Computational Intelligence Chapter 2, Lecture 6, Page 1

Reasoning with Variabl

e An instanceof an atom or a clause is obtained by
uniformly substituting terms for variables.

e A substitutionis a finite set of the form
{V1/t1, ..., Vn/tn}, where eacly; is a distinct variable
and eachij I1s a term.

e The application of a substitution
o = {Vi/t1, ..., V,h/ty} to an atom or clause written
e, IS the instance of with every occurrence of;
replaced by;.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computationklintelligence Chapte 2, Lecture 6, Page 2

Application Examples

The following are substitutions:
e 01 ={X/A Y/b,Z/C,D/e}
e oo ={A/X,Y/b,C/Z,D/e}
e o3={A/V,X/V,Y/b,C/W,Z/W, D/e}

The following shows sone applications:

e P(A,b,C,D)or =p(A /b, C, e
PCX,Y, Z,e)o1 =pA Db, C, e
P(A, b, C, D)o, =p(X,b,Z, e
PX,Y,Z,eor =pX,b,Z,e
P(A, b, C, D)oz =pV,b,W, e
PX,Y,Z,eo3=pV,b,W,e

<= © David Poole Alan Mackworth Rands Goebe] and Oxford Universily Pres 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 3

e Substitutiono Is a unifier of e ande If 10 = &0

e Substitutions I1s a most general unifie(mgu) ofe; and
e If
o 1S a unifier ofe; andey; and

If substitutions’ also unifiese; andey, thenes’ is an
Instance oko for all atomse.

e |f two atoms have a unifier, they have a most general
unifier.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 4

Unification Example

P(A, b, C, D) andp(X, Y, Z, e) have as unifiers:
o1 ={X/A Y/b,Z/C,D/e}
o2 ={A/X,Y/b,C/Z,D/e}
o3 ={A/V,X/V,Y/b,C/W, Z/W, D/e}
o4 ={A/a,X/a,Y/b,C/c,Z/c,D/e}
o5 = {X/A, Y/b,Z/A, C/A, D/e}
og = {X/A, Y/b,Z/C,D/e W/a}

The first three are most general unifiers.

The following substitutions are not unifiers:
e 07=1{Y/b,D/e}
e og=1{X/a,Y/b,Z/c,D/e}

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 5

Bottom-up procedu

e You can carry out the bottom-up procedure on the groymd
Instances of the clauses.

e Soundness is a direct corollary of the ground soundneg§s.

e For completeness, we build a canonical minimal mode
We need a denotation for constants:

Herbrand interpretationThe domain is the set of

constants (we invent one if the KB or query doesn’t
contain one). Each constant denotes itself.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 6

Definite Resolution with Variabl
A generalized answer clauss of the form

yesty, ..., lxy) < agAax A ... A am,
wherety, ..., tx are terms andy, ..., an are atoms.

The SLD resolution of this generalized answer clausea&n
with the clause

a<—biA...ADp,

wherea; anda have most general unifiér, is

. Abp NG AL Aam).

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 7

To solve query B with variablesVy, . . ., Vi:

Setacto generalized answer claugesVy, ..., Vk) < B;
While acis not an answer do

Supposaacisyesty, ..., lx) < aiAa A...Aam

Select atong; in the body ofac;

Choose clausa < by A ... A bp In KB;

Rename all variables ia <— by A ... A bp;

Let & be the most general unifier ef anda.

Falil if they don’t unify;
Setacto (yesty, ..., tx) < a1 A ... AGi_1A
biA...ADpAGILI AL A am)o

end while.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 8

Example

live(Y) < connectedto(Y, Z) A live(Z). live(outside.
connectedto(wg, Ws). connectedto(ws, outside.
Aive(A).

yegA) < live(A).

yegA) < connectedto(A, Z1) A live(Zy).

yeswg) < live(ws).

yeswg) < connectedto(ws, Z>) A live(Z).

yegwg) <« live(outside.

yesweg) <— .

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 9

Function Symbol

Often we want to refer to individuals in terms of componeng.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion cterm. So that a term can be
f(ty, ..., th) wheref Is a function symboland thet; are
terms.

In an interpretation and with a variable assignment, term
f(t1, ..., th) denotes an individual in the domain.

With one function symbol and one constant we can refer tc
Infinitely many individuals.

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘n‘ =>


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 2, Lecture 6, Page 10

A list Is an ordered sequence of elements.

Let’s use the constainil to denote the empty list, and the
function congH, T) to denote the list with first elemeht

and rest-of-lisfT. These are not built-in.

The list containinglavid, alan andrandyis

congdavid, congalan, congrandy, nil)))

appendX, Y, Z) istrue if listZ contains the elements &f
followed by the elements of

appendnil, Z, Z2).
appendcongA, X), Y, congA, Z)) < appendX, Y, Z).

<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"


http://www.cs.ubc.ca/spider/poole/ci.html

