## Probabilistic Models for Occurrences

Modelling probabilistic dependencies (causalities) and independencies between discrete events of a scene
$X_{i} \quad$ random variable models uncertain propositions about a scene
$X_{i}=a \quad$ hypothesis
Decomposition of joint probabilities:
$P\left(X_{1}, X_{2}, X_{3}, \ldots, X_{N}\right)=P\left(X_{1} \mid X_{2}, X_{3}, \ldots, X_{N}\right) \cdot P\left(X_{2} \mid X_{3}, X_{4}, \ldots, X_{N}\right) \cdot \ldots \cdot P\left(X_{N-1} I X_{N}\right) \cdot P\left(X_{N}\right)$
Simplification in the case of statistical independence:
$X$ independent of $X_{i}$
$P\left(X \mid X_{1}, \ldots X_{i-1}, X_{i}, X_{i+1}, \ldots, X_{N}\right)=P\left(X \mid X_{1}, \ldots X_{i-1}, X_{i+1}, \ldots, X_{N}\right)$

Joint probability of $\mathbf{N}$ variables may be simplified by ordering the variables according to their direct dependence (causality).

## Independence Causes Complexity Reduction

Assume that all random variables $X_{n}$ of the JPD $P\left(X_{1}, X_{2}, X_{3}, \ldots, X_{N}\right)$ have a domain size $K$. Then a fully general JPD requires $K^{N}$ entries.

Example: $\mathrm{N}=\mathbf{2 0}, \mathrm{K}=10 \Rightarrow 10^{20}$ entries must be specified!

If all random variables are statistically independent, we have $P\left(X_{1}, X_{2}, X_{3}, \ldots, X_{N}\right)=P\left(X_{1}\right) \cdot P\left(X_{2}\right) \cdot \ldots \cdot P\left(X_{N}\right)$ and only $K N$ entries are required.

## Exploiting independencies can greatly reduce the size of a probability table!

## Conditional Independence

It is useful to determine direct influences $Y_{i}$ on a random variable $X$, because given the $Y_{i}, X$ is independent of other Variables $Z_{k}$ "upstream" to the $Y_{i}$.

Let $\operatorname{dom}(X)$ be the domain of $X$, i.e. the set of possible values of $X$.
A random variable $X$ is independent of $Z$ given $Y$ if for all $x_{i} \square \operatorname{dom}(X)$, for all $y_{j} \square \operatorname{dom}(Y)$, and for all $z_{k} \square \operatorname{dom}(Z)$,

$$
P\left(X=x_{i} \mid Y=y_{j}, Z=z_{k}\right)=P\left(X=x_{i} \mid Y=y_{j}\right)
$$

Example: $\mathrm{X}=$ plate_in_view, $\mathrm{Y}=$ plate_on_table, $\mathrm{Z}=$ want_to_eat

| X Y Z | $\mathrm{P}(\mathrm{XYZ})$ | XYZ | $\mathrm{P}(\mathrm{XYZ})$ | Check whether X is |
| :--- | :--- | :--- | :--- | :--- |
| T T T | .096 | FT T | .024 | independent of $Z$ |
| T T F | .064 | FT F | .016 | given Y! |
| T F T | .0 | FFT | .08 |  |
| T F F | .0 | FF F | .72 |  |

## Causality Graph

Conditional dependencies (causality relations) of random variables define partial order.
Representation as a directed acyclic graph (DAG):

$P\left(X_{1}, X_{2}, X_{3}, \ldots, X_{8}\right)=$
$P\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right) \cdot P\left(X_{2}\right) \cdot P\left(X_{3} \mid X_{4}, X_{5}\right) \cdot P\left(X_{4} \mid X_{6}\right) \cdot P\left(X_{5} \mid X_{6}\right) \cdot P\left(X_{6} \mid X_{7} X_{8}\right) \cdot P\left(X_{7}\right) \cdot P\left(X_{8}\right)$

For any DAG, we obtain the JPD as follows:
$\mathrm{Pa}\left(\mathrm{X}_{\mathrm{i}}\right)$ parents of node $\mathrm{X}_{\mathrm{i}}$
$P\left(X_{1} \ldots X_{N}\right)=\prod_{i} P\left(X_{i} I P a\left(X_{i}\right)\right)$

