

It is useful to determine direct influences Y_i on a random variable X, because given the Y_i , X is independent of other Variables Z_k "upstream" to the Y_i .

Let dom(X) be the domain of X, i.e. the set of possible values of X.

A random variable X is independent of Z given Y if for all $x_i \in dom(X)$, for all $y_i \in dom(Y)$, and for all $z_k \in dom(Z)$,

 $P(X=x_i | Y=y_i, Z=z_k) = P(X=x_i | Y=y_i)$

Example: X=plate_in_view, Y=plate_on_table, Z=want_to_eat

ΧYΖ	P(XYZ)	ΧYΖ	P(XYZ)	Check whether X is independent of Z given Y!
TTT TTF	.096 .064	FTT FTF	.024 .016	
TFT	.064	FFT	.018	
TFF	.0	FFF	.72	

Constructing a Bayes Net

By domain analysis:

- Select discrete variables X_i relevant for domain 1.
- 2. Establish partial order of variables according to causality
- In the order of decreasing causality: 3.
 - (i) Generate node X_i in net
 - (ii) As predecessors of X_i choose the smallest subset of nodes which are already in the net and from which X_i is causally dependent
 - (iii) determine a table of conditional probabilities for X_i

By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical joint probablity distribution.

Computing Inferences

We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability $P(X_1, ..., X_N)$ represented by a Bayes Net, and evidence $X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}$ for some of the variables, what is the probability $P(X_n=a_i \mid X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K})$ of an unobserved variable to take on a value a, ?

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

- ----

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

- determining partial joint probabilities from the given total joint probability by summing out unwanted variables

$$P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}) = \sum_{X_{n_1}, ..., X_{n_K}} P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}, X_{n_1}, ..., X_{n_K})$$

Normalization

Basic formula for computing the probability of a query variable X_n from a JPD P($X_1, ..., X_N$) given evidence $X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}$:

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

The denominator on the right is independent of a_i and constitutes a normalizing factor α . It can be computed by requiring that the conditional probabilities of all a_i sum to unity.

$$P(X_n = a_i \mid X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}) = \alpha \{ P(X_n = a_i, X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}) \}$$

Formulae are often written in this simplified form with $\boldsymbol{\alpha}$ as a normalizing factor.

Finding the <u>best</u> possible order for computing factors of a JPD is not tractable, in general. The set-factoring heuristic is a greedy (suboptimal) algorithm with often excellent results.

Given X set of random variables to be summed out

 ${\mathcal F}$ set of factors to be combined

Set-factoring heuristic:

- Pick the pair of factors which produces the smallest probability table after combination and summing out as many variables of X as possible.
 Break ties by choosing the pair where most variables are summed out.
- Place resulting factor into set \mathcal{F} , remove summed-out variables from \mathcal{X} and repeat procedure.

Finding Most Probable Paths The most probable sequence of states is found by maximizing $\max_{k} P(X^{(1)}=a_{k_{1}}, \dots, X^{(N)}=a_{k_{N}} \mid Y^{(1)}=b_{m_{1}}, \dots, Y^{(N)}=b_{m_{N}}) = \max_{k} P(\underline{a} \mid \underline{b})$ k₁ ... k_N Equivalently, the most probable sequence of states follows from $\max_{a} P(\underline{a} \ \underline{b}) = \max_{a} P(\underline{a} \ \underline{b}) P(\underline{b})$ Hence the maximizing sequence of states can be found by exhaustive search of all path probabilities in the trellis. However, complexity is $O(K^N)$ with K = number of different states and N = length of sequence. The Viterbi Algorithm does the job in O(KN)! Overall maximization may be decomposed into a backward sequence of maximizations: $\max_{\underline{a}} P(\underline{a} \underline{b}) = \max_{k_1 \dots k_N} \pi_{k_1} q_{k_1 m_1} \prod_{n=2 \dots N} p_{k_{n-1} k_n} q_{k_{n-1} m_n}$ $= \max_{k_1} \pi_{k_1} q_{k_1m_1} (\max_{k_2} p_{k_1k_2} q_{i_2m_2} (\dots (\max_{k_N} p_{k_{N-1}k_N} q_{k_{N-1}m_N})...))$ Step N Step N-1 Step 1 26

