
1

1

Grouping

To make sense of image elements, they first have to be grouped into
larger structures.

Example: Grouping noisy edge elements into a straight edge

Important methods:

• Fitting
• Clustering
• Hough Transform
• Relaxation

Essential problem:

Obtaining globally valid results by
local decisions

- locally compatible
- globally incompatible

2

Cognitive Grouping

The human cognitive system shows remarkable grouping capabilities

• • • • • • • • • •• • • • • • • • • •• • • • • • • • • •
• • • • • • • • • •• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

• • • • • • • • • •
• • • • • • • • • •

grouping into rows or
columns according to
a distance criterion

grouping into
virtual edges

• • •
• • •

• • •
• • •
• • •

grouping into
virtual motion

It is worthwhile wondering
which cognitive grouping rules
should also be followed by
machine vision

2

3

Fitting Straight Lines

• Straight edges occur abundantly in the
civilized world.

• Approximately straight edges are also
important to model many natural phenomena,
e.g. stems of plants, horizon at a distance.

• Straightness in scenes gives rise to
straighness in images.

• Straightness discovery is an example of
constancy detection which is at the heart of
grouping (and maybe even interpretation).

We will treat several methods for fitting straight lines:

• Iterative refinement
• Mean-square minimization
• Eigenvector analysis
• Hough transform

Why do we want to discover straight edges or lines in images?

4

Straight Line Fitting by
Iterative Refinement

Example: Fitting straight segments to a given object motion trajectory

o oo o
o

o
o

oo o

o

o o

o
o o o

o o
o

oo

P1

PN

Algorithm:
A: First straight line is P1PN

B: Is there a straight line segment PiPk with an intermediate point Pj (i < j < k)
whose distance from PiPk is more than d? If no, then terminate.

C: Segment PiPk into PiPj and PjPk and go to B.

Advantage: simple and fast

o o o o o o o oo o o o o o o o
o o

Disadvantages: - strong effect of outliers
- not always optimal

o o o o o
o

o oo o o o o o o oo o

3

5

Straight Line Fitting by
Eigenvector Analysis (1)

Given: (xi yi) i = 1 ... N

Wanted: Coefficients c0, c1 for straight line
y = c0 + c1x which minimizes ΣΣΣΣ di

2
d1 d2

d3 d4
d5

d6

Observation:

The optimal straight line passes through the mean of the given points. Why?

Let (x´y´) be a coordinate system with the x´ axis parallel to the optimal straight line.

optimal straight line x´= x0´

error ΣΣΣΣ di
2 = ΣΣΣΣ (xi´- x0´)2

condition for optimum δδδδ/δδδδx0 {ΣΣΣΣ (xi´- x0´)2} = -2•ΣΣΣΣ (xi´- x0´) = 0

x0´ = 1/N•ΣΣΣΣ xi´

A new coordinate system may be chosen with the origin at the mean of the
given points:

xj' = xj -
∑xi
N

yj' = yj -
∑yi
N

Optimal straight line passes through origin, only direction is unknown.

6

Straight Line Fitting by
Eigenvector Analysis (2)

Given: points vi
T = [xi yi] with ΣΣΣΣ vi = 0 i = 1 ... N

Wanted: direction vector r which minimizes ΣΣΣΣ di
2

After coordinate transformation the new problem is:

x

y
o

oo
o

o

o
r

vi

di

d
2

=
N
∑
i=1

di
2

=
N
∑
i=1

(r
T
vi)

2
Minimize =

N
∑
i=1

(r
T
vi)(vi

T
r) = r

T
Sr

scatter matrix

Minimization with Lagrange multiplier λλλλ:

rTSr + λλλλrTr => minimum subject to rTr = 1

Minimizing r is eigenvector of S, minimum is eigenvalue of S.

For a 2D scatter matrix there exist 2 orthogonal eigenvectors:

rmin orthogonal to optimal straight line

rmax parallel to optimal straight line

4

7

Straight Line Fitting by
Eigenvector Analysis (3)

Computational procedure:

• Determine mean m of given points with mx = 1/N ΣΣΣΣ xi, my = 1/N ΣΣΣΣ yi , i = 1 ... N

• Determine scatter matrix S = S11 S12 = ΣΣΣΣ (xi-mx)2
 ΣΣΣΣ (xi-mx)(yi-my)

 S21 S22 ΣΣΣΣ (xi-mx)(yi-my) ΣΣΣΣ (yi-my)2

• Determine maximal eigenvalue

λλ1,2 ==
S11 ++ S22

2
±±

S11 ++ S22

2

2

−− S λλλλmax = max {λλλλ1, λλλλ2}

• Determine direction of eigenvector corresponding to λλλλmax

S11 rx + S12 ry = λλλλmax rx by definition of eigenvector => ry/rx

• Determine optimal straight line

(y- my) = (x-mx) (ry/rx) = (x-mx) (λλλλmax - S11)/S12

8

Example for Straight Line Fitting by
Eigenvector Analysis

•
•

•

•
•

• •

• x

y

What is the best straight-line
approximation of the contour?

