st and 2nd Order Filters (4)

 combined energy of even and odd filters is the same
for 1st and 2nd order structure (step edges and ridges)

= *)* + (Koven * f)?
Equad = (kodd f + keven f

soco
zso 7 N
200 / i
reo ~ Original signal "
oo \ A
0 / \\\

OC) ~ w0 ENele] ASsSO 200
zso
zZoo “,/\
= Energy response of
rToo \ quadrature filter
S0 \,,,//

OC) w0 ENele]
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Combination of
1st and 2nd Order Filters (5)

* How to generalize quadrature filters to 2D?
— usually: define a family of oriented 1D filters

— but: How many orientations? How to combine filter responses, or
select the most salient one?

= new tuning parameters necessary
= prefer parameter free, rotationally invariant generalization

e Generalize Hilbert transform to Riesz transform
Riesz transform K. =@
Riesz

—K
(in Fourier domain) @]

Original

compare with gradient: K, gient = J® Koﬁginal

Sommersemester 2005 Ullrich Kéthe: Towards Reliable Low-Level Image Analysis
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2D Quadrature Filters

(Kothe: ICCV 2004, upcoming tensor book)

» Define 1st order Riesz vector and 2" order Riesz
matrix from Laplacean of Gaussian filter

* behave like 1D quadrature filters for 1D features

(edges, lines)
» respond to 2D features n n
Q((I)) — |(—l>)|2e—‘6)‘202/2
q q

2 2 1 2
o || =B 0°/2
Q, = jo,we™
12 2
— — _—|®|“c?/2
Qu1+ 22 Q11— 022
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Boundary Tensor (1)

* Combine filter responses into a tensor
g =q=*f H, =q, *f B=gg' +HH’
» Tensor trace: boundary energy

— is rotationally invariant
— signals step and line edges
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Boundary Tensor (2)

But boundary energy is also high at junctions
Decomposition into edge and junction contributions
B = B.yge + Bjunction u,u, : large and small eigenvalues

1 0) e: eigenvector for p,

- =) 6,67
-n,)ee; + Uz(o 1

. . 1 2B,,
Compute orientation of 1D structures: ¥ =_arctan —*=—

i ZE=E

Sommersemester 2005 Ullrich Kéthe: Towards Reliable Low-Level Image Analysis 4
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Boundary Tensor
on Test Images
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Accuracy of Corner / Junction
Localization

» significantly higher accuracy than traditional methods,
e.g. Forstner or Harris (reduced to 30-50%)

* multiple responses much more infrequent

X correct position
x hourglass filter
junction energy
Forstner
Harris
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Watershed Algorithm —
Boundary Tensor

2229200
Nkl T Y POV

ir"—- —-‘*_lr

Original boundary watersheds
energy of energy
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Integrated Edge/Junction Detection —
Structure Tensor

« edges/
corners

with linear
averaging
o
# edges/
corners
non- linear
’ averaging
w r
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Representation of Image Partitionings

(Kothe, Meine, Stiehl: Dagstuhl 2003, DGCI 2003, BVM 2004)

* Many algorithms create / work with image partitionings

e Usually each algorithm defines its own data
representation

» disadvantages:

— alot of repeated work (data structures and their consistent
manipulation)

— algorithms are difficult to combine (esp. edge and region segm.)
— good ideas cannot be realized because data structure is too weak
— often: heuristic solutions because proper solutions are more
expensive = consistency (topology!) no longer guaranteed
= problems can be solved by a unified data representation
conforming to topological requirements
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Geometric Definition
of a Finite Topology

» (geometric) partitions of the plane are the foundation
of the theory:

— set of vertices V = {V;: [x;, yi] }

— set of open arcs A that connect the
vertices A = {A,: (0,1) — [P}

— regions R: connected components
of the rest

-V, A, R, are the elements of the
finite topological space

— asetis open if the corresponding
set in the plane is open under the

Euclidean topology
— ‘open stars’ basis of the topology
— inconvenient because geometry and topology intimately tied
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Combinatorial Map Definition
of a Finite Topology

» Combinatorial Map (Tutte '84, Dufourd/Puitg '00):
— set of darts (half-edges) D = { d, }
— involution a and permutation p of the darts (then p -la is also a
permutation)

— cycles (“orbits”) of the permutations define the nodes, edges, and faces
of the combinatorial map

