Learning Under Uncertain

] We want to learn models from data.
P(datajmodédl) x P(model)
P(data).

Ll The likelihood, P(datajmodel), is the probability that
this model would have produced this data.

P(model |data) =

L] The prior, P(model), encodes the learning bias
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Bayesian Leaning of Probabiliti

Suppose there are two outconfeand—A. We would
like to learn the probability oA given some data.

We can treat the probability & as a real-valued rando

variable on the intervdl, 1], calledprobA.

P(data|probA=p) x P(probA=p)
P(data)

Suppose the data is a sequenca Afs out of

Independenim trials,

P(datajprobA=p) = p" x (1 — p)™ "

P(probA=p|data) =

Uniform prior: P(probA=p) = 1 for allp € [0, 1]. g

gy
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MAP model

[l The maximum a posteriori probabilit{MAP) model is
the model that maximizd3(moddl |data). That is, it
maximizes:

P(datajmodel) x P(model)
L] Thus it minimizes:
(— log P(datajmodel)) + (— log P(modél))

which is the number of bits to send the data given the
model plus the number of bits to send the model.

jDI:J
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Information theory overvie

L] A bit is a binary digit.

1 bit can distinguish 2 items
k bits can distinguish*2items
n items can be distinguished using lagbits

Can you do better?

jDD
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Information and Probabili

Let’s design a code to distinguish elementganfb, c, d} with

1 1 1 1

Consider the code:

a 0 b 10 c 110 d 111

This code sometimes uses 1 bit and sometimes uses 3 b
On average, it uses

P@ x 1+ P(b) x 2+ P(c) x 3+ P(d) x 3
= 1+2+3+3—13bits
2 4 8 8 4 7

The stringaacabbda has code 00110010101110.

jDI:J
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Information Conte

L] To identify x, you need- log, P(x) bits.

L1 If you have a distribution over a set and want to a ider
a member, you need the expected number of bits:

Y " —P(x) x log, P(x).
X
This Is the information contentor entropy of the
distribution.

L1 The expected number of bits it takes to describe a
distribution given evidence

| (e) = Z —P(x|e) x log, P(x|e).

jDI:J
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Information Gal

If you have a test that can distinguish the cases whase
true from the cases wheteis false, the information gain

from this test is:
| (true) — (P(a) x | (a) + P(—a) x | (—a)).

L] I(true) is the expected number of bits needed before
test

L] P(a) x () + P(—a) x | (=) is the expected numbe
of bits after the test.

jDI:J
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Averaging Over Model

L1 Idea: Rather than choosing the most likely model,
average over all models, weighted by their posterior
probabilities given the data.

L] If you have observed A’s out of mtrials
LI the most likely value (MAP) is:
(] the expected value &5

jDI:J
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Learning a Belief Networ

L1 Ifyou

know the structure

nave observed all of the variables

have No missing data

[1 you can learn each conditional probability separately

jDD
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Learning belief network examg

Probabilities

P(A)
P(B)
P(E|A, B)
P(CIE)
P(DIE)

jl:lD
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Learning conditional probabilliti

L] Each conditional probability distribution can be learn
separately:

L1 For example:
PEE=tIA=tAB=Tf)
(#examplesE =t AA=tAB=f)+m
(#examplesA=tAB=1f)+m
wheremy, andm reflect our prior knowledge.

Ll There is a problem when there are many parents to a
as then there is little data for each probabillity estimat

O

[]
i
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Unobserved Variabl

@ Ll What if we had only observed

values forA, B, C?

A B C

jl:ID
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EM Algorithm

Augmented Data Probabilities

ABCH E-step

t f t t o P(A)

f t t f P(HIA)

ttEt S, PEH)
M-step P(CIH)

jl:lD
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EM Algorithm

1 Repeat the following two steps:

L1 E-step give the expected number of data points f
the unobserved variables based on the given
probabilty distribution.

L1 M-step infer the (maximumlikelihood) probabilities
from the data. This is the same as the full observz
case.

L] Start either with made-up data or made-up probabilit

L1 EM will converge to a local maxima.

jDI:J
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O
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Nailve Bayesian Classifi
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Unsupervised Learni

Given a collection of data, find natural classifications

This can be seen as the naive Bayesian classifier wit
classification unobserved.

EM can be used to learn classification.

jDI:J
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Bayesian learning of decision tre

P(datajmoddl) x P(model)

P(model |data) = P(data)

|| A model here is a decision tree

L1 We allow for decision trees with probabilities at the
leaves

L1 A bigger decision tree can always fit the data better

L] P(model) lets us encode a preference for smaller
decision trees.

jDI:J
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Data for decision tree learni

att;y att, class count

t t cl 10
t t c2 3
t f cl 5
t f c2 12
f t cl 7
f t c2 14
f f cl 8
f f c2 1

jl:lD
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Probabilities From Exper

L] Bayes rule lets us combine expert knowledge with de
P(datajmodédl) x P(model)
P(data).

1 The experts prior knowledge of the model (i.e.,
P(model)) can be expressed as a pairm) that can be

Interpreted as though they had obseraedls out of m
trials.

P(model |data) =

| ] This estimate can be combined with data.

L] Estimates from multiple experts can be combined
together.

]
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