## Example: Traffic Behaviour of Pedestrians



Conditional probability table for each node must be known

| $\mathrm{P}(\mathrm{X} 11 \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{X} 5)$ |  |  |  |  |  | P(X2 I X6) |  |  | $\mathrm{P}(\mathrm{X} 3$ I X6) |  |  | P(X4) |  | P(X5) |  | P(X6) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X1 | X2 | X3 | X4 | X5 | P | X2 | X6 | P | X3 | X6 | P | X4 | P | X5 | P | X6 | P |
| T | T | T | T | T | 0.3 | T | T | 0.2 | T | T | 0.01 | T | 0.1 | T | 0.7 | T | 0.7 |
| F | T | T | T | T | 0.7 | F | T | 0.8 | F | T | 0.99 |  | 0.9 | F | 0.3 | F | 0.3 |
| T | F | T | T | T | 0.9 |  | F | 1.0 |  | F | 0.6 |  |  |  |  |  |  |
| F | F | T | T | T | 0.1 | F | F | 0.0 |  | F | 0.4 |  |  |  |  |  |  |
| : | : | : | : |  | : |  |  |  |  |  |  |  |  |  |  |  |  |

## Bayes Nets are not Unique

Using the chain rule, a JPD $P\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ may be expanded in $N$ ! ways:

$$
P\left(X_{1}, X_{2}, \ldots, X_{N}\right)=P\left(X_{i 1} I X_{i 2}, \ldots, X_{i N}\right) \cdot P\left(X_{i 2} \mid X_{i 3}, \ldots, X_{i N}\right) \cdot \ldots \cdot P\left(X_{i N}\right)
$$

Even with no independencies, each chain rule expansion can be drawn as a graphical model:


Example:


Any JPD P( $\left.\mathbf{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \mathrm{X}_{4}\right)$ can be represented by this Bayes Net.

For efficient inferences with a given JPD, it is important to find a Bayes Net with a low number of dependencies.

## Constructing a Bayes Net

By domain analysis:

1. Select discrete variables $X_{i}$ relevant for domain
2. Establish partial order of variables according to causality
3. In the order of decreasing causality:
(i) Generate node $X_{i}$ in net
(ii) As predecessors of $X_{i}$ choose the smallest subset of nodes which are already in the net and from which $X_{i}$ is causally dependent
(iii) determine a table of conditional probabilities for $\mathbf{X}_{\mathbf{i}}$

By data analysis:
Use a learning method to establish a Bayes Net approximating the empirical joint probablity distribution.

## Computing Inferences

We want to use a Bayes Net for probabilistic inferences of the following kind:
Given a joint probability $P\left(X_{1}, \ldots, X_{N}\right)$ represented by a Bayes Net, and evidence $X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{k}}=a_{m_{k}}$ for some of the variables, what is the probability $P\left(X_{n}=a_{i} I X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)$ of an unobserved variable to take on a value $a_{i}$ ?

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

$$
P\left(X_{n}=a_{i} I X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)=\frac{P\left(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)}{P\left(X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)}
$$

- determining partial joint probabilities from the given total joint probability by summing out unwanted variables

$$
P\left(X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{k}}\right)=\underbrace{}_{x_{n_{1}}, \ldots, x_{n_{K}}} P\left(X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}, X_{n_{1}}, \ldots, X_{n_{k}}\right)
$$

## Normalization

Basic formula for computing the probability of a query variable $X_{n}$ from a JPD $P\left(X_{1}, \ldots, X_{N}\right)$ given evidence $X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}$ :

$$
P\left(X_{n}=a_{i} I X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)=\frac{P\left(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)}{P\left(X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)}
$$

The denominator on the right is independent of $a_{i}$ and constitutes a normalizing factor $\square$. It can be computed by requiring that the conditional probabilities of all $a_{i}$ sum to unity.

$$
P\left(X_{n}=a_{i} I X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{k}}\right)=\square\left\{P\left(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, \ldots, X_{m_{K}}=a_{m_{K}}\right)\right\}
$$

Formulae are often written in this simplified form with $\square$ as a normalizing factor.

## Factoring the JPD

## JPDs can be computed from a Bayes Net more efficiently by ordering the "factors" so that only few summations and products must be computed.

