
1

What is "Pattern Recognition"?

Pattern recognition can be applied to all kinds of signals, e.g.
- images
- acoustic signals
- seismographic signals
- tomographic data
etc.

The following section deals with Pattern Recognition in the narrow sense.

(see Duda and Hart, Pattern Classification and Scene Analysis, Wiley 73)

The term "Pattern Recognition" ("Mustererkennung") is used for

Methods for classifying unknown objects based on feature vectors
(narrow sense meaning of Pattern Recognition)

Methods or analyzing signals and recognizing interesting patterns
(wide sense meaning of Pattern Recognition)

2

Basic Terminology for
Pattern Recognition

feature extraction

feature vector

object

classification in
feature space

object class

K classes ωωωω1 ... ωωωωK

N dimension of feature space

xT = [x1 x2 ... xN] feature vector

yT = [y1 y2 ... yN] prototype
(feature vector with known class membership)

yi
(k) i-th prototyp of class k

Mk number of prototypes for class k

gk(x) discriminant function for class k

Problem:

Determine gk(x) such that

gk(x) > gj(x), ∀ x eωωωωK ∀ k ≠≠≠≠ j

3

Example: Animal Footprints

What features can be used to distinguish the 3 footprint classes?

4

A Feature Space for Footprints
b

h
x1 = "squareness" =

4bh
(b ++ h)2

x2 = "solidness" = print area
bh

1

1

♦

♦
♦

♦
♥
♥
♥

♥

o

o
o

o
o

♦
♥

♥

ωωωω1 = wolf

ωωωω2 = bear

ωωωω3 = hare ωωωω1

ωωωω2

ωωωω3

x1

x2

5

Discriminant Functions for Footprints

x1
1

1

♦

♦
♦

♦
♥
♥
♥

♥

o

o
o

o
o

♦
♥

♥

ωωωω1

ωωωω2

ωωωω3

x2

g1 = -9x1
2+10.8x1-x2-2.84

g2 = x1+20x2
2-28x2+9.4

g3 = -x1+5.6x2
2-5.6x2-1

Quadratic discriminant
functions:

1
x1

1

♦

♦
♦

♦
♥
♥
♥

♥

o

o
o

o
o

♦
♥

♥

ωωωω1

ωωωω2

ωωωω3

x2

Piecewise linear
discriminant functions:

x1-x2-0.2 = 0

2x1+x2-1.5 = 0

x1+5x2-3 = 0

g1 = (x1-x2-0.2 > 0) ∧∧∧∧ (x1+5x2-3 < 0)

g2 = (x1+5x2-3 > 0) ∧∧∧∧ (2x1+x2-1.5 > 0)

g3 = (2x1+x2-1.5 < 0) ∧∧∧∧ (x1-x2-0.2 < 0)

6

Existence of Discriminant Functions

• For given prototypes, discriminant functions always exist as long as
no two prototypes belonging to different classes are equal.

• If gi(x), i = 1 ... K, are discriminant functions for given prototypes, then

gi´(x) = a(x) gi(x) + b(x), a(x) > 0, i = 1 ... K

are also discriminant functions.

• If the classes of a 2-class problem are separable, then there always
exists a function g(x) such that

g(x) > 0 ∀∀∀∀x ∈∈∈∈ ωωωω1111

g(x) < 0 ∀∀∀∀x ∈∈∈∈ ωωωω2222

7

Linear Discriminant Functions

Linear discriminant functions are attractive because they can be
• easily determined from prototypes
• easily analyzed
• easily evaluated

Basic form of linear discriminant function:

gk(x) = wk
Tx + wk0

x
x x

xx
x

xx x

o
o o

o

o
o

x1

x2

gk

o o boundary line:
wk

Tx + wk0 = 0

discriminant function is
3D plane

8

Class Average
Minimal Distance Classification

• Represent prototypes by class averages

• Assign object to class with minimum distance between object
and class average

x1

x2

x

x

x

x

x x

x

oo o

o

o

o

o

o

x

x

x

o

x

For a 2-class problem, the
minimal distance criterion
is equivalent to a linear
discriminant function

Class average minimal distance classification may not separate
prototypes even if they are linearly separable!