$$\begin{split} & \textbf{Model Evaluation for Given Observations} \\ & \textbf{Mat is the likelihood that a particular HMM (out of several possible models) has generated the observations?} \\ & \textbf{Likelihood of observations given model:} \\ & P(Y^{(1)}=b_{m_1}, \dots, Y^{(N)}=b_{m_N} \mid model) = P(\underline{b}) = \sum_{\underline{a}} P(\underline{a}, \underline{b}) \\ & \textbf{Instead of summing over all } \underline{a}, one can use a forward algorithm based on the recursive formula:} \\ & \underline{P(a_i^{(n+1)}, b_{m_1}, \dots, b_{m_n}, b_{m_{n+1}})}_{= P(a_i^{(n+1)}, b_{m_1}, \dots, b_{m_n}) \cdot P(b_{m_{n+1}} \mid a_i^{(n+1)})}_{= \sum_{i} [P(a_i^{(n+1)}, P(a_i^{(n)}, b_{m_1}, \dots, b_{m_n})] \cdot P(b_{m_{n+1}} \mid a_i^{(n+1)})}_{= \sum_{i} [P(a_i^{(n+1)} \mid P(a_i^{(n)}, b_{m_1}, \dots, b_{m_n})] \cdot P(b_{m_{n+1}} \mid a_i^{(n+1)})}_{= \sum_{i} [P(a_i^{(n+1)} \mid P(a_i^{(n)}) \cdot P(a_i^{(n)}, b_{m_1}, \dots, b_{m_n})] \cdot P(b_{m_{n+1}} \mid a_i^{(n+1)})}_{= \sum_{i} [P(a_i^{(n+1)} \mid P(a_i^{(n)}, b_{m_1}, \dots, b_{m_n})] \cdot P(b_{m_{n+1}} \mid a_i^{(n+1)})}_{= \sum_{i} [P(a_i^{(n+1)} \mid P(a_i^{(n)}, b_{m_1}, \dots, b_{m_n})] \cdot P(b_{m_{n+1}} \mid a_i^{(n+1)})}_{= \sum_{i} [P(a_i^{(n)}, b_{m_1}, \dots, b_{m_n})] \cdot q_{i_{m_{n+1}}}} \\ & \textbf{Finally: } P(b_{m_1}, \dots, b_{m_N}) = \sum_{i} P(a_i^{(n+1)}, b_{m_1}, \dots, b_{m_N}) \end{split}$$

Example for Model Evaluation (2)				
Example continued:				
$W = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.1 & 0.0 & 0.9 \\ 0.4 & 0.6 & 0.0 \end{bmatrix} Q = \begin{bmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{bmatrix} \pi = \begin{bmatrix} 0.6 \\ 0.3 \\ 0.1 \end{bmatrix} $ observations b_2, b_1, b_1, b_2				
Step 3				
$P(a_{j}^{(3)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}}) = \Sigma [p_{ij} \cdot P(a_{j}^{(2)}, b_{m_{1}}, b_{m_{2}})] \cdot q_{j m_{3}}$				
$\begin{array}{l} P(a_1{}^{(3)},b_2,b_1,b_1) = [\ 0.3 \cdot 0.0314 + 0.1 \cdot 0.0288 \ + \ 0.4 \cdot 0.0072 \] \cdot 0.8 = \ 0.01214 \\ P(a_2{}^{(3)},b_2,b_1,b_1) = [\ 0.2 \cdot 0.0314 \ + \ 0.9 \cdot 0.0288 \] \cdot 0.2 = 0.00424 \\ P(a_3{}^{(3)},b_2,b_1,b_1) = [\ 0.5 \cdot 0.0314 \ + \ 0.9 \cdot 0.0288 \] \cdot 0.2 = 0.00832 \end{array}$				
Step 4				
$P(a_{j}^{(4)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}}, b_{m_{4}}) = \Sigma [p_{ij} \cdot P(a_{j}^{(2)}, b_{m_{1}}, b_{m_{2}}, b_{m_{3}})] \cdot q_{jm_{4}}$				
$\begin{array}{l} P(a_1^{(4)}, b_2, b_1, b_1, b_2) = [\ 0.3 \cdot 0.01214 + 0.1 \cdot 0.00424 \ + \ 0.4 \cdot 0.00832 \] \cdot 0.2 = 0.001479 \\ P(a_2^{(4)}, b_2, b_1, b_1, b_2) = [\ 0.2 \cdot 0.01214 \ + \ 0.6 \cdot 0.00832 \] \cdot 0.6 = 0.004452 \\ P(a_3^{(4)}, b_2, b_1, b_1, b_2) = [\ 0.5 \cdot 0.01214 \ + \ 0.9 \cdot 0.00424 \] \cdot 0.4 = 0.003954 \end{array}$				
Final step $P(b_{m_1}, b_{m_2}, b_{m_3}, b_{m_4}) = \Sigma P(a_j^{(4)}, b_{m_1}, b_{m_2}, b_{m_3}, b_{m_4}) = 0.009885$ 30				