$$
\begin{aligned}
& \text { Example: } \\
& \text { Compute } \\
& P\left(X_{2}=a, X_{4}=b \mid X_{1}=c, X_{7}=d\right) \\
& P\left(X_{2}=a, X_{4}=b \mid X_{1}=c, X_{7}=d\right)=\frac{P\left(X_{2}=a, X_{4}=b, X_{1}=c, X_{7}=d\right)}{P\left(X_{1}=c, X_{7}=d\right)} \\
& P\left(X_{2}=a, X_{4}=b, X_{1}=c, X_{7}=d\right)=\square_{X_{3}} \square_{X_{5}} \square_{X_{6}} \square_{X_{8}} P\left(X_{1}=c, X_{2}=a, X_{3}, X_{4}=b, X_{5}, X_{6}, X_{7}=d, X_{8}\right) \\
& =\prod_{X_{3}} \prod_{X_{5}} \prod_{X_{6}} P\left(X_{1}=c \mid X_{2}=a, X_{3}, X_{4}=b\right) \cdot P\left(X_{2}=a\right) \cdot P\left(X_{3} \mid X_{4}=b, X_{5}\right) \cdot P\left(X_{4}=b \mid X_{6}\right) \cdot P\left(X_{5} \mid X_{6}\right) \cdot \\
& \text { - } P\left(X_{6} \mid X_{7}=d, X_{8}\right) \cdot P\left(X_{7}=d\right) \cdot P\left(X_{8}\right) \\
& =P\left(X_{2}=a\right) \cdot P\left(X_{7}=d\right) \cdot \prod_{X_{3}} P\left(X_{1}=c I X_{2}=a, X_{3}, X_{4}=b\right) \cdot \prod_{5} P\left(X_{3} I X_{4}=b, X_{5}\right) \cdot \quad \text { order for } \\
& \text { - } \prod_{X_{6}} P\left(X_{4}=b \mid X_{6}\right) \cdot P\left(X_{5} \mid X_{6}\right) \cdot \prod_{X_{8}} P\left(X_{6} \mid X_{7}=d, X_{8}\right) \cdot P\left(X_{8}\right)
\end{aligned}
$$

## Set-factoring Heuristic

Finding the best possible order for computing factors of a JPD is not tractable, in general. The set-factoring heuristic is a greedy (suboptimal) algorithm with often excellent results.

Given $\quad X$ set of random variables to be summed out $\mathcal{F}$ set of factors to be combined

## Set-factoring heuristic:

- Pick the pair of factors which produces the smallest probability table after combination and summing out as many variables of $\mathcal{X}$ as possible. Break ties by choosing the pair where most variables are summed out.
- Place resulting factor into set $\mathcal{F}$, remove summed-out variables from $\mathcal{X}$ and repeat procedure.


## Example for Set-factoring Heuristic (1)

## Compute



$$
\cdot P\left(X_{4}=b \mid X_{6}\right) \cdot P\left(X_{5} \mid X_{6}\right) \cdot P\left(X_{6} \mid X_{7}=d, X_{8}\right) \cdot P\left(X_{7}=d\right) \cdot P\left(X_{8}\right)
$$

Step 1: $\mathcal{X}=\left\{\mathbf{X}_{3}, \mathbf{X}_{5}, \mathbf{X}_{6}, \mathbf{X}_{8}\right\}$
$\mathcal{F}=\left\{P\left(X_{1}=c \mid X_{2}=a, X_{3}, X_{4}=b\right), P\left(X_{2}=a\right), P\left(X_{3} \mid X_{4}=b, X_{5}\right), P\left(X_{4}=b \mid X_{6}\right), P\left(X_{5} \mid X_{6}\right)\right.$, $\left.P\left(X_{6} \mid X_{7}=d, X_{8}\right), P\left(X_{7}=d\right), P\left(X_{8}\right)\right\}$

After extracting the constant factors $P\left(X_{2}=a\right)$ and $P\left(X_{7}=d\right)$, 6 factors remain, hence 15 possible pairs may be formed. Assuming equally sized domains, the set-factoring heuristic prefers 2 combinations:
(i) $P\left(X_{1}=c l X_{2}=a, X_{3}, X_{4}=b\right) \cdot P\left(X_{3} I X_{4}=b, X_{5}\right)$ and summing out $X_{3}$
(ii) $P\left(X_{6} I X_{7}=d, X_{8}\right) \cdot P\left(X_{8}\right)$ and summing out $X_{8}$

Choosing (ii), the new factor $P\left(X_{6} \mid X_{7}=d\right)$ is computed and the sets are updated:
Step 2: $X=\left\{X_{3}, X_{5}, X_{6}\right\}$
$\mathcal{F}=\left\{P\left(X_{1}=c \mid X_{2}=a, X_{3}, X_{4}=b\right), P\left(X_{3} \mid X_{4}=b, X_{5}\right), P\left(X_{4}=b \mid X_{6}\right), P\left(X_{5} \mid X_{6}\right), P\left(X_{6} \mid X_{7}=d\right)\right\}$

## Example for Set-factoring Heuristic (2)

The set-factoring heuristic prefers the combination:

$$
P\left(X_{1}=c l X_{2}=a, X_{3}, X_{4}=b\right) \cdot P\left(X_{3} \mid X_{4}=b, X_{5}\right) \text { and summing out } X_{3}
$$

