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Definition of Image Understanding

Image understanding is the task-oriented reconstruction and
interpretation of a scene by means of images

Image understanding is the task-oriented reconstruction and
interpretation of a scene by means of images

scene: section of the real world
stationary (3D) or moving (4D)

image: view of a scene
projection, density image (2D)
depth image (2 1/2D)
image sequence (3D)

reconstruction computer-internal scene description
and interpretation: quantitative + qualitative + symbolic

task-oriented: for a purpose, to fulfil a particular task
context-dependent, supporting actions of an agent

2

Illustration of Image Understanding

• •

road

gully

coverhole

danger

scene

image
sequence image sequence

interpretation
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Image Understanding as a
Knowledge-based Process

object configurations,
situations, occurrences

objects, trajectories

scene elements:
volumes, 3D-surfaces,

3D-contours

image elements:
regions, edges, texture,

optical flow

raw images

high-level vision,
scene understanding

object
recognition

low-level vision,
early vision

segmentation,
image preprocessing

common sense
knowledge

situation models,
occurrence models

object models

projective
geometry

photometry

physics

basic real-world
properties

events, episodes
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Abstraction Levels for the Description
of Computer Vision Systems

Knowledge level
What knowledge or information enters a process? What knowledge or
information is obtained by a process?
What are the laws and constraints which determine the behavior of a process?

Algorithmic level
How is the relevant information represented?
What algorithms are used to process the information?

Implementation level
What programming language is used?
What computer hardware is used?
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Example for Knowledge-level Analysis

What knowledge or information enters a process? What knowledge or
information is obtained by a process?
What are the laws and constraints which determine the behavior of a process?

Consider shape-from-shading:

In order to obtain  the 3D shape of an object, it is necessary to
- state what knowledge is available (greyvalues, surface

properties, illumination direction, etc.)
- state what information is desired (e.g. qualitative vs.

quantitative)
- exploit knowledge about the physics of image formation

6

"natural images"

Image Formation

Images can be generated by various processes:
- illumination of surfaces, measurement of reflections
- illumination of translucent material, measurement of irradiation
- measurement of heat (infrared) radiation
- X-ray of material, computation of density map
- measurement of any features by means of a sensory array

physical signal

sensory array
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Formation of Natural Images

Intensity (brightness) of a pixel depends on
1. illumination (spectral energy, secondary illumination)
2. object surface properties (reflectivity)
3. sensor properties
4. geometry of light-source, object and sensor constellation (angles, distances)
5. transparency of irradiated medium (mistiness, dustiness)
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Qualitative Surface Properties
When light hits a surface, it may be
• absorbed
• reflected
• scattered

Simplifying assumptions:
• Radiance leaving at a point is due to radiance arriving at this point
• All light leaving the surface at a wavelength is due to light arriving

at the same wavelength
• Surface does not generate light internally

in general, all effects may be mixed

The "amount" of reflected light may depend on:
• the "amount" of incoming light
• the angles of the incoming light w.r.t. to the surface orientation
• the angles of the outgoing light w.r.t. to the surface orientation
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Photometric Surface Properties
surface
normal

viewing
direction

illumination
direction

θi
θv

x

y

φi
φv

θi, θv   polar (zenith) angles

 φi, φv   azimuth angles

In general, the ability of a surface to reflect light is given by the
Bi-directional Reflectance Distribution Function (BRDF) r:

δE = irradiance of light source
received by the surface patch
δL = radiance of surface patch
towards viewer

For many materials the reflectance properties are rotation invariant,
in this case the BRDF depends on θi, θv, φ, where φ = φi - φv.  

