

Cross-correlation

 $r = \sum_{mn} g_{mn} t_{mn}$ cross-correlation between image g_{mn} and template t_{mn} Compare with squared Euclidean distance d_e^2 :

$$d_e^2 = \sum_{mn} (g_{mn} - t_{mn})^2 = \sum_{mn} g_{mn}^2 + \sum_{mn} t_{mn}^2 - 2r$$

Image "energy" $\Sigma g_{mn}{}^2$ and template "energy" $\Sigma t_{mn}{}^2$ correspond to length of feature vectors.

$$r^{\,\prime}=\frac{\displaystyle\sum_{mn}g_{mn}t_{mn}}{\displaystyle\sqrt{\displaystyle\sum_{mn}g_{mn}^{2}\sum_{mn}t_{mn}^{2}}}$$

Normalized cross-correlation is independent of image and template energy. It measures the cosine of the angle between the feature vectors in MN-space.

Cauchy-Schwartz Inequality:

 $|\mathbf{r}'| \le 1$ with equality iff $g_{mn} = c t_{mn}$, all mn

21