The new factor $P\left(X_{1}=c l X_{2}=a, X_{4}=b, X_{5}\right)$ is computed and the sets are updated:
Step 3: $X=\left\{X_{5}, X_{6}\right\}$

$$
\mathcal{F}=\left\{P\left(X_{1}=c \mid X_{2}=a, X_{4}=b, X_{5}\right), P\left(X_{4}=b \mid X_{6}\right), P\left(X_{5} \mid X_{6}\right), P\left(X_{6} \mid X_{7}=d\right)\right\}
$$

The set-factoring heuristic prefers the combination:

$$
P\left(X_{1}=c l X_{2}=a, X_{4}=b, X_{5}\right) \cdot P\left(X_{5} \mid X_{6}\right) \text { and summing out } X_{5}
$$

The new factor $P\left(X_{1}=c l X_{2}=a, X_{4}=b, X_{6}\right)$ is computed and the sets are updated:
Step 4: $X=\left\{X_{6}\right\}$
$\mathcal{F}=\left\{P\left(X_{1}=c \mid X_{2}=a, X_{4}=b, X_{6}\right), P\left(X_{4}=b \mid X_{6}\right), P\left(X_{6} \mid X_{7}=d\right)\right\}$
The set-factoring heuristic ranks all combinations equal. Choosing

$$
P\left(X_{4}=b \mid X_{6}\right) \cdot P\left(X_{6} \mid X_{7}=d\right)
$$

we get the new factor $P\left(X_{4}=b, X_{6} I X_{7}=d\right)$ and the updated sets:
Step 5: $X=\left\{X_{6}\right\}$
$\mathcal{F}=\left\{P\left(X_{1}=c l X_{2}=a, X_{4}=b, X_{6}\right), P\left(X_{4}=b, X_{6} \mid X_{7}=d\right)\right\}$

## Example for Set-factoring Heuristic (3)

The final result follows from reassembling the summations outwards:

$$
\begin{aligned}
P\left(X_{2}=a,\right. & \left.X_{4}=b, X_{1}=c, X_{7}=d\right)= \\
& P\left(X_{2}=a\right) \cdot P\left(X_{7}=d\right) \\
& \cdot \prod_{6} P\left(X_{4}=b \mid X_{6}\right) \cdot P\left(X_{6} \mid X_{7}=d\right) \\
& \cdot \prod_{X_{5}} P\left(X_{5} \mid X_{6}\right) \\
& \cdot \prod_{3} P\left(X_{1}=c I X_{2}=a, X_{3}, X_{4}=b\right) \cdot P\left(X_{3} \mid X_{4}=b, X_{5}\right) \\
& \cdot \prod_{X_{8}} P\left(X_{6} \mid X_{7}=d, X_{8}\right) \cdot P\left(X_{8}\right)
\end{aligned}
$$

If $D$ is the size of the domains of the random variables, the number of multiplications is

$$
N_{\text {mult }}=D^{2}+D^{2}+D^{2}+D
$$

This is the same as the number of multiplications for the manual ordering proposed earlier:

$$
N_{\text {mult }}=D^{2}+D^{2}+D^{2}+D
$$

In this case, the heuristic did not reduce the computational expenses.

## Dependance Analysis of Bayes Nets

The arcs in a Bayes Net indicate pairwise independence. Can one infer other independencies

- in general?
- given partial evidence in terms of node values?


Example:
If it is known

- that one wants to lay the table and
- that a white blob motion has been observed,
does this affect the probability of
- wanting to go out?
- red blob motion?


## Blocking Evidence

In general, (undirected) paths in a Bayes Net indicate possible flow of information. However, if hard evidence is given at an intermediate node, the path may be blocked.

Blocking situations:

1. In a serial connection from $\mathbf{A}$ to C via $B$, evidence from $A$ to $C$ is blocked by hard evidence about $B$.
2. In a diverging connection from $A$ to $B$ and $C$, evidence from $B$ to $C$ is blocked by hard evidence about $A$.
3. In a converging situation from $A$ and $B$ to $C$, any evidence about $C$ results in evidence transmitted between A and B.


## D-separation

"D-separation" = no flow of evidence from one node to another
Two nodes $X$ and $Y$ in a Bayes Net are d-separated if, for all paths between $X$ and $Y$, there is an intermediate node $Z$ for which either:

1. the connection is serial or diverging and the value of $\mathbf{Z}$ is known for certain; or
2. the connection is converging and neither $\mathbf{Z}$ (nor any of its descendants) have received any evidence at all.


Example:
Hard evidence for "want to lay table" blocks influence of evidence for "white blob motion" on "want to eat" and "want to go out", but not on any other nodes.

## Basic Kinds of Inferences

1. Causal reasoning, prediction

Given upstream evidence, ask for downstream probability
Example: Given "want to eat" is true, what is the probability of "white blob motion"?
2. Evidential reasoning, explanation

Given downstream evidence, ask for upstream probability
Example: Given "white blob motion" is true, what is the probability of "expect guest"?