* Example:
a={E,=(1,1), E;=(2,2), E;=(3,3),
E,=(44), Es=(5,5)}
p ={N;=(1,2), N;=(1",4), N;=(2',3),
N,=(5,4",3"), Ns=(57}
p ‘o ={F,=(1,4,5,5",3,2"), F,=(1,2,3',4)}
» Advantage: explicit coding of structure of imbedding
» Disadvantage: faces may not have holes
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a-orbit

Khalimsky’s Definition
of a Finite Topology

* Khalimsky’s line (Khalimsky et al. "90)
— alternate open and a closed points 0

» Khalimsky’s plane:

— product of two such lines “:"‘:'0 CDererJe
— consists of open O closed [o] Qgggg g g g g g g
and mixed points

— open sets as products of the Q!;! g g g g g g g g g

open sets of the lines D D DDDDD I:l D D D

» Advantage: simple regular ‘D°§DOE§ODODO

structure 00 i0IotIo

] ereieier—er—e

» Disadvantage: can only ICO00C0C0I0010

represent regular grids erJerererere
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Block Complex Definition
of a Finite Topology

» Define a new cell complex on the basis of an existing
one (Kovalevsky '00):
— completely subdivide the cell complex into 0-, 1-, 2-blocks
— n-block is homeomaorphic to a n-sphere
— bounding relation: if a cell from B; bounds a cell from B,, then B,

bounds B,
- Example: mimimjm]
— gray or white squares/rectangles: 2-blocks | . | DUD | .|
— small circles and black lines: 1-blocks
— large circles: 0-blocks |!|gﬂg|!|
« Advantage: can be defined on IDIIIIIII

top of any finite topological space
* Disadvantage: n-sphere requirement is too restrictive
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Algorithms to Create a
Combinatorial Map

Crack insertion algorithm:
— block complex on top of Khalimski grid
— define darts and contains relation to go to XPMap
Watershed algorithm:
— irreducible 8-connected boundary on pixels
— classification of boundary pixels into cell types
Sub-pixel watershed algorithm
— smooth interpolation of the image
— find critical points and use Runge-Kutta algorithm for continuous
contour following
all 3 representations fulfill axioms and can implement
the same abstract data type
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XPMap from
Crack Insertion Algorithm

» start with 4-connected region image
= insert space for cracks = label cracks
= transform block labeling of Khalimksy plane
= merge edges = define orbits

|y

o-orbit
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XPMap from
Watershed Algorithm (1)

» start with boundary indicator (e.g. gradient magnitude)

= do non-maxima suppression with watershed algorithm, leave 8-
connected irreducible boundary

= label boundary points as vertex or edge
= define orbits
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XPMap from
Watershed Algorithm (2)

* Point labeling:
— classify point as edge if it has exactly two continuations, e.g.

ey (e e o) el (g

— as vertex otherwise, e.g.

Saltaalt ]
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XPMap from
Watershed Algorithm (3)

» Define a-orbit by edge following
» Define o-orbit by contour following around vertex
s = ola

Face | Face | Face | Face | Face | Face | Face | Face | Face
2 2

2 2 96

Face | Face | Face Edge Edge |EE=N Edge [EE-]
2 2 183 183 2 96 51

Face Edge "Node’ Edge
183 =932 133

Edge |GEE] Edge IS Face [Se6EY Face
161 2 173 77 BN 88

e [SeleTY Face | Face
76 | 76 R 77— 8" IS 88
Face | Face Face BNl Facq | Face | Face
76 | 76 R 77 NG 881 88 88
Face | Face [REEy 'Sde ERE  dge Edge BEEE
76 | 76 | 76 V76 JE| 120 [ 88

a-orbit Face | Face | Face
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Edge

2 183

76 | 76 | 76 | 76
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Properties of Algorithms
for XPMap Definition

» all 3 algorithms create topologically correct results

* Pixel based algorithms:
+ quite fast, use established algorithms
+ easy access to pixels of all cells (vertices, edge, and regions)
low geometric accuracy,
big vertices (several pixels) in watershed
4-fold resolution for crack representation
* Sub-pixel algorithm:
high geometric accuracy, vertices are points
easy access to coordinates of vertices and g
much slower
access to region interior more difficult

+ +
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The GeoMap
Abstract Data Type (3)

