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Region Description for Recognition

For object recognition, descriptions of regions in an image have to be
compared with descriptions of regions of meaningful objects (models).

The general problem of object recognition will be treated later.

Here we learn basic region description techniques for later stages in
image analysis (including recognition).

Typically, region descriptions suppress (abstract from) irrelevant details
and expose relevant properties. What is "relevant" depends on the task.

Example: OCR (Optical Character Recognition)

region abstraction 1

•

•

•

•
•

abstraction 2 abstraction 3

2

Simple 2D Shape Features
For industrial recognition tasks it is often required to distinguish
• a small number of different shapes
• viewed from a small number of  different view points
• with a small computational effort.

In such cases simple 2D shape features may be useful, such as:
- area
- boxing rectangle
- boundary length
- compactness
- second-order momentums
- polar signature
- templates

Features may or may not have invariance properties:
- 2D translation invariance
- 2D rotation invariance
- scale invariance
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Euler Number

The Euler number is the difference between the number of disjoint regions
and the number of holes in an image.

P = number of parts
H = number of holes
E = P - H

Example:
P = 5
H = 2
E = 3

Surprisingly, E (but not P or H) can be
computed by simple local operators.

Operators for regions with asymmetric connectivity:
4-connected  NE and SW
8-connected NW and SE

pattern1 =

pattern2 =

E = (count of pattern1) - (count of pattern2) 

4

Area

The area of a digital region is defined as the number of pixels of the region.
For an arbitrarily fine resolution, area is translation and rotation invariant.
In praxis, discretization effects may cause considerably variations.

area = 28

area = 31
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Boxing Rectangle

Boxing rectangle = width of a shape in x- and y-direction

x

y

• easy to compute
• not rotation invariant

b

a

To achieve rotation invariance, the rectangle must be fitted parallel to
an innate orientation of the shape. Orientation can be determined as the
axis of least inertia (see second order moments).

6

Boundary Length

The boundary length is defined as the number of pixels which constitute
the boundary of a shape.

area = 77

boundary
length = 32

area = 69

boundary
length = 40

Example:
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Compactness

compactness = (boundary length)2

area

Compactness describes analog shapes independent of linear
transformations.

very compact not very compact

Compactness for discrete shapes is in general not translation, rotation or
scale invariant due to discretization effects.

8

Center of Gravity

Consider a 2D shape evenly covered with mass. Physical concepts such as
- center of gravity
- moments of inertia
may be applied.

Center-of-gravity coordinates:

D = digital region

x

y

The center of gravity is the location where
first-order moments sum to zero.

(i - is ) == 0
ij∈∈D
∑∑     ( j - js ) == 0

ij∈∈D
∑∑

is ==
1
D

i
ij∈∈D
∑∑      js ==

1
D

j
ij∈∈D
∑∑

•

is

js



  

 5

9

Second-order Moments

Second-order moments ("moments of inertia") measure the distribution of
mass relative to axes through the center of gravity.

mx == (i - is )2

ij∈∈D
∑∑ == i2

ij∈∈D
∑∑ −− is

2 D

my == (j - js )2

ij∈∈D
∑∑ == j

ij∈∈D
∑∑

2
−− js

2 D

mxy == (i - is )( j - js )
ij∈∈D
∑∑ == ij

ij∈∈D
∑∑ −− isjs D

moment of inertia relative to y-axis
through center of gravity

moment of inertia relative to x-axis
through center of gravity

"mixed"moment of inertia relative to x-
and y-axis through center of gravity,
zero if x- and y-axis are "main axes"

• x

y
mx > my mxy = 0

•

y

x

mx < my mxy ≠≠≠≠ 0

10

Axis of Minimal Inertia

The axis of minimal inertia can be used as an innate orientation of a 2D
shape.

Inertia (= second order moment)
relative to an axis is the sum of
the squared distances between all
pixels of the shape and the axis.

v

rij

1. The axis of least inertia passes through the center of gravity

2. The mixed moment mvw relative to the axes v and w must be zero

mv == rij
2

ij∈∈D
∑∑

w

If the mixed moment is nonzero, the
axis must be turned by the angle αααα:

•
x

y

tan2αα ==
2mxy

my −−mx

•

v

w

x

y

αααα



  

 6

11

Polar Signature

A
The polar signature records the angular segments where circles
around the center of gravity lie within a shape.

0 90 180 270 360
R1

0 90 180 270 360
R2

0 90 180 270 360
R3

0

90

270

180

• scalable from coarse to fine by appropriate number of circles
• radii of circles must be chosen judiciously
• translation-invariant
• rotation-invariance can be achieved by cyclic shifting

12

Object Recognition Using
the Polar Signature

Model signatures

Recognition results
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Convex Hull

A region R is convex if the straight-line segment x1x2 between any two
points of R lies completely inside of R.

For an arbitrary region R, the convex hull H is the smallest convex region
which contains R.

Example of shape with convex hull:

Intuitive convex hull algorithm:

1. Pick lowest and left-most boundary point of R as starting point Pk = P1. Set
direction of previous line segment of convex-hull boundary to v = (0, -1).