## 3. Explaining away

Given evidence of a node with two parents and evidence for one of the parents, ask for probability of other parent node
Example: Given evidence for "place saucer" and "want to to eat", what is the probability of "want to decorate table"?


## Evidence Propagation in Polytrees

polytree = DAG where each pair of distinct nodes is connected by a single (undirected) path


Any node $X_{k}$ in a polytree separates the tree into an "upper" and "lower" part. Hence the marginal probability $\mathrm{P}\left(\mathrm{X}_{\mathrm{k}}=\mathrm{c}\right)$ can be computed from two factors.
$\mathrm{S}^{+}=\left\{\mathrm{X}_{\mathrm{i}}\right.$ "above" $\left.\mathrm{X}_{\mathrm{k}}\right\} \quad \mathrm{S}^{-}=\left\{\mathrm{X}_{\mathrm{i}}\right.$ below $\left.\mathrm{X}_{\mathrm{k}}\right\}$

$$
\begin{aligned}
& P\left(X_{k}=c\right)=\square_{X_{i} \neq X_{k}} P\left(X_{1} \ldots X_{k}=c \ldots X_{N}\right) \\
& =\square_{X_{i} \neq X_{k}} P\left(X_{k}=c l P a\left(X_{k}\right)\right) \prod_{X_{i} \neq X_{k}} P\left(X_{i} I \underset{X_{k}=c}{P a\left(X_{i}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\square\left(\mathbf{X}_{\mathbf{k}}=\mathbf{c}\right) \cdot \square\left(\mathbf{X}_{\mathbf{k}}=\mathbf{c}\right) \quad \Rightarrow \text { propagation scheme is possible }
\end{aligned}
$$

## Approximate Inference in Bayesian Networks

- Inference in singly-connected Bayes Nets can be computed with $\mathbf{O}(\mathbf{N})$
- Worst-case complexity in general Bayes Nets is exponential, hence approximate algorithms with less complexity are useful.


## Basic idea:

Use random sampling (Monte Carlo method) to compute the approximate probability of an event based on a JPD and evidence.


Example: Determine P("place flower" I "want to lay table")

- Draw sample for each node based on probability conditioned on parent samples
- Repeat process many times
- Relative frequency of samples matching evidence converges to correct result in the limit.


## Sampling Methods

## Direct Sampling:

Estimate the probability of an event without evidence by sampling a Bayes Net.

Recommended Reading: Russell \& Norvig:
Artificial Intelligence - A
Modern Approach, 2nd
Ed., Prentice Hall, 2003

## Rejection Sampling:

Estimate the probability of an event by sampling a Bayes Net and discarding all samples which do not match the evidence

## Sampling with Likelihood Weighting:

Estimate the probability of an event by sampling a Bayes Net and weighting all samples according to their likelihood to generate the evidence

All three methods generate consistent estimates (which converge to the true value).

## Hidden Markov Models

A sequence of observations may be governed by underlying probabilistic state transitions.

Example: A person laying a table may plan to first place the plates, then the cups, then the cutlery in a cyclic order (with a chance to deviate from this order).

As usual in vision, observations may be disturbed and may provide uncertain evidence about the current state.

Such phenomena may be modelled by a Hidden Markov Model (HMM).

```
A (discrete) HMM is defined by
- a finite number of states }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{k}{
- a sequence of state transition events }\mp@subsup{t}{0}{},\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{\prime}\mathrm{ (not necessarily times)
- probabilities of state transitions }\mp@subsup{p}{ij}{}\mathrm{ from state i to state j}\mathrm{ , each
    depending only on the previous state
    observations }\mp@subsup{b}{1}{},\mp@subsup{b}{2}{},\ldots,\mp@subsup{b}{M}{}\mathrm{ probabilistically related to each state
    probabilities }\mp@subsup{q}{km}{}\mathrm{ which map states into observations
```


## Notation for HMM

- sequence of random variables $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(n)}$ (state variables) with values from $\left\{a_{1}, \ldots, a_{k}\right\}$
- Markov Chain property of $\mathbf{X}^{(1)}, \ldots, \mathbf{X}^{(n)}: \mathbf{P}\left(\mathbf{X}^{(n)} \mid \mathbf{X}^{(n-1)} \ldots \mathbf{X}^{(1)}\right)=\mathbf{P}\left(\mathbf{X}^{(n)} \mid \mathbf{X}^{(n-1)}\right)$
- if $P\left(X^{(n)} \mid X^{(n-1)}\right)$ is independent of $n$, the Markov Chain is homogeneous
- transition probabilities $P\left(X^{(n}=a_{i} \mid X^{(n-1)}=a_{j}\right)$ are represented by the state transition matrix

$$
\mathbf{W}^{(n)}=\left[\begin{array}{lll}
\mathbf{p}_{11} & \cdots & \mathbf{p}_{1 \mathrm{~K}} \\
\vdots & & \\
\mathbf{P}_{\mathrm{K} 1} & \cdots & \mathbf{p}_{\mathrm{KK}}
\end{array}\right]
$$