δL(θv, φv)r(θi, φi; θv, φv) = δE(θi, φi)

10

Intensity of Sensor Signals
light source

surface

sensor

Intensities of sensor signals depend on
- location x, y on sensor plane
- instance of time t
- frequency of  incoming light wave λ
- spectral sensitivity of sensor

x

y

light distribution for
sensor

sensitivity function of sensor
spectral energy distribution

  
f(x,y, t) = C(x,y, t,λ)S(λ )dλ∫

0

∞
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Multispectral Images

Sensors with separate channels of different spectral sensitivities
generate multispectral images:

f1( x, y,t) = C(x,y, t,λ )S1(λ)dλ
0

∞

∫

f2(x,y, t ) = C(x,y,t,λ )S2(λ )dλ
0

∞

∫

f3(x,y, t ) = C(x,y,t,λ )S3(λ )dλ
0

∞

∫

Example:
R (red) 650 nm center frequency

G (green) 530 nm center frequency

B (blue) 410 nm center frequency

S(λ)

λ

λ

λ

12

Spectral Sensitivity of Human Eyes

Standardized wavelengths:
red = 700 nm, green = 546.1 nm, blue = 435.8 nm
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Non-unique Sensor Response

Different spectral distributions may lead to identical sensor
responses and hence cannot be distinguished

  

� 

f(x, y, t) = C1(x, y, t,λ )S(λ )dλ
0

∞

∫ = C2(x, y, t,λ )S(λ )dλ
0

∞

∫

different spectral energy distributions

Example:

S(λ) S(λ)

λ λ

C1(λ)

C2(λ)
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Dimensions of Colour

Human perception of colour distinguishes between 3 dimensions:
-  hue
-  saturation
-  brightness

yellow
green

blue
violet

red

orange

hue

saturation

colour circle

brightness

saturation

y

r

gb

white

black

NCS* colour spindle

*  Swedish Natural Colour System

chromaticity
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RGB Images of a Natural Scene

R+G+B       R G    B

Here, single colour images are rendered as greyvalue intensity images:
stronger spectral intensity = more brightness

16

Primary and Secondary Colours
Primary colours:
red, green, blue

Secondary colours:
magenta = red + blue
cyan = green + blue
yellow = red + green

aus: Gonzales & Woods
Digital Image Processing
Prentice Hall 2002
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Technical Colour Models
RGB colour model

R

G

B

magenta
cyan

yellow
Typical discretization:
8 bits per colour dimension
=>  16,77,216 colours

CMY colour model

C 1 R
M    = 1      - G
Y 1 B

HSI colour model

Hue:

H  = Θ if B ≤ G
360 - Θ if B > G

  1/2 [(R-G) + (R-B)]
Θ  = cos-1

  [(R-G)2 + (R-B)(G-B)]1/2

Saturation:
      3

S  = 1 -        [min (R, G, B)]
(R + G + B)

Intensity:
I  = 1/3 (R + G + B)
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Discretization of Images

Image functions must be discretized for computer processing:
- spatial quantization

the image plane is represented by a 2D array of picture cells

- greyvalue quantization
each greyvalue is taken from a discrete value range

- temporal quantization
greyvalues are taken at discrete time intervals

f(x,y,t) => { fs(x1, y1,t1), fs(x2, y2,t1), fs(x3, y3,t1), ...
     fs(x1, y1,t2), fs(x2, y2,t2), fs(x3, y3,t2), ...
     fs(x1, y1,t3), fs(x2, y2,t3), fs(x3, y3,t3), ... }

A single value of the discretized image function is called a pixel
(picture element).
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Spatial Quantization

Rectangular grid

Note that samples of a
hexagonal grid are equally
spaced along rows, with
successive rows shifted by
half a sampling interval.

Hexagonal grid

Triangular grid

Greyvalues represent the
quantized value of the
signal power falling into a
grid cell.

•   •   •   •   •   ••   •   •   •   •   •

20

Reconstruction from Samples

Under what conditions can the original (continuous) signal be
reconstructed from its sampled version?
Consider a 1-dimensional function f(x):

• •
• •

•
•

•
• •

• •
• • •

x

f(x)

•

Reconstruction is only possible, if "variability" of function is restricted.
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Sampling Theorem

Shannon´s Sampling Theorem:

A bandlimited function with bandwidth W can be exactly
reconstructed from equally spaced samples, if the sampling
distance is not larger than 1

2W

bandwidth = largest frequency contained in signal
(=> Fourier decomposition of a signal)

Analogous theorem holds for 2D signals with limited spatial
frequencies Wx and Wy

22

Aliasing

          original                     143 x 128                         71 x 64                       35 x 32

Sampling an image with fewer samples than required by the sampling
theorem may cause "aliasing" (artificial structures).