2. Follow boundary of R from current point Pk in an anti-clockwise direction and
compute angle θθθθn of line PkPn for all boundary points Pn after Pk. The point Pq

with θθθθq = min{θθθθn} is a vertex of the convex hull boundary.

3. Set Pk = Pq and v = (PkPn) and repeat 2) and 3) until Pk = P1.

There are numerous convex hull algorithms in the literature. The most
efficient is O(N) [Melkman 87], see Sonka et al. "Image Processing ...".

14

Skeletons

The skeleton of a region is a line structure
which represents "the essence" of the shape
of the region, i.e. follows elongated parts.

Useful e.g. for character recognition

Medial Axis Transform (MAT) is one way to define a skeleton:

The MAT of a region R consists of all pixels of R which have more than one
closest boundary point.

•
•

•
MAT skeleton consists of centers of circles
which touch boundary at more than one point

MAT skeleton of a rectangle shows problems:

Note that "closest boundary point"
depends on digital metric!
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Thinning Algorithm

Assumptions:
• region pixels = 1
• background pixels = 0
• contour pixels 8-neighbours of background

Neighbourhood
labels:

p1

p2 p3

p4

p5p6p7

p8

p9

Repeat A to D until no more changes:

A Flag all contour points which satisfy conditions (1) to (4)
B Delete flagged points
C Flag all contour points which satisfy conditions (5) to (8)
D Delete flagged points

Conditions:

(1) 2 ≤≤≤≤ N(p1) ≤≤≤≤ 6
(2) S(p1) = 1
(3) p2•p4•p6 = 0
(4) p4•p6•p8 = 0

(5) 2 ≤≤≤≤ N(p1) ≤≤≤≤ 6
(6) S(p1) = 1
(7) p2•p4•p8 = 0
(8) p2•p6•p8 = 0

N(p1) = number of nonzero neighbours of p1

S(p1) = number of 0 - 1 transitions in
ordered sequence p2, p3, ...

Example:

Thinning algorithm by Zhang and Suen 1987 
(from Gonzalez and Wintz: "Digital Image Processing")

16

B-splines (1)

B-splines are piecewise polynomial curves which provide an approximation
of a polygon based on vertices.

•
•

•

••
••••

•
••

•

Important properties:
• eye-pleasing smooth approximation of control polygon
• change of control polygon vertex influences only small neighbourhood
• curve is twice differentiable (e.g. has well-defined curvature)
• easy to compute

• •

• •
•

• • •
•

•
•

x(s) = ΣΣΣΣ viBi(s)   i = 0 .. N+1
s parameter, changing linearly from i to i+1 between vertices vi and vi+1
vi vertices of control polygon
Bi(s) base functions, nonzero for s ‡[i-2 , i+2]

precision depends on distances of vertices 
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B-splines (2)

Each base function Bi(s) consists of four parts:

C0 (t) ==
t3

6

C1(t) ==
−−3t3 ++ 3t2 ++ 3t ++ 1

6

C2 (t) ==
3t3 −− 6t2 ++ 4

6

C3 (t) ==
−−3t3 ++ 3t2 −− 3t ++ 1

6

x(s) = C3(s-i)vi-1 + C2(s-i)vi + C1(s-i)vi+1 + C0(s-i)vi+2

C0 C1 C2 C3

1

Example:  s = 7.7  i = 7

x(7.7) = C3(0.7)v6 + C2(0.7)v7 + C1(0.7)v8 + C0(0.7)v9

18

Shape Description by
Fourier Expansion (1)

The curvature function k(s) of a region is necessarily periodic:

k(s) = k(s+L) L = length of boundary

Hence k(s) can be expanded by a Fourier series with coefficients:  

cn ==
1
L

k(s)exp(−−
2ππin

L
0

L

∫∫ s)ds

To avoid problems with curvature discontinuities at corners, it is useful
to  consider the slope intrinsic function:

  
′′θθ (s) == θθ(s) −−

2ππs
L

−− µµ

with  
θθ(s) == k(ςς)dςς

0

s

∫∫

µµ ==
1
L

θθ(s) −−
2ππs
L









ds

0

L

∫∫

tangent angle

mean (dependent on starting point)

2ππs
L normalization to achieve periodicity
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Shape Description by
Fourier Expansion (2)

cn ==
1
L

′′θθ (s)exp(−−
2ππin

L
0

L

∫∫ s)ds

The shape of a contour can be approximately represented by a limited
number of harmonics of the Fourier expansion of the slope intrinsic
function θθθθ´(s):

Example: 
(from Duda and Hart 73: Pattern Classification and Scene Analysis)

original

5 harmonics

10 harmonics

15 harmonics

Caution:
It is questionable whether
the approximations by a
limited number of harmonics
capture the most frequent
deviations from the normal.

20

Templates

A template is a translation-, rotation- and scale-variant shape desription. It
may be used for object recognition in a fixed, reoccurring pose.