- random variables $Y^{(1)}, \ldots, Y^{(n)}$ (observations) with values from $\left\{b_{1}, \ldots, b_{m}\right\}$
- observation probabilities $P\left(Y^{(n)} \mid X^{(n)}\right)$ are represented by the matrix

$$
Q=\left[\begin{array}{lll}
q_{11} & \cdots & q_{1 M} \\
\vdots & & \\
q_{\mathrm{K} 1} & \cdots & q_{\mathrm{KM}}
\end{array}\right]
$$

- initial probabilities $\square^{\top}=\left[P\left(X^{(1)}=a_{1}\right) P\left(X^{(1)}=a_{2}\right) \ldots P\left(X^{(1)}=a_{k}\right)\right]$


## Properties of a Homogeneous HMM

Probability vector for state $X^{(2)}: \quad \square^{(2)}=W^{\top} \square$
Probability vector for state $\mathbf{X}^{(n)}$ : $\quad \square^{(n)}=\left(W^{\top}\right)^{n-1} \square$
There is always a stationary distribution $\square_{s}$ such that $\square_{s}=W^{\top} \square_{s}$

Graphical representation:


Trellis ("Spalier") representation:


- each (directed) path corresponds to a legal sequence of states
- the probability of a path is equal to the product of the transition probabilities


## Paths through a HMM

Given a sequence of N observations, we want to find the most probable sequence of states which may have led to the observations.

Extension of trellis representation

- arc weights leading into states $\mathbf{X}^{(n)}$ :
- node weights of states $\mathbf{X}^{(n)}$ :
- product of initial probability and node and arc probabilities along path:
transition probabilities $\mathrm{p}_{\mathrm{ij}}$
observation likelihoods $\mathrm{q}_{\mathrm{jm}}$ for given observations $Y^{(n)}=b_{m_{n}}$
$P\left(Y^{(1)}=b_{m_{1}}, \ldots, Y^{(N)}=b_{m_{N}}, X^{(1)}=a_{k_{1}}, \ldots, X^{(N)}=a_{k_{N}}\right)$ probability of observations and states Example:
\(\mathrm{W}=\left[$$
\begin{array}{lll}0.3 & 0.2 & 0.5 \\
0.1 & 0.0 & 0.9 \\
0.4 & 0.6 & 0.0\end{array}
$$\right] \quad Q=\left[\begin{array}{ll}0.8 \& 0.2 <br>
0.4 \& 0.6 <br>

0.2 \& 0.8\end{array}\right] \quad\)\begin{tabular}{l}
$\square=\left[\begin{array}{l}0.6 \\
0.3 \\
0.1\end{array}\right]$

 

observations <br>
$\mathrm{b}_{2}, \mathrm{~b}_{1}, \mathrm{~b}_{1}, \mathrm{~b}_{2}$
\end{tabular}

## Finding Most Probable Paths

The most probable sequence of states is found by maximizing

$$
\max _{k_{1} \ldots k_{N}} P\left(X^{(1)}=a_{k_{1}}, \ldots, X^{(N)}=a_{k_{N}} \mid Y^{(1)}=b_{m_{1}}, \ldots, Y^{(N)}=b_{m_{N}}\right)=\max _{\underline{a}} P(\underline{a} \mid \underline{b})
$$

Equivalently, the most probable sequence of states follows from

$$
\max _{\underline{a}} P(\underline{a} \underline{\mathbf{b}})=\max _{\underline{a}} P(\underline{a} \mid \underline{b}) P(\underline{b})
$$

Hence the maximizing sequence of states can be found by exhaustive search of all path probabilities in the trellis. However, complexity is $O\left(K^{N}\right)$ with $K=$ number of different states and $N=$ length of sequence.
The Viterbi Algorithm does the job in O(KN)!
Overall maximization may be decomposed into a backward sequence of maximizations:

$$
\begin{aligned}
\max _{\underline{a}} P(\underline{a} b)= & \max _{k_{1} \ldots k_{N}} \square_{k_{1}} q_{k_{1} m_{1}} \prod_{n=2 \ldots N} p_{k_{n-1} k_{n}} q_{k_{n-1} m_{n}} \\
= & \max _{k_{1}} \square_{k_{1}} q_{k_{1} m_{1}}\left(\max _{k_{2}} p_{k_{1} k_{2}} q_{i_{2} m_{2}}\left(\ldots\left(\max _{k_{N}} p_{k_{N-1} k_{N}} q_{k_{N-1} m_{N}}\right) \ldots\right)\right) \\
& \text { Step } N
\end{aligned} \quad \text { Step N-1 } \quad \text { Step 1 } \quad .
$$