9

Nearest Neighbour Classification

Assign object to class with nearest prototype

x1

x2

x

x

x

x

x x

x

oo o

o

o

o

o
o

x

x

x

Piece-wise linear
discriminant function

The nearest neighbour criterion classifies all prototypes correctly
(except equal prototypes of different classes). The decision regions
are not necessarily coherent.

10

Generalized Linear
Discriminant Functions

x

x x

x

x
x

x

x

x

o
o

o

o

o

o

o o

o

o
x1

x2

Example:
Prototypes are not linearly separable

A quadratic discriminant function may work:

g(x) = a1x1 + a2x2 + b11x1
2

+ b22x2
2

+ b1 2x1x2 + c

Transformation of prototypes into higher-dimensional feature space may
allow linear discriminant functions.

Transformation for the example: z1 = x1 z2 = x2 z3 = x1
2

z4 = x2
2

z5 = x1x2

Linear discriminant function
in z-space:

g(z) = a1z1 + a2z2 + b11z3 + b2 2z4 + b12z5 + c

Advantage: Linear separation algorithms may be applied
Disadvantage: Dimensionality of feature space is drastically increased

11

Linear Discriminant Functions for
2-Class Problems

Normalize prototypes such that
yT = [1 y1 y2 ... yN]

Discriminant function g can be expressed as
g(x) = aTx with aT = [a0 a1 ... aN]

Prototypes of class ωωωω2 are negated such that

aTy > 0 => correct classification of both classes
weight space

a0

a1

o
y(1)

oy(2)

solution
region for
weight
vectors

Solution region in weight space (if it exists) is the space at the positive side
of all hyperplanes aTy = 0. Any weight vector a in this solution region gives
a correct discriminant function.

Possible further constraints on solution vector a:

||a|| = 1 and aTy > b for all y

b is "margin", i.e. minimal distance of a correctly classified point from the
hyperplanes defined by the prototypes.

12

Perceptron Learning Rule

Perceptron criterion function:

Jp(a) = ΣΣΣΣ (- aTy)

with B = {all misclassified prototypes}

Gradient: „Jp(a) = ΣΣΣΣ (- y)

Basic gradient descent algorithm:

ak+1 = ak + ρρρρk ΣΣΣΣ (y)

y‡B

y‡B

y‡B

iterations viewed in
weight spaceExample (see illustration) with

y1
T= [-1 2], y1

T= [1 -1], ρρρρ = 2:

a0

a1

o
y(1)

o

y(2)

k 0 1 2 3 4 5 6 7 8
ak 0 2 0 2 0 2 4 2 4

1 -1 3 1 5 3 1 5 3

•

•

••

A solution vector a can be determined iteratively by minimizing a criterion
function J(a) by gradient descent.

•

•

•

•

•

solution

13

Minimizing the Discriminant Criterion

General form of gradient descent:

ak+1 = ak - ρρρρk„J(ak) with „J(a)T = [δδδδJ/δδδδa0 δδδδJ/δδδδa1 ... δδδδJ/δδδδaN]

One can determine the optimal ρρρρk which achieves the minimal J(ak+1)
at the kth step by approximating J(a) with a second-order Taylor
series expansion:

J(a) ≈≈≈≈ J(ak) + „TJ(ak)(a - ak) + 0.5 (a - ak)TD(ak)(a - ak)
D(ak) is the matrix of second derivatives δδδδ2J/aiδδδδaj evaluated at ak.

Using the iteration rule:

J(ak+1) ≈≈≈≈ J(ak) - ρρρρk||„J(ak)||2 + 0.5 ρρρρk
2 „J(ak)TD(ak)„J(ak)

The minimizing ρρρρk is:

ρρρρk =
||„J(ak)||2

„J(ak)TD(ak)„J(ak)

Newton´s algorithm is an alternative: Choose ak+1 which minimizes J(a) in
the Taylor series approximation.

ak+1 = ak - D-1„J(ak)

14

Quadratic Criterion Function

Quadratic criterion function:

Jq(a) = ΣΣΣΣ (aTy)2 with B = {all samples where aTy ≤≤≤≤ 0}

Problems:

- slow convergence close to boundaries aTy ≈≈≈≈ 0
- dominated by long sample vectors y

y‡B

Normalized quadratic criterion function:

with B = {all samples where aTy ≤≤≤≤ b}

Gradient: ∇∇Jr (a) ==
aT y −−b

y
2 y

y∈∈B
∑∑

Jr (a) ==
1
2

(aT y −−b)2

y
2

y∈∈B
∑∑

ak++1 == ak ++ ρρk

b −− ak
T y

y
2 y

y∈∈Bk

∑∑Iteration rule:

15

Relaxation Rule

If corrections based on the normalized quadratic criterion are performed for
each single sample, one gets the "relaxation rule":

ak++1 == ak ++ ρρ
b −− ak

T y(k)

y(k) 2 y(k) where aTy(k) ≤≤≤≤ b for all k

Distance from ak to hyperplane aTy(k) = b is
b −− ak

T y(k)

y(k) 2

For ρρρρ = 1, the iteration rule calls for moving ak directly to the hyperplane
=> "relaxation" of tension in inequality aTy(k) ≤≤≤≤ b

Typical values: 0 < ρρρρ < 2
ρρρρ < 1 "underrelaxation"
ρρρρ > 1 "overrelaxation"

a0

a1

o
y(k)

aTy(k) = b

•ak

16

Minimum Squared Error

New criterion function for all samples:

Find a such that aTyi = bi with bi = some positive constant

In matrix notation: Ya = b with Y = y1
T

y2
T

...

yM
T

and yi
T = [yi1 ... yiN]

In general, M >> N and Y-1 does not exist, hence a = Y-1b is no solution.

Classical solution technique: Minimize squared error criterion:

Js(a) = ||Ya - b||2 = ΣΣΣΣ (aTyi - bi)2

Closed-form solution by setting the gradient equal to 0.

„Js = 2YT(Ya - b) = 0 => a = (YTY)-1YTb if (YTY)-1YT is nonsingular

pseudoinverse of Y

17

Ho-Kashyap Procedure
The MSE solution a = (YTY)-1YTb does not necessarily provide a
separating hyperplane aTy = 0 if the classes are linearly separable,
because b is chosen arbitrarily.

Ho-Kashyap algorithm searches for a and b such that Ya = b > 0 by
minimizing Js(a, b) = ||Ya - b||2 w.r.t. a and b:

1. Iterate over a by choosing ak = (YTY)-1YTbk

2. Iterate over b by choosing b1 > 0

bk+1 = bk + 2ρρρρek
+ 0 < ρρρρ < 1

with ek = Yak - bk error vector

ek
+ = (ek + |ek|)/2 positive part ek

Ho-Kashyap iteration over b generates sequence of margin vectors b which
- minimizes squared error criterion
- gives only positive margins b > 0

For linearly separable classes and 0 < ρρρρ < 1, the Ho-Kashyap algorithm
will converge in a finite number of steps.

18

Discrimination with
Potential Functions

Idea: Electrostatic potential centered at each prototype may sum up to
a useful discriminant function

xo o ox x xo

Example:

potential function

K(x, xi) = 1/||x-xi||2

discriminant function

g(x) = ΣΣΣΣ qi K(x, xi)

"charges" qi may be
adjusted in learning
procedure

19

Construction of Discriminant Functions
Based on Potential Functions

Different choices for potential functions are possible, for example:

K(x,xk) ==
σσ2

σσ2 ++ x −− xk
2

K(x,xk) == exp −−
1

2σσ2 x −− xk
2

Iterative construction:

 g(x) + K(x, xk) if xk is of class 1 and g(xk) ≤≤≤≤ 0

g´(x) = g(x) - K(x, xk) if xk is of class 2 and g(xk) ≥≥≥≥ 0

 g(x) otherwise

Potential functions must
be tuned to provide the
right kind of interpolation
between samples

20

Statistical Decision Theory

Generating decision functions from a statistical characterization of classes
(as opposed to a characterization by prototypes)

Advantages:

1. The classification scheme may be designed to satisfy an objective
optimality criterion:

Optimal decisions minimize the probability of error.