Example:

To avoid aliasing, bandwidth of image must by reduced prior to sampling.
(=> low-pass filtering)
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Reconstructing the Image Function
from Samples

Formally, a continuous function f(t) with bandwidth W can be exactly
reconstructed using sampling functions si(t):

si( t) = 2W sin 2πW t − i / (2W)[ ]
2πW t − i / (2W)[ ]

i
2W

t

si(t)

x(t) = 1
2W

 
i=−∞

∞

∑ x ( i
2W

) Si(t)

sample values

In practice, image functions are generated from samples by interpolation.

An analogous equation holds for 2D.

24

Sampling TV Signals
PAL standard:

-  picture format 3 : 4
-  25 full frames (50 half frames) per second
-  interlaced rows: 1, 3, 5, ... , 2, 4, 6, ...
-  625 rows per full frame, 576 visible
-  64 µs per row, 52 µs visible
-  5 MHz bandwidth

Only 1D sampling is required because of fixed row structure.

Sampling intervals of Δt = 1/(2W) = 10-7s = 100 ns give maximal
possible resolution.

With Δt = 100 ns, a row of duration 52 µs gives rise to 520 samples.
In practice, one often chooses 512 pixels per TV row.
=> 576 x 512 = 294912 pixels per full frame
=> rectangular pixel size with width/height =(      ) / (      ) = 1,5

4
512

3
576

1,5
1,0
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Sampling of Binary Images (1)

Problem: Shapes may change under digitization

26

Sampling of Binary Images (2)

This cannot be solved by using Shannon´s Theorem since binary images are
not bandlimited.

Problem: Shapes may change under digitization
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Shape Preserving Sampling Theorem:
The shape of an r-regular image can be correctly reconstructed
after sampling with any sampling grid, if the grid point distance is
not larger than r.

Shape Preserving Sampling Theorem (1)

Stelldinger, Köthe 2003

     grid point distance: maximal distance from arbitrary sampling point to
the next sampling point

r-regular binary image:
osculating r-discs at each
boundary point of the shape

⇒ curvature bounded by 1/r
⇒ bounded thinness of parts
⇒ minimal distance between
     parts

28

Shape Preserving Sampling Theorem (2)

What does correct reconstruction mean?
Topological and geometric similarity criterion:
One shape can be mapped onto the other by twisting the whole plane,
such that the displacement of each point is smaller than r.

Shape Preserving Sampling Theorem:
The shape of an r-regular image can be correctly reconstructed
after sampling with any sampling grid, if the grid point distance is
not larger than r.

Stelldinger, Köthe 2003
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Sampling of Shapes in Arbitrary Images (1)

The previous sampling theorem also holds for greyvalue images, if
each level set is an r-regular shape.
A level set is the set where the image is brighter than a given
threshold value.

sampling + reconstruction

30

Sampling of Shapes in Arbitrary Images (2)

Reconstruction after sampling from r-regular originals

The generalization to higher dimensions is still an unsolved problem!
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Comparison of the Sampling Theorems

same shape as the
original image

identical to
original image

reconstructed
image

regularization:
unsolved problem

band-limitation:
efficient algorithms

(but shapes may change!)

prefiltering

arbitrary gridsrectangular grid2D sampling
grid

2D
(partly generalizable to n-D)

1D
(generalizable to n-D)

dimension of
definition

equation

r-regularbandlimited with
bandwidth W

necessary
image property

Shape Preserving
Sampling Theorem

Shannon´s
Sampling Theorem

W
dr

2
1

2
´ <⎟

⎠
⎞⎜

⎝
⎛ = rr <´

32

Quantization of Greyvalues

Quantization of greyvalues transforms continuous values of a
sampled image function into digital quantities.
Typically 2 ... 210 quantization levels are used, depending on task.
Less than 29 quantization levels may cause artificial contours for
human perception.

Example:

256 16 8 4 2
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Uniform Quantization

zmax
0

q0

qN-1Equally spaced discrete values
q0 ... qN-1 represent equal-width
greyvalue intervals of the
continuous signal.