## Example for Viterbi Algorithm

## Typical maximization step of Viterbi algorithm:

$$
\max _{k_{n}}\left\{p_{k_{n-1} k_{n}} \cdot q_{k_{n-1} m_{n}} \cdot<\text { result of previous maximization step> }\right\}
$$

Example as earlier:
\(W=\left[$$
\begin{array}{lll}0.3 & 0.2 & 0.5 \\
0.1 & 0.0 & 0.9 \\
0.4 & 0.6 & 0.0\end{array}
$$\right] \quad Q=\left[$$
\begin{array}{ll}0.8 & 0.2 \\
0.4 & 0.6 \\
0.2 & 0.8\end{array}
$$\right] \quad \square=\left[\begin{array}{l}0.6 <br>
0.3 <br>

0.1\end{array}\right] \quad\)| observations |
| :--- |
| $b_{2}, b_{1}, b_{1}, b_{2}$ |

Step 4

$n=1$

Step 3


Step 2


Step 1


## Model Evaluation for Given Observations

What is the likelihood that a particular HMM (out of several possible models) has generated the observations?

Likelihood of observations given model:

$$
P\left(Y^{(1)}=b_{m_{1}}, \ldots, Y^{(N)}=b_{m_{N}} I \text { model }\right)=P(\underline{b})=\prod_{\underline{a}} P(\underline{a} \underline{b})
$$

Instead of summing over all a, one can use a forward algorithm based on the recursive formula:

$$
\begin{aligned}
& P\left(a_{j}^{(n+1)}, b_{m_{1}}, \ldots, b_{m_{n}}, b_{m_{n+1}}\right) \\
& \quad=P\left(a_{j}^{(n+1)}, b_{m_{1}}, \ldots, b_{m_{n}}\right) \cdot P\left(b_{m_{n+1}} I a_{i}^{(n+1)}\right) \\
& \quad=\prod_{1}\left[P\left(a_{i}^{(n+1)}, P\left(a_{i}^{(n)}, b_{m_{1}}, \ldots, b_{m_{n}}\right)\right] \cdot P\left(b_{m_{n+1}} I a_{j}^{(n+1)}\right)\right. \\
& \quad=\prod_{i}\left[P ( a _ { i } ^ { ( n + 1 ) } I P ( a _ { i } ^ { ( n ) } , b _ { m _ { 1 } } , \ldots , b _ { m _ { n } } ) P ( a _ { i } ^ { ( n ) } , b _ { m _ { 1 } } , \ldots , b _ { m _ { n } } ) ] \cdot P \left(b_{m_{n+1}} I a_{\left.a_{j}^{(n+1)}\right)}^{(n)}\right.\right. \\
& \quad=\prod_{T}\left[P\left(a_{i}^{(n+1)} \mid P\left(a_{i}^{(n)}\right) \cdot P\left(a_{i}^{(n)}, b_{m_{1}}, \ldots, b_{m_{n}}\right)\right] \cdot P\left(b_{m_{n+1}} I a_{i}^{(n+1)}\right)\right. \\
& \quad=\prod_{T}\left[p_{i j} \cdot P\left(a_{i}^{(n)}, b_{m_{1}}, \ldots, b_{m_{n}}\right)\right] \cdot q_{j m_{n+1}}
\end{aligned}
$$

Finally: $P\left(b_{m_{1}}, \ldots, b_{m_{N}}\right)=\prod P\left(a_{i}^{(n+1)}, b_{m_{1}}, \ldots, b_{m_{N}}\right)$

## Example for Model Evaluation (1)

Computing the probability of observations stepwise as they come in.

## Example as earlier:

\(W=\left[$$
\begin{array}{lll}0.3 & 0.2 & 0.5 \\
0.1 & 0.0 & 0.9 \\
0.4 & 0.6 & 0.0\end{array}
$$\right] \quad Q=\left[$$
\begin{array}{ll}0.8 & 0.2 \\
0.4 & 0.6 \\
0.2 & 0.8\end{array}
$$\right] \quad \square=\left[\begin{array}{l}0.6 <br>
0.3 <br>

0.1\end{array}\right] \quad\)| observations |
| :--- |
| $b_{2}, b_{1}, b_{1}, b_{2}$ |

Step 1
$P\left(a_{j}{ }^{(1)}, b_{m_{1}}\right)=\square_{j} \cdot q_{j} m_{1}$
$P\left(a_{1}{ }^{(1)}, b_{2}\right)=0.6 \cdot 0.2=0.12$
$P\left(a_{2}{ }^{(1)}, b_{2}\right)=0.3 \cdot 0.6=0.18$ $P\left(a_{3}{ }^{(1)}, b_{2}\right)=0.1 \cdot 0.8=0.08$

Note that $P\left(b_{m_{1}}, \ldots, b_{m_{n}}\right)$ can be computed after each step by summing out the dependency on the state $\mathbf{X}^{(n)}$.

