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Estimating Probabilities from a Database
Given a sufficiently large database with tupels a(1) ... a(N) of an unknown
distribution P(X), we can compute maximum likelihood estimates of all
partial joint probabilities and hence of all conditional probabilities.

Xm1
, ... , XmK

 = subset of X1, ... XL with K ≤ L
wa = number of tuples in database with Xm1

=am1
, ... , XmK

=amK

N   = total number of tuples

If a priori information is available, it may be introduced via a bias ma : 
      P´(Xm1

=am1
, ... , XmK

=amK
) = (wa + ma) / N

Often ma = 1 is chosen for all tupels a to express equal likelihoods in the
case of an empty database.

Maximum likelihood estimate of P(Xm1
=am1

, ... , XmK
=amK

) is
      P´(Xm1

=am1
, ... , XmK

=amK
) = wa / N
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Idea of Expectation Maximization
Consider the problem of fitting 3 straight lines to data, not knowing which
data belong to which line.
(Example by Anna Ergorova, FU Berlin)

Algorithm:
A Select 3 random lines initially
B Assign data points to each line by minimum distance criterion
C Determine best-fitting straight line for assigned data points
D Repeat B and C until no further changes occur

1. Iteration (after B) 1. Iteration (after C) 6. Iteration (after B)
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Learning Mixtures of Gaussians
Determine Gaussian mixture distribution with K multivariate Gaussians
which best describes given data  =>  unsupervised clustering
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x1

x2

p(x) =   S   wi N(mi, Si)i=1 .. K

i=1 .. K
with   S   wi = 1

Multivariate Gaussian mixture distribution:

A Select wi, mi and Si, i = 1 .. K, at random (K is given)
B For each datum xj compute probability pij that xj was generated by

N(mi, Si):

C Compute new weights wi', mean mi', and covariance Si' by maximum
likelihood estimation:

D Repeat B and C until no further changes occur

pij = wi N(mi, Si) 

wi' = S pij         mi' = S pij xj / wi'      Si' = S pij xj xj
T / wi' 

j                               j                                               j
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General Form of EM Algorithm
Compute unknown distribution for data with hidden variables

x observed values of all samples
Y variables with hidden values for all samples
Q parameters for probabilistic model

E-step: Computation of summation
=>  Likelihood of "completed" data w.r.t. distribution p(Y = y | x, q)

M-step: Maximization of expected likelihood w.r.t. parameters q

EM algorithm:   q' = argmax S p(Y = y | x, q) L(x, Y = y | q)
q         y

• The computed parameters increase the likelihood of data and hidden
values with each iteration

• The algorithm terminates in a local maximum
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Expectation Maximization for Estimating
Bayes Net with Hidden Variable

Expectation step of EM:
Use current (initial) probability estimates to compute probability P(a) for
all attribute combinations a (including values for hidden variables).

a* = [ * , X2=am2, X3=am3, ... ]      wa*

a1 = [X1=a1 , X2=am2, X3=am3, ... ]    wa* • P(a1)

•••

 missing value       absolute frequency        completed database

a2 = [X1=a2 , X2=am2, X3=am3, ... ]    wa* • P(a2)

aM = [X1=aM , X2=am2, X3=am3, ... ]    wa* • P(aM)

Recommended reading: Borgelt & Kruse, Graphical Models, Wiley 2002
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Example for Expectation Maximization (1)
(adapted from Borgelt & Kruse, Graphical Models, Wiley 2002)

Given 4 binary probabilistic variables A, B, C, H with known dependency
structure:

A B C

H

Given also a database with tuples [ * A B C]  where H is a missing attribute.

H A B C w
 * T T T 14
 * T T F 11
 * T F T 20
 * T F F 20
 * F T T 5
 * F T F 5
 * F F T 11
 * F F F 14

absolute frequencies
of occurrence

Estimate of the conditional probabilities of the Bayes Net nodes !
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Example for Expectation Maximization (2)
Initial (random) probability assignments:

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)
T 0.3 T T 0.4 T T 0.7 T T 0.8
F 0.7 T F 0.6 T F 0.8 T F 0.5

F T 0.6 F T 0.3 F T 0.2
F F 0.4 F F 0.2 F F 0.5

With

† 

P(H |A,B,C) =
P(A | H)•P(B |H)• P(C | H)•P(H)

P(A |H)• P(B |H)• P(C |H)• P(H)
H
Â

one can complete the database:
H A B C w
T T T T 1.27
T T T F 3.14
T T F T 2.93
T T F F 8.14
T F T T 0.92
T F T F 2.37
T F F T 3.06
T F F F 8.49

H A B C w
F T T T 12.73
F T T F 7.86
F T F T 17.07
F T F F 11.86
F F T T 4.08
F F T F 2.63
F F F T 7.94
F F F F 5.51
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Example for Expectation Maximization (3)
Based on the modified complete database, one computes the maximum
likelihood estimates of the conditional probabilities of the Bayes Net.