Typically N = 2K for K = 1 ... 10

Uniform quantization may "waste" quantization levels, if greyvalues
are not equally distributed.

34

Nonlinear Quantization Curves
E.g. fine resolution for "interesting" greyvalue ranges, coarse
resolution for less interesting greyvalue ranges.

z

qExample:
Low greyvalues are mapped
into more quantization levels
than high greyvalues.

Note:
Subjective brightness in human perception depends (roughly)
logarithmically on the actual (measurable) brightness.
To let the computer see brightness as humans, use a logarithmic
quantization curve.
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Optimal Quantization (1)

Assumption:
Probability density p(z) for continuous greyvalues and number of
quantization levels N are known.
Goal:
Minimize mean quadratic quantization error dq by choosing optimal
interval boundaries zn and optimal discrete representatives qn.

dq
2 =  (z − qn)2

zn

zn+1

∫
n=0

N−1
∑ p(z)dz

δ
δzn

dq
2 = (zn − qn−1)

2p(zn) − (zn − qn)2p(zn) = 0   for n = 1 ... N-1

δ
δqn

dq
2 = −2 (z − qn

zn

zn+1

∫ )p(z)dz = 0   for n = 0 . ..  N - 1

Minimizing by setting the derivatives zero:

36

Optimal Quantization (2)
Solution for optimal quantization:

zn =
1
2

(qn−1+ qn)    for n= 1 .. . N- 1 when p(zn) > 0

qn =

zp(z)dz
zn

zn+1

∫

p(z)dz
zn

zn+1

∫
    for n = 0 ... N - 1 

Each interval boundary must be in the middle of the corresponding quantization
levels.

Each quantization level is the center-of-gravity coordinate of the corresponding
probability density area.

p(z)

0 zmaxz1 z2 z3

q0 q1 q2

Optimal quantization
can be determined by
an iterative algorithm
beginning with an
arbitrary choice of z1
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Binarization

For many applications it is convenient to distinguish only between 2
greyvalues, "black" and "white", or "1" and "0".
Example:  Separate object from background

Binarization = transforming an image function into a binary image

g(x, y)  =>

Thresholding:

0 if g(x, y) < T

1 if g(x, y) ≥ T
T is threshold

Thresholding is often applied to digital images in order to isolate
parts of the image, e.g. edge areas.

38

Threshold Selection by Trial and Error
A threshold which perfectly isolates an image component must not
always exist.

Selection by trial and error:
Select threshold until some image property is fulfilled, e.g.

line strength ⇒  d0

number of connected components ⇒  n0

Number of trials may be small if logarithmic search can be used.

Example:
At most 8 trials are needed to select a threshold 0 ≤ T ≤ 255 which
best approximates a given q0.

  
q =

#  white pixels
#  black pixels

 ⇒  q0
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Distribution-based Threshold Selection

The greyvalue distribution of the image function may show a bimodality: 

p(z)

z
plausible choice of threshold

Two methods for finding a plausible threshold:

1. Find "valley" between two "hills"

2. Fit hill templates and compute intersection

h(z)

z

Typically, computations are based on
histograms which provide a discrete
approximation of a distribution.

p(z)

z

40

Threshold Selection Based on
Reference Positions

In many applicatons, the approximate position of image components
is known a priori. These positions may provide useful reference
greyvalues.

Example: a

b
T =

a + b
2

possible choice
of threshold:

Threshold selection and binarization may be decisively facilitated by
a good choice of illumination and image capturing techniques.
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Image Capturing for Thresholding

If the image capturing process can be controlled, thresholding can be
facilitated by a suitable choice of
• illumination
• camera position
• object placement
• background greyvalue or colour
• preprocessing

Example: Backlighting
Illumination from the rear gives bright background and shadowed object

Example: Slit illumination
On a conveyor belt illuminated by
a light slit at an angle, elevations
give rise to displacements which
can be recognized by a camera.

empty object present

42

Perspective Projection Transformation

x
y
z

xp´´
yp´´

Where does a point of a scene appear in an image?

?