Step 2
$P\left(a_{j}{ }^{(2)}, b_{m_{1}}, b_{m_{2}}\right)=\square\left[p_{i j} \cdot P\left(a_{i}{ }^{(1)}, b_{m_{1}}\right)\right] \cdot q_{j m_{2}}$

$$
\begin{aligned}
& P\left(a_{1}{ }^{(2)}, b_{2}, b_{1}\right)=[0.3 \cdot 0.12+0.1 \cdot 0.18+0.4 \cdot 0.08] \cdot 0.8=0.0314 \\
& P\left(a_{2}{ }^{(2)}, b_{2}, b_{1}\right)=[0.2 \cdot 0.12+\quad 0.6 \cdot 0.08] \cdot 0.4=0.0288 \\
& P\left(a_{3}{ }^{(2)}, b_{2}, b_{1}\right)=[0.5 \cdot 0.12+0.9 \cdot 0.18 \quad] \cdot 0.2=0.0072
\end{aligned}
$$

## Example for Model Evaluation (2)

## Example continued:

$W=\left[\begin{array}{lll}0.3 & 0.2 & 0.5 \\ 0.1 & 0.0 & 0.9 \\ 0.4 & 0.6 & 0.0\end{array}\right] \quad Q=\left[\begin{array}{ll}0.8 & 0.2 \\ 0.4 & 0.6 \\ 0.2 & 0.8\end{array}\right] \quad \square=\left[\begin{array}{l}0.6 \\ 0.3 \\ 0.1\end{array}\right] \quad \begin{aligned} & \text { observations } \\ & b_{2}, b_{1}, b_{1}, b_{2}\end{aligned}$
Step 3
$P\left(a_{j}{ }^{(3)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}}\right)=\square\left[p_{i j} \cdot P\left(a_{j}{ }^{(2)}, b_{m_{1}}, b_{m_{2}}\right)\right] \cdot q_{j m_{3}}$

$$
\begin{array}{lr}
P\left(a_{1}^{(3)}, b_{2}, b_{1}, b_{1}\right)=\left[\begin{array}{ll}
0.3 \cdot 0.0314+0.1 \cdot 0.0288+0.4 \cdot 0.0072
\end{array}\right] \cdot 0.8=0.01214 \\
P\left(a_{2}(3), b_{2}, b_{1}, b_{1}\right)=\left[\begin{array}{ll}
0.2 \cdot 0.0314+ & 0.6 \cdot 0.0072
\end{array}\right] \cdot 0.4=0.00424 \\
P\left(a_{3}(3), b_{2}, b_{1}, b_{1}\right)=\left[\begin{array}{ll}
0.5 \cdot 0.0314+0.9 \cdot 0.0288 & ] \cdot 0.2
\end{array}\right)=0.00832
\end{array}
$$

Step 4
$P\left(a_{j}{ }^{(4)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}}, b_{m_{4}}\right)=\square\left[p_{i j} \cdot P\left(a_{j}{ }^{(2)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}}\right)\right] \cdot q_{j m_{4}}$
$P\left(a_{1}{ }^{(4)}, b_{2}, b_{1}, b_{1}, b_{2}\right)=[0.3 \cdot 0.01214+0.1 \cdot 0.00424+0.4 \cdot 0.00832] \cdot 0.2=0.001479$
$P\left(a_{2}(4), b_{2}, b_{1}, b_{1}, b_{2}\right)=[0.2 \cdot 0.01214+\quad 0.6 \cdot 0.00832] \cdot 0.6=0.004452$
$P\left(a_{3}{ }^{(4)}, b_{2}, b_{1}, b_{1}, b_{2}\right)=[0.5 \cdot 0.01214+0.9 \cdot 0.00424 \quad] \cdot 0.4=0.003954$
Final step
$P\left(b_{m_{1}}, b_{m_{2}}, b_{m_{3}}, b_{m_{4}}\right)=\square P\left(a_{j},(4), b_{m_{1}}, b_{m_{2}}, b_{m_{3}}, b_{m_{4}}\right)=0.009885$