2. Statistical descriptions may be much more compact than a collection
of prototypes.

3. Some phenomena may only be adequately described using statistics,
e.g. noise.

21

Example: Medical Screening (1)

It is known that every 10th person is sick (prior probability):
ωωωω1 class of healthy people P(ωωωω1) = 9/10
ωωωω2 class of sick people P(ωωωω2) = 1/10

Health test based on some measurement x (e.g. ECG evaluation)

Task 1: Classify without taking any measurements (to save money)

Decision rule 1a: Classify every 10th person as sick
P(error) = P(decide sick if healthy) + P(decide healthy if sick)

= 1/10•9/10 + 9/10•1/10 = 0.18

Decision rule 1b: Classify all persons as healthy
P(error) = P(decide healthy if sick) = 1/10 = 0.1

• Decision rule 1b is better because it gives lower probability of error

• Decision rule 1b is optimal because no other decision rule can give a
lower probability of error (try "every n-th" in 1a and minimize over n)

22

Example: Medical Screening (2)

Task 2: Classify after taking a measurement x

Assume that the statistics of prototypes are given as p(x|ωωωωi), i = 1, 2

Person No. x indication
• • •
• • •
• • •
134 7.4 neg
135 6.8 neg
136 4.2 pos
137 5.6 neg
138 5.8 pos
139 7.2 neg
• • •
• • •
• • •

P(e|x) is minimized by choosing the class which maximizes P(ωωωω|x).
Hence gi(x) = P(ωωωωi|x) are discriminant functions.

P(e|x) = P(error given x) = P(ωωωω ≠≠≠≠ ωωωω´|x) = 1 - P(ωωωω|x)
where ωωωω´ is the class assigned to x by the decision rule.

ωωωω1: healthyωωωω2: sick

1 2 3 4 5 6 7 8
x

0.1

0.2

p(x|ωωωωi)

How do we get the "posterior" probabilities P(ωωωωi|x)?

23

Example: Medical Screening (3)

The posterior probabilities P(ωωωωi|x) can be computed from the
"likelihood" p(x|ωωωωi) using Bayes´ formula:

P(ωωωωi|x) = =
p(x|ωωωωi)•P(ωωωωi)

p(x)

p(x|ωωωωi)•P(ωωωωi)

p(x|ωωi
i
∑∑)P(ωωi)

For the example, using Bayes´ Formula, one could get:

1 2 3 4 5 6 7 8
x

0.1

0.2

p(x|ωωωωi)
decision
boundary

P(ωωωωi|x)

1 2 3 4 5 6 7 8
x

1.0

0.5

24

General Framework for
Bayes Classification

Statistical decision theory which minimizes the probability of error for
classifications based on uncertain evidence

ωωωω1 ... ωωωωK K classes

P(ωωωωk) prior probability that an object of class k will be observed

x = [x1 ... xN] N-dimensional feature vector of an object

p(x|ωωωωk) conditional probability ("likelihood") of observing x given
that the object belongs to class ωωωωK

P(ωωωωk|x) conditional probability ("posterior probability") that an
object belongs to class ωωωωK given x is observed

Bayes decision rule:

Classify given evidence x as class ωωωω´ such that ωωωω´ minimizes the
probability of error P(ωωωω ≠≠≠≠ ωωωω´| x)

 => Choose ωωωω´ which maximizes the posterior probability P(ωωωω | x)

gi(x) = P(ωωωωi|x) are discriminant functions.

25

Bayes 2-class Decisions

If the decision is between 2 classes ωωωω1 and ωωωω2, the decision rule can be
simplified:

Choose ωωωω1 if
p(x|ωω1)
p(x|ωω2)

>>
P(ωω2)
P(ωω1)

For exponential and Gaussian distributions it is useful to take the logarithm:

g(x) == log
p(x|ωω1)
p(x|ωω2)

++ log
P(ωω1)
P(ωω2)

Several alternative forms are possible for a discriminant function:

g(x) = P(ωωωω1|x) - P(ωωωω2|x)

g(x) ==
p(x|ωω1)
p(x|ωω2)

−−
P(ωω2)
P(ωω1)

g(x) == log
P(ωω1|x)
P(ωω2|x)

== log
P(x|ωω1)P(ωω1)
P(x|ωω2)P(ωω2)

== log
P(x|ωω1)
P(x|ωω2)

−− log
P(ωω2)
P(ωω1)

26

Normal Distributions
Gaussian ("normal") multivariate distribution:

p(x) ==
1

(2ππ)
N
2 ΣΣ

1
2

exp −−
1
2

(x −− µµ)T ΣΣ−−1(x −− µµ)