Transformation in 3 steps:
1.  scene coordinates  =>  camera coordinates
2.  projection of camera coordinates into image plane
3.  camera coordinates  =>  image coordinates

Perspective projection equations are essential for Computer Graphics.
For Image Understanding we will need the inverse: What are possible
scene coordinates of a point visible in the image? This will follow later.
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Perspective Projection in Independent
Coordinate Systems

It is often useful to describe real-world points, camera geometry and
image points in separate coordinate systems. The formal description of
projection involves transformations between these coordinate systems.

•
•

•

optical
center v0

optical 
axis

scene point v = x
y
z

vp = xp
yp
zp

image point

z
x

y

z´

y´

x´ x´´

y´´

vp´ = xp´
yp´
zp´

vp´´= xp´´
yp´´

scene (world) 
coordinates

camera 
coordinates

image 
coordinates

44

3D Coordinate Transformation (1)
The new coordinate system is specified by a translation and rotation
with respect to the old coordinate system:

v´= R (v - v0) v0  is displacement vector
R   is rotation matrix

R may be decomposed into
3 rotations about the
coordinate axes:
R = Rx Ry Rz

1
0
0

0
cos α

 − sin α

0
sin α
cos α

Rx =

0
1
0

cos β
0

 sin β

- sin β
0

cos β

Ry =

0
0
1

cos γ
 − sin γ

0

sin γ
cos γ

0

Rz =

If rotations are performed in the above
order:
1)  γ = rotation angle about z-axis
2)  β = rotation angle about (new) y-axis
3)  α = rotation angle about (new) x-axis

 ("tilt angle",  "pan angle", and  "nick
angle" for the camera coordinate
assignment shown before)

Note that these matrices
describe coo transforms
for positive rotations of
the coo system.
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3D Coordinate Transformation (2)
By multiplying the 3 matrices Rx, Ry and Rz, one gets

  cos β cos γ                                    cos β sin γ                                       - sin β

 sin α sin β cos γ  − cos α sin γ      sin α sin β sin γ + cos α cos γ        sin α cos β

 cos α sin β cos γ + sin α sin γ      cos α sin β sin γ − sin α cos γ        cos α cos β

R =

For formula manipulations, one tries to avoid the trigonometric functions
and takes

R =   r11   r12   r13
r21   r22   r23
r31   r32   r33

Note that the coefficients of R are constrained:
A rotation matrix is orthonormal:

        R RT = I  (unit matrix)

46

Example for Coordinate
Transformation

z

x

y

v0 z´

y´
x´ camera coo system: 

•  displacement by v0 
•  rotation by pan angle β = -300

•  rotation by nick angle α =  450 

v´= R (v - v0)  with R = Rx Ry

1
0
0

0 0Rx = 0
1
0

0 0

Ry =

� 

− 1
2

2

� 

1
2

2

� 

1
2

3

� 

1
2

2

� 

1
2

2

� 

1
2

3

� 

1
2

� 

− 1
2
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Perspective Projection Geometry

Projective geometry relates the coordinates of a point in a scene to the
coordinates of its projection onto an image plane.
Perspective projection is an adequate model for most cameras.

•

•
•

x
y

xp
yp

zp = f

v = x
y
z

image plane

optical center

x f
 zxp =

y f
 zyp=

scene pointimage point

Projection equations:

focal 
distance f

z = optical axis

Vp = xp
yp
zp

48

Perspective and Orthographic
Projection

x´f
 z´xp´=

Within the camera coordinate system the perspective projection of a
scene point onto the image plane is described by

y´f
 z´yp´= zp´= f      (f = focal distance)

• nonlinear transformation
• loss of information

If all objects are far away (large z´), f/z´ is approximately constant
=> orthographic projection 

xp´= s x´   yp´= s y´     (s = scaling factor)

Orthographic projection can be viewed as projection with
parallel rays + scaling
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From Camera Coordinates to
Image Coordinates

xp´´= (xp´- xp0´) a a, b  scaling parameters
yp´´= (yp´- yp0´) b xp0´, yp0´ origin of image coordinate system

Transform may be necessary because
-  optical axis may not penetrate image plane at origin of desired

coordinate system
- transition to discrete coordinates may require scaling

Example:

•

x´´

x´

y´

y´´

Image boundaries in camera coordinates:
x´max = c1   x´min = c2
y´max = d1   y´min = d2