Given points: { (-5 0) (-3 0) (-1 -1) (1 0) (3 2) (5 3) (7 2) (9 2) }

Scatter matrix: S11 = 168 S12 = S21 = 38 S22 = 14

Eigenvalues: λλλλ1 = 176,87 λλλλ2 = 5,13

Straight line equation: y = 0,23 x + 0,54

?

Center of gravity: mx = 2 my = 1

•

Direction of straight line: ry/rx = 0,23

5

9

Grouping by Search

What is the "best path" which could represent
a boundary in a given field of edgels?

The problem can be formulated as a search problem:

What is the best path from a starting point to an end point, given a cost
function c(x1, x2, ... , xN)?

The variables x1 ... xN are decision variables whose values determine the path.

Hence search for a global optimum is necessary, e.g.

- hill climbing

- A* search

- Dynamic Programming

Unfortunately, the total cost c(x1, ... , xN) is in general not minimized by local
minimal cost decisions min c(xi), e.g. following the path of maximal edgel
strength.

10

Dynamic Programming (1)
Dynamic Programming is an optimization method which can be applied if
the global cost c(x1, x2, ... , xN) obeys the principle of optimality:

Example: In street traffic, an optimal path from A to B usually implies that all
subpaths from A´ to B´ between A and B are also optimal.

•
• •

•
A

A´

B´

B

Dynamic Programming avoids cost computations for all value
assignments for x1, x2, ... , xN.
If each xi, i = 1 ... N, has K possible values, only N*K2 cost computations
are required instead of KN.

If a1, a2, ... , aN minimize c(x1, x2, ... , xN),

then ai, ai+1, ... , ak minimize c(ai, xi+1, xi+2, ... , xk-1, ak)

Hence, for a globally optimal path every subpath has to be optimal.

6

11

Dynamic Programming (2)
Suppose c(x1, x2, ... , xN) = c(x1, x2) + c(x2, x3) + ... + c(xN-1, xN), then the
optimality principle holds.

Dynamic Programming:

Step 1: Minimize c(x1, x2) over x1 => f1(x2)
Step 2: Minimize f1(x2)+c(x2, x3) over x2 => f2(x3)
Step 3: Minimize f2(x3)+c(x3, x4) over x3 => f3(x4)
•
•
•
Step N: Minimize fN-1(xN) over xN => fN = min c(x1, x2, ... , xN)

Example of a cost function for boundary search:

"Punish accumulated curvature and reward accumulated edge strengths"

s(xk) edge strength
q(xk, xk+1) curvature

c(x1,...,xN) == (1−− s(xk))
k==1...N
∑∑ ++ αα q(xk ,xk++1)

k==1...N−−1
∑∑

12

Dynamic Programming (3)
Example: Find optimal path from left to right

3
4
2

5
3
6

4

2
4
5

1
2
3

5

5
1
2

3
6
1

4

3
2
4

3
2
6

4

A D G J M

C F I L O

B NE H K

• Find best paths from A, B, C to D, E, F,
record optimal costs at D, E, F

• Find best paths from D, E, F to G, H, I,
record optimal costs at G, H, I

etc.

• Trace back optimal path from right to left

2

4

3

4A D G J M

C F I L O

B NE H K5

6

7

5

10

9

7

8

optimaler Pfad!optimaler Pfad?

7

13

Grouping by Relaxation

relaxation

Relaxation methods seek a solution by stepwise minimization
("relaxation") of constraints.

•

•
•

• •

•

Analogy with
spring
system: x1

x2

x1

x3

x4

x5

Variables xi take on values (= positions) where springs are maximally
relaxed corresponding to a state of global minimal energy. Hence
relaxation is often realized by "energy minimization".

14

Contexts for Edge Relaxation

Iterative modification of edge strengths using context-dependent
compatibility rules.

Context types:

isolated
edge

uncertain
continuation

spurious
continuation

spurious
continuation

connecting
edge

connecting
edge

-1 +1 -1 -1 +3 +2

isolated
edge

uncertain
connection

competing
edge

+2 0 0 0 0 -1

uncertain
connection

uncertain
connection

uncertain
connection

Each context contributes with weight wj = w0 • {-1 ... +2} to an interative
modification of the edge strength of the central element.

8

15

Modification Rule for Edge Relaxation

Pi
k edge strength in position i after iteration k

Qij
k strength of context j for position i after iteration k

wj weight factor of context j

Qij
k = ΠΠΠΠ Pm

k • ΠΠΠΠ (1-Pn
k)

Pi
k++1 == Pi

k 1++ ∆∆Pi
k

1++ Pi
k∆∆Pi

k

∆∆Pi
k == wjQij

k

j==1

N

∑∑

m, n ranging over all supporting and not supporting edge positions of context j,
respectively.

edge strength modification rule

edge strength increment

edge context strength

There is empirical evidence (but no proof) that for most edge images this
relaxation procedure converges within 10 ... 20 iterations.