* Inspection of geometry and photometry:
CellScanlterators
— move over the pixels/points in a given cell
— return current coordinate => can directly derive geometric properties
— access original or derived image at same place = collect any statistic

Face | Face | Face | Face | Face | Face | Face | Face | Face

2 2 2 2 2 2 2 96

Face | Face | Face | Face Edge Edge [FEJ Ecve |ED
2 2 2 3 183 2 96 51

Face | Face |[ERQ) Face | Face |[ER e A

el 123 o3 133
Face | Face A Face

184 S

Face Edge |

6 6 77 77 184 88 88
Face Face [T Face | Face

76 | 76 | 76 77 [QELE e8| 88 | g8

Face [ Face |Face Face [¥EETH Face [RREMERCY Face
76 76 | 76 134 WPEl 265 265 R
Face | Face | Face | Face J3¢leCY Face | Face | Face | Face Jilael
76 76 | 76 123 | 123 | 123 | 123 Rl
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Euler Operators
on the GeoMap (1)

* Euler operators: transform an XPMap into another one

— Euler’s relation remains valid:

— elementary modifications: number of cells is changed by at most 1

— complete: any transformation is concatenation of Euler operations

— all necessary changes transparently applied to data structure,
including update of user defined data (e.g. statistics)

merge faces merge edges
> >
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Euler Operators
on the GeoMap (2)

contract edge remove bridge
insert node move component

(D] |

e can prove: all operations transform a XPMap into
another valid XPMap
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Euler Operators
on the GeoMap (3)

* on continuous XPMap: remove cells
* on pixel-based XPMap: relabel cells
* only reductions so far

Face | Face | Face | Face | Face | Face | Face
76 76 76 76 76 76

. Face | Face | Face | Face | Face | Face [=BREY Face
Merge regions 76 | 76 | 76 | 76 | 76 | 76 9%
. Face | Face | Face | Face | Face | Face Node® Edge
Merge regions
76 76 76 76 76 76 93~ 133
Remove brl d e Face | Face | Face | Face | Face | Face =GOEY Face
g 76 76 76 76 76 76 184
Remove Isolate d no de Face | Face | Face | Face | Face | Face Face | Face
76 | 76 | 76 | 76 | 76 | 76 88 | 88
M . Face | Face | Face | Face | Face =Y Face | Face | Face
erge reglons 76 | 76 | 76 | 76 | 76 8 | 8 | 88
M d Face | Face | Face Face | Face | Face
erge € ges 76 | 76 | 76 88 | 88 | 88
Face | Face | Face Face | Face ENef[=S
76 76 76 88 [l 162
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Kontraktion

egmentierter Zellkomplex
>(Zerequng der Struktur aus Ebene 1) ° G | Ven . an XP M ap

/.7 Eesemamireienresnen €0 UlAr Pyramids
> sing the GeoMap

* Use application-specific

(2.B. Regionenwachstum auf Graphen) . . .
criteria to define k-
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Results (1):

Automatic Edge Remover




Results (2):
Interactive Paintbrush

Conclusions (1)

* Noise and low contrast cannot always be blamed for
bed results in low-level segmentation

* We do not fully understand many crucial parts of the
process
— How much information is preserved after discretization?
— What's an appropriate feature model?
— How to avoid topological inconsistencies?
— How to evaluate algorithms performance?
and many more...
* We are quick with invoking non-generic knowledge to
avoid or repair errors

But much of the information in the data is ignored
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Conclusions (2)

What I've shown

* Oversampling prevents information loss

Under certain conditions, topology does not change
during discretization

Better feature models can be built using tensors
Topological representation helps to

— eliminate heuristics

— preserve topological correctness during all processing steps
— combine and unify algorithms

GeoMap abstract data type makes life much easier
— programming at high abstraction level, but still fast
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Conclusions (3)

* But we have barely scratched the surface

— more realistic conditions for the sampling theorem and
handling of more complicated shapes

— tensors should cover all feature configurations and
become less noise sensitive

— better criteria to build irregular pyramids (e.g. gestalt, learning)
— extension to 3D

— systematic evaluation (experiments in batch-mode)

— integration with higher-level vision

» Software (VIGRA) and papers at
http://kogs-www.informatik.uni-hamburg.de/~koethe/papers/
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Thank you!
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