Discrete image coordinates:
x´´= 0 .. 511   y´´ = 0 .. 575

Transformation parameters:   
xp0´ = c1    yp0´ = d1   a = 512 / (c2 - c1)   b = 576 / (d2 - d1) 

c1 c2

d1

d2

50

Complete Perspective Projection
Equation

We combine the 3 transformation steps:
1.  scene coordinates  =>  camera coordinates
2.  projection of camera coordinates into image plane
3.  camera coordinates  =>  image coordinates

xp´´= { f/z´[cos β cos γ  (x - x0) + cos β sin γ  (y - y0) + sin β (z - z0)] - xp0 } a  

yp´´= { f/z´[ (- sin α sin β cos γ - cos α sin γ )  (x - x0) + 
(− sin α sin β sin γ + cos α cos γ ) (y - y0) + 
sin α cos β (z - z0)] - yp0 } b  

with z´= (- cos α sin β cos γ + sin α sin γ ) (x - x0) +
( - cos α sin β sin γ - sin α cos γ ) (y - y0) +
cos α cos β (z - z0)
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Homogeneous Coordinates (1)

4D notation for 3D coordinates which allows to express nonlinear 3D
transformations as linear 4D transformations.

Normal:  v´= R (v - v0)
Homogeneous coordinates:  v´ = A v  (note italics for

homogeneous coordinates)

Transition to homogeneous coordinates:
vT = [x y z]   =>   vT = [wx wy wz w]       w ≠ 0  is arbitrary constant

Return to normal coordinates:
1. Divide components 1- 3 by 4th component
2. Omit 4th component

A = R T = r11  r12  r13  0
r21  r22  r23  0
r31  r32  r33  0
0    0    0    1

1   0   0  -x0
0   1   0  -y0
0   0   1  -z0
0   0   0   1

52

Homogeneous Coordinates (2)

vp´ = P v´   with P = 1  0   0   0
0  1   0   0
0  0   1   0
0  0  1/f  0

and  v´ = wx
wy
wz
w

gives  vp´ = wx
wy
wz
wz/f

Returning to normal coordinates gives  vp´ = xf/z
yf/z
  f

compare with
earlier slide

Perspective projection in homogeneous coordinates: 

Transformation from camera into image coordinates:

vp´´ = B vp´   with B = a  0  0 -x0a
0  b  0 -y0b
0  0  1    0
0  0  0    1

gives  vp´´ =and  vp´ = wxp
wyp
0
w

wa(xp-x0)
wb(yp-y0)
0
w
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Homogeneous Coordinates (3)
Perspective projection can be completely described in terms of a linear
transformation in homogeneous coordinates:

vp´´ = B P R T v

In the literature the parameters of these equations may vary because
of different choices of coordinate systems, different order of
translation and rotation, different camera models, etc.

B P R T may be combined into a single 4 x 4 matrix C :

vp´´ = C v

54

Inverse Perspective Equations

x
y
z

xp´´
yp´´

?

Which points in a scene correspond to a point in the image?

Each image point defines a projection ray as the locus of possible
scene points (for simplicity in camera coordinates):

vp´  =>   vλ´= λ vp´ •
•

origin
vp´

vλ´

v = v0 + RT λ vp´

3 equations with the 4 unknowns x, y, z, λ and camera parameters R and v0

Applications of inverse perspective mapping for e.g.
- distance measurements
- binocular stereo
- camera calibration
- motion stereo
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Binocular Stereo (1)

y

x

z

•

• •

l1 l2

o1 o2

optical axis 1 optical axis 2

v

b
u1 u2

l1, l2 camera positions (optical center)
b stereo base
o1, o2 camera orientations (unit vectors)
f1, f2 focal distances
v scene point
u1, u2 projection rays of scene point (unit vectors)

56

Binocular Stereo (2)

Determine distance to v by measuring u1 and u2
Formally:    α u1 = b + β u2    =>   v = α u1 + l1
α and β are overconstrained by the vector equation. In practice,
measurements are inexact, no exact solution exists (rays do not intersect).
Better approach: Solve for the point of closest approximation of both rays:

α0 u1 + (b + β0 u2)v =
2

+  l1    =>       minimize   || α u1 - (b + β u2) ||2

Solution: α0=
u1
T b - (u1

T u2) (u2
T b)

1 - (u1
T u2)

2

β0=
(u1
T u2) ( u1

T b) - (u2
T b)

1 - (u1
T u2)

2



29

57

Distance in Digital Images
Intuitive concepts of continuous images do not always carry over to
digital images.
Several methods for measuring distance between pixels:
Eucledian distance

City block distance
D4((i, j)(h, k)) = |i - h| + |j - k|

Chessboard distance
D8((i, j)(h, k)) = max { |i - h|, |j - k|}

costly computation of square root,
can be avoided for distance comparisons

number of steps in a rectangular grid if
diagonal steps are allowed (number of
moves of a king on a chessboard)

number of horizontal and vertical steps
in a rectangular grid

  DE ((i, j),(h,k)) = (i − h)2 + ( j − k)2

58

Connectivity in Digital Images

Connectivity is an important property of subsets of pixels. It is based
on adjacency (or neighbourhood):

Pixels are 4-neighbours
if their distance is D4 = 1

Pixels are 8-neighbours
if their distance is D8 = 1

A path from pixel P to pixel Q is a sequence of pixels beginning at
Q and ending at P, where consecutive pixels are neighbours.
In a set of pixels, two pixels P and Q are connected, if there is a
path between P and Q with pixels belonging to the set.
A region is a set of pixels where each pair of pixels is connected.

all 4-neighbours of
center pixel

all 8-neighbours of
center pixel
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Closed Curve Paradoxon
solid lines if
8-neighbourhood
is used

line 2 does not
intersect line 1
although it crosses
from the outside to the
inside

line 1 line 2

a similar paradoxon
arises if
4-neighbourhoods
are used
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Geometric Transformations
Various applications:
• change of view point
• elimination of geometric distortions from image capturing
• registration of corresponding images
• artificial distortions, Computer Graphics applications

Step 1: Determine mapping T(x, y) from old to new coordinate system
Step 2: Compute new coordinates (x´, y´) for (x, y)
Step 3: Interpolate greyvalues at grid positions from greyvalues at

transformed positions

• •• •
••

•
• •• ••

greyvalue must be
interpolated
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Polynomial Coordinate Transformations

x ′ =  ark
k=0

m-r

∑
r =0

m

∑ xryk

y ′ =  brk
k=0

m-r

∑
r =0

m

∑ xryk

•  Assume polynomial mapping between (x, y) and (x´, y´) of degree m
•  Determine corresponding points
•  a) Solve linear equations for ark, brk (r, k = 1 ... m) 
   b) Minimize mean square error (MSE) for point correspondences

General format of transformation:

Approximation by biquadratic transformation:
x´= a00 + a10x + a01y + a11xy + a20x2 + a02y2

y´= b00 + b10x + b01y + b11xy + b20x2 + b02y2 

Approximation by affine transformation:
x´= a00 + a10x + a01y
y´= b00 + b10x + b01y 

at least 6 corresponding
pairs needed

at least 3 corresponding
pairs needed

62

Translation, Rotation, Scaling,
Skewing

cos α
− sin α

sin α
cos α

R =
Rotation of image coordinates by angle α:
v´= R v    with

v = x
y

v´= x´
y´

Translation by vector t:
v´= v + t  with t = tx

ty

Scaling by factor a in x-direction and factor b in y-direction: 

a
0

0
b

S =v´= S v    with

Skewing by angle β: 
1
0

tan β
1

W =v´= W v    with
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Example of Geometry Correction
by Scaling

Distortions of electron-tube cameras may be
 1 - 2 %  => more than 5 lines for TV images

ideal image            actual image
Correction procedure may be based on
-  fiducial marks engraved into optical system
-  a test image with regularly spaced marks 

Ideal mark positions:
xmn = a + mb,  ymn = c + nd

x x x x

x x x x

x x x x

x x x x

x

y

a

c
b

d

Determine a, b, c, d such that MSE (mean
square error) of deviations is minimized