16

Example of Edge-finding by Relaxation

Landhouse scene from VISIONS project, 1982

9

17

Histogram-based Segmentation
with Relaxation (1)

A Determine cluster centers by multi-dimensional histogram analysis

red

green

red

•
• •

•

green

B Label each pixel by cluster-membership probabilities pi , 1 = 1 ... N

pi ==
1/ di

1/ dkk==1

N

∑∑
di is Euclidean distance between the feature vector of
the pixel and cluster center ci

Basic idea:

Use relaxation to introduce a local similarity constraint into histogram-
based region segmentation.

cluster centers ci, i = 1 ... N

18

Histogram-based Labelling
with Relaxation (2)

D Region assignment of each pixel according to its maximal
membership probability max pi

E Recursive application of the procedure to individual regions

C Iterative relaxation of the pi(j) of all pixels j:

- equal labels of neighbouring pixels support each other

- unequal labels of neighbouring pixels inhibit each other

D(j) is neighbourhood of pixel jqi (j) == [w++pi (k) −− w−− (1−−pi (k))
k∈∈D(j)
∑∑]

′′pi (j) ==
pi (j) ++ qi (j)
(pn (j) ++ qn (j))

n
∑∑

new probability pi´(j) of pixel j to
belong to cluster i

10

19

wji

wij

Relaxation with a Neural Network

Principle: ai aj

cells influence each other´s
activation via exciting or
inhibiting weights

Relaxation labelling of 4 pixels:

c1

c2

c3

c4

pixel 1 pixel 2 pixel 3 pixel 4

bidirectional inhibiting connection

bidirectional exciting connection

.1

.1

.8

.0

.4

.4

.0

.2

.7

.1

.2

.0

.5

.2

.0

.3

.0

.0

1.0

.0

.0

1.0

.0

.0

1.0

.0

.0

.0

1.0

.0

.0

.0

20

Hough Transform (1)

Robust method for fitting straight lines, circles or other geometric figures
which can be described analytically.

Given: Edge points in an image

Wanted: Straight lines supported by the edge points

An edge point (xk, yk) supports all straight lines y = mx + c
with parameters m and c such that yk = mxk + c.
The locus of the parameter combinations for straight
lines through (xk, yk) is a straight line in parameter space.

m

c

yk/xk

yk

• Provide accumulator array for quantized straight line parameter
combinations

• For each edge point, increase accumulator cells for all parameter
combinations supported by the edge point

• Maxima in accumulator array correspond to straight lines in the image

Principle of Hough transform for straight line fitting:

11

21

Hough Transform (2)
For straight line finding, the parameter pair (r, θθθθ) is commonly used
because it avoids infinite parameter values:

xkcosθθθθ + yksinθθθθ = r
x

r

θθθθ

(xk, yk)

x

y

Each edge point (xk, yk) corresponds
to a sinusoidal in parameter space:

ππππ 2ππππ
θθθθ

r

Important improvement by exploiting direction information at edge points:

(xk, yk, ϕϕϕϕ) xkcosθθθθ + yksinθθθθ = r restricted to ϕϕϕϕ-δδδδ ≤≤≤≤ θθθθ ≤≤≤≤ ϕϕϕϕ+δδδδ

direction tolerancegradient direction

22

Hough Transform (3)

Same method may be applied to other parameterizable shapes, e.g.

• circles (xk-x0)2 + (yk-y0)2 = r2 3 parameters x0, y0, r

• ellipses 5 parameters x0, y0, a, b, γγγγ

Accumulator arrays grow exponentially with number of parameters
=> quantization must be chosen with care

x0

y0

r

(xk −− x0)cos γγ ++ (yk −− y0)sin γγ
a

2

++
(yk −− y0)cos γγ −− (xk −− x0)sin γγ

b

2

== 1

12

23

Generalized Hough Transform

• shapes are described by edge
elements (r θθθθ ϕϕϕϕ) relative to an
arbitrary reference point (xc yc)

• ϕϕϕϕ is used as index into (ρρρρ θθθθ) pairs
of a shape description

• edge point coordinates (xk yk) and
gradient direction ϕϕϕϕk determine
possible reference point locations

• likely reference point locations
are determined via maxima in
accumulator array

o
(xc yc)

r
θθθθ

ϕϕϕϕ

ϕϕϕϕ1: {(r11 θθθθ11) (r12 θθθθ12) ... }
ϕϕϕϕ2: {(r21 θθθθ11) (r22 θθθθ12) ... }
.
..
ϕϕϕϕN: {(rN1 θθθθ11) (rN2 θθθθ12) ... }

(xk yk ϕϕϕϕk) {(xc yc)} = { (xk - ri(ϕϕϕϕk) cos θθθθi(ϕϕϕϕk), (xk - ri(ϕϕϕϕk) sin θθθθi(ϕϕϕϕk)) }

counter cell in accumulator array

x

y

