

Processing Steps of Recognize-and act Cycle

Forward Chaining:

Repeat until all goals have been derived:

- Determine rules which can be applied based on available facts
- Select one of those rules
- Apply rule, establish new facts

Backward Chaining:

Repeat until all goals have been derived:

Determine rules which can be used to derive a goal

- Select one of those rules
- Apply rule, establish unsatisfied conditions as new goals

Conflict Resolution Based on Specialization Relations

Prefer most special rule

A rule R1 is more special than R2 if

- R1 has at least as many premises as R2
- each premise in R2 subsumes at least one premise in R1
- R1 and R2 are not identical

Example:

A, B, C, ... attributes a, b, c, ... constants X, Y, Z, ... variables

R1: {[A a] [B e] [C X] [D Y] ⇒ ...} R2: {[A X] [B e] [D Y] ⇒ ...}

2. Comparison of instantiated rules Analogous to 1), however no subsumption test for variables required

13

Data may get time stamp from inference cycle.

· Prioritizing most recent data

Prefer rules whose instantiation involves recently generated data

- => work on new facts first
- Prioritize least oldest data

Prefer rules whose instantiation has younger elements than the oldest element of other rules

- => prefer rules which use the youngest facts
- Avoid rule repetition
- Avoid repeated instantiation

14

		nules	III 0F55			
Syntax of a rule in	OPS5:					
<rule>::=</rule>	[P <rule< td=""><td>e-name> <ar< td=""><td>ntecedent>> <cons< td=""><td>equent</td><td>>]</td><td></td></cons<></td></ar<></td></rule<>	e-name> <ar< td=""><td>ntecedent>> <cons< td=""><td>equent</td><td>>]</td><td></td></cons<></td></ar<>	ntecedent>> <cons< td=""><td>equent</td><td>>]</td><td></td></cons<>	equent	>]	
<antecedent>::=</antecedent>	{ <cond< td=""><td>ition>}</td><td></td><td></td><td></td><td></td></cond<>	ition>}				
<condition> ::=</condition>	<patter< td=""><td>n>I - <patte< td=""><td>rn></td><td></td><td></td><td></td></patte<></td></patter<>	n>I - <patte< td=""><td>rn></td><td></td><td></td><td></td></patte<>	rn>			
<pattern> ::=</pattern>	[<object< td=""><td>t> {^<attribu< td=""><td>ute> <value>}]</value></td><td></td><td></td><td></td></attribu<></td></object<>	t> {^ <attribu< td=""><td>ute> <value>}]</value></td><td></td><td></td><td></td></attribu<>	ute> <value>}]</value>			
<consequent> ::=</consequent>	{ <actio< td=""><td>n>}</td><td></td><td></td><td></td><td></td></actio<>	n>}				
<action> ::=</action>	[MAKE <object> {^<attribute> <value>}] [MODIFY <pattern-number> {^<attribute> <value>}] [REMOVE <pattern-number>] [WRITE {<value>}]</value></pattern-number></value></attribute></pattern-number></value></attribute></object>					
	are 2 di	sks close to	each other and with	equals	size, mal	ke them a
wheel pair"			4	^size	<y>]</y>	
wheel pair" [P find-wheel-pai	r [disk	^location	<x1></x1>			
wheel pair" [P find-wheel-pai	r [disk [disk	^location ^location	<x1> l<x2> - <x1>l < 10</x1></x2></x1>	^size	<y>]</y>	>]
<u>Example</u> : "If there wheel pair" [P find-wheel-pai	r [disk [disk <i>V</i>	^location ^location ariable	<x1> l<x2> - <x1>l < 10</x1></x2></x1>	^size	<y>]</y>	>]

A rule: (P search	pyramid [cube [brick [pyram -> (act	^name <cube1 ^weight >200] id ^colour <<<u>y</u> ion part)</cube1 	> ^on ta yellow wh	ble] ite>> ^on	cube1 ^we	ight < 2
Previous content	s time stamp	class	name	colour	weight	on
of WM·	1	cube	C1	blue	250	table
	4	cube	C2	red	100	table
	6	pyramid	P1	yellow	120	table
	9	pyramid	P2	white	NIL	C1
	12	brick	B1	blue	300	table
New data entere How does the RI	d into WM: [15,	brick, B2, blue changes of	, 280, NIL] nflict set?	?	