Actual mark positions:
x´mn, y´mn 

m = 0 ... M-1
n = 0 ... N-1
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Minimizing the MSE

E =  ( xmn − ′ x mn
n =0

N−1

∑
m =0

M−1

∑ )2 + (ymn − ′ y mn)2Minimize

=  (a + mb − ′ x mn
n =0

N−1

∑
m =0

M −1

∑ )2 + (c + nd − ′ y mn)2

From δE/δa = δE/δb = δE/δc = δE/δd = 0 we get:

a =
2

MN( M + 1)
(2M −1− 3m) ′ x mn

n
∑

m
∑

b = 6
MN(M2 −1) (2m−M + 1) ′ x mn

n
∑

m
∑

c =
2

MN(N + 1)
(2N − 1− 3n) ′ y mn

n
∑

m
∑

d = 6
MN(N2 −1) (2n −N + 1) ′ y mn

n
∑

m
∑

Special case M=N=2:

a = 1/2 (x´00 + x´01)

b = 1/2 (x´10 - x´00 + x´11 - x´01)

c = 1/2 (y´00 + y´01)

d = 1/2 (y´01 - y´00+ y´11 - y´10)
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Principle of Greyvalue Interpolation

• •
• •

• •

•
•

••
•

•

••
• •Greyvalue interpolation = computation of

unknown greyvalues at locations (u´v´) from
known greyvalues at locations (x´y´)

Two ways of viewing interpolation in the context of geometric
transformations:

A Greyvalues at grid locations (x y) in old image are placed at
corresponding locations (x´y´) in new image: g(x´y´) = g(T(x y))
=> interpolation in new image

B Grid locations (u´v´) in new image are transformed into
corresponding locations (u v) in old image: g(u v) = g(T-1(u´v´))
=> interpolation in old image

We will take view B:
Compute greyvalues between grid from greyvalues at grid locations.
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Nearest Neighbour
Greyvalue Interpolation

(xiyj) (xi+1yj) (xiyj+1) (xi+1yj+1) grid locations
(x y)  location between grid with

xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1

Assign to (x y) greyvalue of nearest grid location
•

(xiyj)    (xi+1yj)

(xiyj+1)    (xi+1yj+1)

(x y)

Each grid location represents the greyvalues in a
rectangle centered around this location:

Straight lines or edges may appear step-like after
this transformation:

• • • • • • • • • •

• • • • • • • • • •
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Bilinear Greyvalue Interpolation
The greyvalue at location (x y) between 4 grid points (xiyj) (xi+1yj)
(xiyj+1) (xi+1yj+1) is computed by linear interpolation in both directions:

g(x,y) = 1
(xi+1 − xi )(yj+1 − yi)

(xi+1 − x)(yj+1 − y)g(xiyj) + (x − xi)( yj+1 − y)g( xi+1yj ) +{
                                                 ( xi+1 − x)( y − yj)g(xiyj+1) + (x − xi)(y − y j)g(xi+1yj+1)}

g1                    g12       g2

g3                     g34       g4

Simple idea behind long formula:
1. Compute g12 = linear interpolation of g1 and g2
2. Compute g34 = linear interpolation of g3 and g4
3. Compute g = linear interpolation of g12 and g34

The step-like boundary effect is reduced.
But bilear interpolation may blur sharp edges.

g •
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Bicubic Interpolation

Each greyvalue at a grid point is taken to
represent the center value of a local bicubic
interpolation surface with cross section h3.

1 - 2|x|2 + |x|3 for 0 < |x| < 1
h3 = 4 - 8|x| + 5|x|2 - |x|3 for 1 < |x| < 2

0 otherwise
The greyvalue at an arbitrary point [u, v] (black dot
in figure) can be computed by
-  4 horizontal interpolations to obtain greyvalues
at points [u, j-1] ... [u, j+2] (red dots), followed by
-  1 vertical interpolation (between red dots) to
obtain greyvalue at [u, v].

cross section of
interpolation kernel

j-1

j

j+1

j+2

i-1    i    i+1    i+2

Note:
For an image with constant geyvalues g0 the
interpolated greyvalues at all points between
the grid lines are also g0.

-2 -1 0 1 2

1

•

•
•

•
•