Example:
Template for face recognition

• A M-by-N template may be treated as a
vector in MN-dimensional feature
space

• Unknown objects may be compared
with templates by their distance in
feature space

Distance measures:

gmn pixels of image
tmn pixels of template

de
2 == (gmn −− tmn )2

mn
∑∑

da == |gmn −− tmn|
mn
∑∑

squared Euclidean distance

absolute distance

maximal absolute distance

•

db == max
mn

 |gmn −− tmn|

template
as point
in feature
space

g11

g12

g13

gMN
•••
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Cross-correlation

r == gmn
mn
∑∑ tmn cross-correlation between image gmn and template tmn

Compare with squared Euclidean distance de
2:

de
2 == (gmn −− tmn )2

mn
∑∑ == gmn

2

mn
∑∑ ++ tmn

2

mn
∑∑ −− 2r

Normalized cross-correlation is independent of
image and template energy. It measures the
cosine of the angle between the feature vectors
in MN-space.

Image "energy" ΣΣΣΣgmn
2 and template "energy" ΣΣΣΣtmn

2 correspond to length of
feature vectors.

r ′′==
gmn

mn
∑∑ tmn

gmn
2 tmn

2

mn
∑∑

mn
∑∑

Cauchy-Schwartz Inequality: 

|r´| ≤≤≤≤ 1   with equality iff gmn = c tmn, all mn

22

Artificial Neural Nets

Information processing in biological systems is based on neurons with
roughly the following properties:

• the degree of activation is determined by incoming signals

• the outgoing signal is a function of the activation

• incoming signals are mediated by weights

• weights may be modified by learning

input signal
for cell j from
cell i

cell j

weight wij output signal
of cell j

net input for cell j ΣΣΣΣ wij oi(t)

activation aj(t) = fj (aj, ΣΣΣΣ wij oi(t))

output signal oj(t) = Fj (aj)

fi Fi

Typical shapes of fi and Fi:
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Multilayer Feed-forward Nets

. . .. . .

. . .

. . .output units

hidden units

input units

Example:

3-layer net

• each unit of a layer is
connected to each unit
of the layer below

• units within a layer are
not connected

• activation function f is
differentiable (for
learning)

24

Character Recognition with a
Neural Net

0 1 2 3 4 5 6 7 8 9

output units

Schematic drawing shows 3-layer feed-forward net:

•  input units are activated by sensors and feed hidden units
•  hidden units feed output units
•  each unit receives weighted sum of incoming signals

hidden units

input units

Supervised learning

Weights are adjusted
iteratively until prototypes
are classified correctly
(-> backpropagation)



  

 13

25

Learning by Backpropagation

Supervised learning procedure:

• present example and determine output error signals

• adjust weights which contribute to errors

input pattern p

nominal
output
signal tpj

actual
output
signal opj

cell j

cell i

Adjusting weights:

• Error signal of output cell j for pattern p is

δδδδpj = (tpj - opj) fj´(netpj)

fj´() is the derivative of the activation function f()

• Determine error signal δδδδpi for internal cell i recursively from
error signals of all cells k to which cell i contributes.

δδδδpi =  fi´(netpi) ΣΣΣΣk δδδδpkwik

• Modify all weights:  ∆∆∆∆pwij = ηηηηδδδδpjopi     ηηηη is a positive constant

The procedure must be repeated many times until the weights
are "optimally" adjusted. There is no general convergence
guarantee.

wij

26

Perceptrons (1)
Which shape properties can be determined by combining the outputs of
local operators?

A perceptron is a simple computational model for combining local Boolean
operations.  (Minsky and Papert, Perceptrons, ??)

ϕϕϕϕ1
ϕϕϕϕ2

ϕϕϕϕn

S/W-Retina

Boole'sche
Funktionen 

lineare 
Schwellwert=
zelle 

ΩΩΩΩ

Boolean
functions

linear
threshold
element

0

1

B/W Retina

ϕϕϕϕi Boolean functions with local
support in the retina:
- limited diameter
- limited number of cells
output is 0 or 1

Ω compares weighted sum of
the ϕϕϕϕi with fixed threshold θθθθ:

Ω =
1  if ΣΣΣΣ wiϕϕϕϕi > θθθθ
0  otherwise
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Perceptrons (2)

A limited-diameter perceptron cannot determine connectedness

Assume perceptron with maximal diameter d for the support of each ϕϕϕϕi.
Consider 4 shapes as below with a < d and b >> d.

a

b

Boolean operators may distinguish 5 local situations:

ϕϕϕϕ1 ϕϕϕϕ2 ϕϕϕϕ3 ϕϕϕϕ4 ϕϕϕϕ5

ϕϕϕϕ5 is clearly irrelevant for
distinguishing between the
2 connected and the 2
disconnected shapes

For ΩΩΩΩ to exist, we must have:

w1 ϕϕϕϕ1 + w4 ϕϕϕϕ4 < θθθθ
w2 ϕϕϕϕ2 + w3 ϕϕϕϕ3 < θθθθ  

w2 ϕϕϕϕ2 + w4 ϕϕϕϕ4 > θθθθ
w1 ϕϕϕϕ1 + w3 ϕϕϕϕ3 > θθθθ  

ΣΣΣΣ wi ϕϕϕϕi < 2θθθθ ΣΣΣΣ wi ϕϕϕϕi > 2θθθθ

contradiction, hence
ΩΩΩΩ cannot exist