ΣΣΣΣ = E[(x - µµµµ)T(x - µµµµ)] N-by-N covariance matrix
µµµµ = E[x] mean vector

For decision problems, loci of points of constant density are interesting.
For Gaussian multivariate distributions, these are hyperellipsoids:

(x - µµµµ)TΣΣΣΣ-1(x - µµµµ) = constant

x1

x2
Eigenvectors of ΣΣΣΣ determine directions
of principal axes of the ellipsoids,
eigenvalues determine lengths of the
principal axes.

d2 = (x - µµµµ)TΣΣΣΣ-1(x - µµµµ) is called "squared
Mahalanobis distance" of x from µµµµ.

27

Discriminant Function for
Normal Distributions

General form:

gi(x) = log p(x|ωωωωi) + log P(ωωωωi)

For p(x|ωωωωi) ~ N(µµµµi, ΣΣΣΣi):

gi(x) = -1/2 (x - µµµµi)TΣΣΣΣi
-1(x - µµµµi) - N/2 log 2ππππ - 1/2 log|ΣΣΣΣi| + log P(ωωωωi)

We consider the discriminant functions for three interesting special cases:

- univariate distribution N=1

- statistically independent, equal variance variables xi

- equal covariance matrices ΣΣΣΣi = ΣΣΣΣ

irrelevant

28

Univariate distribution

p(x|ωωωωi) are univariate Gaussian distributions.

x

p(x|ωωωωi)
p(x|ωω1) ==

1
2ππσσ1

exp −−
(x −− µµ1)2

2σσ1
2

p(x|ωω2) ==
1

2ππσσ2

exp −−
(x −− µµ2)2

2σσ2
2

Decision rule:

gi(x) = log P(ωωωωi|x)

gi(x) = -1/(2σσσσi
2) (x - µµµµi)2 - 1/2 log σσσσi + log P(ωωωωi)

x

P(ωωωωi|x)

Example: 2 classes ωωωω1 and ωωωω2

ωωωω1 ωωωω2

29

Statistically Independent,
Equal Variance Variables

ΣΣΣΣi = σσσσ2 I
gi(x) = -1/(2σσσσ2) ||x - µµµµi||2 + log P(ωωωωi)

Because of sufficient statistical data, variables are sometimes assumed
to be statistically independent and of equal variance.

If P(ωωωωi) = 1/N, then the decision rule is equivalent to the
minimum-distance classification rule.

By expanding gi(x) and dropping the xTx term one
gets the decision rule:

gi(x) = -1/(2σσσσ2)[-2µµµµi
Tx + µµµµi

Tµµµµi] + log P(ωωωωi)

which is linear in x and can be written

gi(x) = wi
Tx + wi0

The decision surface is composed of hyperplanes. x1

x2

30

Equal Covariance Matrices

If ΣΣΣΣi = ΣΣΣΣ,,,, the decision rule can be simplified:

gi(x) = -1/2 (x - µµµµi)TΣΣΣΣ-1(x - µµµµi) + log P(ωωωωi)

By expanding the quadratic form and dropping xTΣΣΣΣ-1x one gets again
a linear decision rule which can be written:

gi(x) = wi
Tx + wi0

•

•

x1

x2

If the a-priori probabilities are
equal, the decision rule assigns
x to the class where the
Mahalanobis distance to the
mean µµµµi is minimal.

31

Estimating Probability Densities

Let R be a region in feature space with volume V.
Let k out of N samples lie in R.

x1

x2

x3

R

relative frequency of samples per volume

p(′′x)
R
∫∫ d ′′x ≈≈

k
N

≈≈ p(x)V

p(x) ≈≈
k / N

V

Conditions for a
converging
sequence of
estimates pn(x):

1. lim
n→→∞∞

Vn == 0

2. lim
n→→∞∞

kn == ∞∞

3. lim
n→→∞∞

kn

n
== 0

A sequence of approximations pn(x) may be obtained by changing the
volume Vn as the number of samples n increases.

Examples:
Vn ∼∼∼∼ 1/√n Parzen Windows

kn ∼∼∼∼ √n adjust volume for
k nearest neighbours