	Inpi	ut of XCON	
Typical compone	nt list based o	on customer wishes:	
COMP	ONENTS ORDER	ED:	
1	SV-AXMMA-LA	[packaged system]	
1	FP780-AA	[floating point accelerator]	
1	DW780-AA	[unibus adaptor]	
1	BA11-KE	[unibus expansion cabinet box]	
6	MS780-DC	[memory]	
1	MS780-CA	[memory controller]	
1	H9002-HA	[cpu expansion cabinet]	
1	H7111-A	[clock battery backup]	
1	H7112-A	[memory battery backup]	
1	REP05-AA	[single port disk drive]	
4	RP05-BA	[dual port disk drive]	
1	TEE16-AE	[tape drive with formatter]	
2	TE16-AE	[tape drive]	
8	RK07-EA	[single port disk drive]	
1	DR11-B	[direct memory access interface]	
1	LP11-CA	[line printer]	
1	DZ11-F	[multiplexer with panel]	
1	DZ11-B	[multiplexer]	
2	LA36-CE	[hard copy terminal]	

Example of a Configuration Run (1)

Numbers corres	pond to rule applications, lines show context transitions	
1.	MAJOR-SUBTASK-TRANSITION	
2.	SET-UP	
3.	UNBUNDLE-COMPONENTS	
53.	NOTE-CUSTOMER-GENERATED-EXCEPTION	
56.	NOTE-UNSUPPORTED-COMPONENTS	
57.	CHECK-VOLTAGE-AND-FREQUENCY	
104.	CHECK-FOR-TYPE-OR CLASS-CHANGES	
110.	VERIFY-SBI-AND-MB-DEVICE-ADEQUACY	
111.	COUNT-SBI-MODULES-AND-MB-DEVICES	
126.	GET-NUMBER-OF-BYTES-AND-COUNT-CONTROLLERS	
137.	FIND-UBA-HBA-CAPACITY-AND-USE	
146.	VERIFY-MEMORY-ADEQUACY	
148.	PARTITION-MEMORY	
160.	ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS	
177.	VERIFY-UB-MODULES-FOR-DEVICES-CONNECTING-TO-PANELS	
178.	FIND-ATTRIBUTE-OF-TYPE-IN-SYSTEM	
180.	VERIFY-COMPONENT-OF-SYSTEM	
207.	NOTE-POSSIBLY-FORGOTTEN-COMPONENTS	
213.	CHECK-FOR-MISSING-ESSENTIAL-COMPONENTS	
215.	MAJOR-SUBTASK-TRANSITION	
216.	DELETE-UNNEEDED-ELEMENTS-FROM-WM	
236.	FILL-CPU-OR-CPUX-CABINET	
240.	ADD-UBAS	
248.	ASSIGN-POWER-SUPPLY	
		26

Example of a Configuration Run (3)

436.	ASSIGN-UBAS-TO-BOXES-TO-CABINETS	
438.	ASSIGN-UBAS-TO-BOXES	
441.	ATTRIBUTE-BOXES-AMONG-CABINETS	
442.	SET-UP-FOR-BOX-ASSIGNMENTS	
446.	ASSIGN-BOXES-TO-CABINETS	
452.	COMPUTE-DISTANCES-FROM-UBAS-TO-BOXES	
458.	SET-SEQUENCING-MODE	
462.	FILL-BOXES	
465.	FILL-HALF-BOXES	
468.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU	
470.	ASSIGN-BACKPLANE-TO-BOX	
474.	GENERATE-SLOT-TEMPLATES	
478.	PUT-UB-MODULE	
482.	LEAVE-BACKPLAN	
485.	AUGMENT-UB-LENGTH	
488.	GET-UB-JUMPER	
491.	CHECK-NEED-FOR-UB-REPEATER	
497.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU	
501.	ASSIGN-BACKPLANE-TO-BOX	
505.	GENERATE-SLOT-TEMPLATES	
510.	PUT-UB-MODULE	
518.	ADD-SUBOPTIMAL-UB-MODULE	
527.	LEAVE-BACKPLANE	
540.	AUGMENT-UB-LENGTH	
543.	GET-UB-JUMPER	
547.	CHECK-NEED-FOR-UB-REPEATER	
553.	LEAVE-HALF-BOX	
		27