Example:

† 

P(A = T |H = T) ª
1.27 • 3.14 • 2.93 • 8.14

1.27 • 3.14 • 2.93• 8.14 • 0,92 • 2.73 • 3.06• 8.49
ª 0.51

This way one gets new probability assignments:
H P(H) A H P(A|H) B H P(B|H) C H P(C|H)
T 0.3 T T 0.51 T T 0.25 T T 0.27
F 0.7 T F 0.71 T F 0.39 T F 0.60

F T 0.49 F T 0.75 F T 0.73
F F 0.29 F F 0.61 F F 0.40

This completes the first iteration. After ca. 700 iterations the modifications
of the probabilities are less than 10-4. The resulting values are

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)
T 0.5 T T 0.5 T T 0.2 T T 0.4
F 0.5 T F 0.8 T F 0.5 T F 0.6

F T 0.5 F T 0.8 F T 0.6
F F 0.2 F F 0.2 F F 0.4
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Learning Models for
High-level Image Interpretation

What parts of a scene constitute "meaningful occurrences" and should
be recognized?

Basic engineering applications:
Fixed recognition tasks, determined by the application context.
=>  handcrafted models

Advanced engineering applications:
Flexible recognition tasks, determined by user.
=>  models result from supervised learning

Biological vision:
Recognition should support expectation generation and hence survival.
=>  models result from unsupervised learning

10

Learning in Support of
High-level Scene Interpretation

geometrical
scene description (GSD)

image sequences of dynamic scenes

high-level 
scene interpretations

scene models

vision memory

memory
templates
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Basic Structure of Vision Memory

pour-tea1place-cover1

transport1 transport2

cup1 plate1 pot1

move1 move2 move3

scene1

scene record

scene record 1
scene record 1

scene record 1
scene record 1

scene record 1
scene record 1

scene record 1
scene record 1

vision memory

It is an open research question, how much imagery should (can) be
preserved in a vision memory.
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Case-based Expectation Generation
from Memory Records

Memory records are "cases" which may provide missing information for
an ongoing scene:
-  identify memory records which partially match current scene
-  adapt memory information to current scene
-  provide expectations about current scene

plateagent transport

transport2

plate2agent2

transport3

plate3agent3

place-cover2

transport1

plate1agent1

memory recordcurrent scene

concepts
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Basic Learning Tasks

Michalski 86:  Learning is the construction or modification of
representations of experiences.

Unsupervised learning
determine reoccuring patterns in scene records

=> conceptual clustering

Supervised learning
determine description covering several examples

=> inductive generalization 

14

Example of Supervised Learning

1.  "This is how you lay a table"

2.  "This is how you lay a table"

••
•

42.  "This is how you lay a table"

determine
covering
description
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Example of Unsupervised Learning

Scene 1             Scene 2         Scene 3

Find reoccurring aggregates  =>  clustering

16

Event Space Modelling with
Markov Networks

• Node “i” is associated with hidden variable xi and noisy observation yi
– xi is the feature vector of a primitive event “i”

• Links of all nodes to reference object (plate)
– more links are added based on feature correlation
– edges are associated with potential function yi,j(xi,xj)

xp

xs

xkxf

xc

yf

yp

yk

ys yc

n
Gaussian noise

PF K

CS

(Approach developed by Somboon Hongeng 2004)
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Learning Event Clusters from
Simulated 1D-Cover Scenes

Left-handed

200 simulated cover-laying scenes:
• primitive events are described by starting time t and horizontal

displacement u relative to plate
• placement orders P-K-F-C-S, P-K-F-S-C, P-F-K-S-C, P-F-K-C-S

Right-handed

S F K CP
1D cover settings

18

Clustering Results
• Potential functions modeled with 200 Gaussian kernels
• Found 8 event classes from 200 simulated training sequences

cf1:
P(0,0)
K(54,200)
F(-55,400)
C(90,600)
S(-84,800)

cf2:
P(0,0)
F(52,200)
K(-52,400)
C(-85,600)
S(85,800)

cf3:
P(0,0)
F(-55,200)
K(55,400)
S(-88,600)
C(89,800)

cf4:
P(0,0)
K(-51,200)
F(51,400)
C(-85,600)
S(85,800)

4 examples:

mean displacement of fork relativ to plate = 54
mean starting time of fork-laying relative to plate = 200 
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Inferencing with Learned
Markov Models (1)

• Observe primitive laying events
• Generate expectations about unobserved events (past or future)

p.(u,v) = (110, 115), p.t = 0p.(u,v) = (110, 115), p.t = 0

f.(u,v) = (165, 115), f.t = 200

p.(u,v) = (110, 115), p.t = 0

f.(u,v) = (165, 115), f.t = 200

k.(u,v) = (-52.77,115), k.t = 398  prediction

20

Inferencing with Learned
Markov Models (2)

• Observe primitive laying events
• Generate expectations about unobserved events (past or future)

occlusion

f.(u,v) = (165, 115), f.t = 0

occlusion

f.(u,v) = (165, 115), f.t = 0

s.(u,v) = (220,115), s.t = 600

occlusion

f.(u,v) = (165, 115), f.t = 0

s.(u,v) = (220,115), s.t = 600

Expectation 1:
p.t = -400, k.t = -200, c.t = 392/220

Expectation 2:
p.t = -200, k.t = 197, c.t = 410/599

Note: Computing event probabilities in Markov Networks can in general
only be done approximately by iterative procedures
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Review of Image Understanding as a
Knowledge-based Process

object configurations,
situations, occurrences

objects, trajectories

scene elements:
volumes, 3D-surfaces,

3D-contours

image elements:
regions, edges, texture,

optical flow

raw images

high-level vision,
scene understanding

object
recognition

low-level vision,
early vision

segmentation,
image preprocessing

common sense
knowledge

situation models,
occurrence models

object models

projective
geometry
photometry

physics

basic real-world
properties

events, episodes