559	CHECK-FOB-UB-JUMPER-CHANGES
561.	CHECK-TERMINATION-CONDITIONS
568.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
571.	ASSIGN-BLACKPLANE-TO-BOX
576.	GENERATE-SLOT-TEMPLATES
580.	PUT-UB-MODULE
581.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
590.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
598.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
604.	ADD-SUBOPTIMAL-UB-MODULE
608.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
615.	ADD-SUBOPTIMAL-UB-MODULE
617.	LEAVE-BACKPLANE
626.	AUGMENT-UB-LENGTH
629.	GET-UB-JUMPER
633.	CHECK-NEED-FOR-UB-REPEATER
643.	LEAVE-HALF-BOX
644.	CHECK-FOR-UB-JUMPER-CHANGES
646.	CHECK-TERMINATION-CONDITIONS
657.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
660.	ASSIGN-BACKPLANE-TO-BOX
663.	GENERATE-SLOT-TEMPLATES
667.	PUT-UB-MODULE
668.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
677.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
690.	LEAVE-BACKPLANE
711.	AUGMENT-UB-LENGTH

Example of a Configuration Run (5)

714.	GET-UB-JUMPER	
716.	CHECK-NEED-FOR-UB-REPEATER	
732.	LEAVE-HALF-BOX	
733.	CHECK-FOR-UB-JUMPER-CHANGES	
735.	CHECK-TERMINATION-CONDITIONS	
738.	ASSIGN-UB-JUMPER-CABLES-TO-BOX	
749.	LEAVE-HALF-BOX	
750.	CHECK-FOR-UB-JUMPER-CHANGES	
752.	CHECK-TERMINATION-CONDITIONS	
756.	ASSIGN-UB-JUMPER-CABLES-TO-BOX	
769.	ACCEPT-UNIBUS-CONFIGURATION	
832.	MAJOR-SUBTASK-TRANSITION	
833.	ASSIGN-TERMINALS-TO-LINES	
834.	PUT-PANELS-IN-UBX-CABINET	
848.	MAKE-TERMINAL-ASSIGNMENT	
854.	MAJOR-SUBTASK-TRANSITION	
855.	LAY-OUT-SYSTEM	
857.	FIND-FLOOR-RANKINGS	
882.	DETERMINE-FLOOR-POSITIONS	
888.	DETERMINE-FLOOR-POSITIONS-OF-CABINETS	
893.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES	
900.	DETERMINE-FLOOR-POSITIONS-OF-SLAVES	
908.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES	
920.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES	
934.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES	
942.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES	
973.		

Example of a Configuration Run (6) 974. COMPUTE-CABLE-LENGTHS 1021. FIND-LENGTHS-OF-CABLES-IN-ORDER 1135. ASSIGN-CABLES 1179. FIND-LENGTHS-OF-CABLES-IN-ORDER FIND-LENGTHS-OF-CABLES-IN-ORDER 1183. 1187. FIND-LENGTHS-OF-CABLES-IN-ORDER 1192. NOTE-POSSIBLY-FORGOTTEN-COMPONENT 1198. GENERATE-COMPONENT-NUMBERS-FOR-CABLES 1248. GENERATE-OUTPUT The trace shows the complexity of the resulting process. The context structure has been forced onto the process against the spirit of the data-driven operations of rule-based systems. 30

