
1

1

Pattern-directed Inference Systems

Pattern-directed Inference Systems
Pattern-directed modules (PDMs) operate on data structures via

matching and controlled by a central executive unit

Rule-based Systems
Consist of PDMs in rule format.

Matching typically with left-hand side,
operations on right-hand side.

Network-based Systems
PDMs are located at nodes of a

network and activated by signales
received on incoming arcs

Production Systems
Rule-based systems with central

control for matching and scheduling.

Transformation Systems
Rule-based systems without

integrated matching and control

Antecedent-driven Systems
Production systems where rule
selection is controlled by the

antecedent part of rules

Consequent-driven Systems
Production systems where rule
selection is controlled by the

consequent part of rules

Logical Systems
Transformation systems
applied to problems in

formal logics, e.g.
theorem proving

Grammatical Systems
Tranformation systems for defining and processing

grammatical structures, e.g. parsing

2

Rules for Knowledge Representation

Rule-based knowledge representation is useful for specifying inference
steps in a declarative way.

Example (scene interpretation):

If (region.color = green) and (region.location = picture-bottom)
then (region.type = grass)

Rules may express different types of reasoning:

Rules typically refer to a frame-based knowledge base.

premise conclusion logical implication
antecedence consequence inference from given preconditions
evidence hypothesis interpretation of facts
situation action situated behaviour
IF THEN informal paraphrase
left-side right-side can mean anything

2

3

Rule-based Programming Language

Data

(THASSERT (IN BIRD CAGE))
(THASSERT (IN TABLE ROOM))
(THASSERT (IN CHAIR ROOM))
(THASSERT (IN FLOWER VASE))
(THASSERT (ON CAGE TABLE))
(THASSERT (ON VASE TABLE))

Consequent Theorems
(THCONSE (X Y Z) (IN ?X ?Y)

(THGOAL (IN !X ?Z) (THUSE NIL))
(THGOAL (IN !Z !Y))

(THCONSE (X Y Z) (IN ?X ?Y)
(THGOAL (ON !X ?Z))
(THGOAL (IN !Z !Y))

Query
(THGOAL (IN FLOWER ROOM))

The intensional data (IN FLOWER ROOM)
is derived with the help of consequent
theorems

Experimental AI programming language PLANNER (Hewitt, 1972)

Rules have format:

IF GIVEN <extensional data> THEN CONCLUDE <intensional data>

IF WANTED <intensional data> THEN FIND <extensional data>

4

Rule-based Expert Systems
Developed 1970 - 1985 to
• collect and preserve expert knowledge
• replace human experts by computer programs
• to automatically derive interesting knowledge.

Basic idea: Represent expert knowledge in terms of IF-THEN rules

Basic structure:

KNOWLEDGE BASE
facts rules

 INFERENCE ENGINE

USER INTERFACE
knowledge acquisition explanation dialogue

3

5

Recognize-and-act Cycle

rule selection

rule application

matching

conflict resolution

Determine applicable rules by matching the antecedent part (in case
of forward-chaining) or the consequent part (in case of backward
chaining) with data objects.

If more than one rule is applicable, invoke conflict resolution to
select rule.

6

Forward and Backward Chaining

facts
forward-chaining

backward-chaining

goals

Rule systems may support forward and/or backward inferencing

4

7

Processing Steps of
Recognize-and act Cycle

Forward Chaining:

Repeat until all goals have been derived:

Determine rules which can be applied based on available facts

Select one of those rules

Apply rule, establish new facts

Backward Chaining:

Repeat until all goals have been derived:

Determine rules which can be used to derive a goal

Select one of those rules

Apply rule, establish unsatisfied conditions as new goals

8

Knowledge-based Diagnosis of a
Car Problem

Regel 2 Wenn (Batterie OK)
und (Wert Tankuhr > 0)
und (Benzinfilter sauber)
dann (Problem = Zündanlage)

Regel 1 Wenn (Anlasser arbeitet normal)
dann (Batterie ok)

Regel 3 Wenn (Batterie OK)
und (Wert Tankuhr > 0)
und (nicht Benzinfilter sauber)
dann (Defekt = Benzinzuleitung)

Regel 4 Wenn (nicht Scheibenwischer OK)
und (nicht Licht OK)
dann (Defekt = Batterie leer)

Regel 5 Wenn (nicht Wert Tankuhr > 0)
dann (Defekt = Tank leer)

Regel 6 Wenn (Problem = Zündanlage)
und (Verteilerdose OK)
dann (Defekt = Zündspule)

Fakten des aktuellen Problems

Anlasser arbeitet normal
Scheibenwischer OK
Licht OK
Wert Tankuhr > 0
Benzinfilter sauber
Verteilerdose OK

Abgeleitete Fakten

R
 E

 G
 E

 L
 N

F
 A

 K
 T

 E
 NBatterie OK

Problem = Zündanlage

Defekt = Zündspule

I N F E R E N Z M A S C H I N E

5

9

Rule Selection

• prefer old facts (goals) breadth-first search

• prefer new facts (goals) depth-first search

• prefer more special rule more special = more conditions

• prioritize rules e.g. by memory order (PROLOG)

• use meta-rules rules about rule selection

The order of execution cannot be completely controlled in a rule system.
It is expected that the user abstracts from individual inference steps.

Rules are selected in a recognize-and-act cycle. If more than one rule
can be applied, a "conflict resolution" process decides.

Conflict resolution strategies available in a typical rule system:

10

Conflict Resolution with Meta-rules (1)

Expert system for chemical spill treatment may have rules:

R1: If spill is sulfuric acid, apply treatment A

R2: If spill is acid, apply treatment B

Forward chaining may generate conflict set {R1, R2}.

Knowledge base may contain following facts:

• treatment A is expensive, treatment B is cheap.

• treatment A is not dangerous, treatment B is dangerous

• R1 has been entered by expert Miller, R2 by novice Johnson

How can rule selection be controlled in a reasonable way?

6

11

Conflict Resolution with Meta-rules (2)

Meta-rules for conflict resolution:

R3: Prefer rules with less expensive treatment

R4: Prefer rules with less dangerous treatment

R5: Prefer rules entered by experts before rules entered by novices

Rules R4 and R5 recommend: R1 before R2
Rule 3 recommends: R2 before R1

{R3, R4, R5} is a meta-conflict set.

Meta-meta-rule for meta-conflict resolution:

R6: Prefer meta-rules entered by experts before meta-rules entered by
novices.

In practical systems, one rarely needs more than 2 meta levels.

12

Conflict Resolution by Prioritizing
Total order:

R1 < R2 < ... < RN

Examples: • order by storage
• order by indexing

Partial order:

Ri < Rk, Rm < Rn, ...

Example: Rules are structured as a rule tree

R11

R21 R22 R23

R31 R32 R33 R34 R35

7

13

Conflict Resolution Based on
Specialization Relations

Prefer most special rule

1. Compare non-instantiated rules

A rule R1 is more special than R2 if
• R1 has at least as many premises as R2
• each premise in R2 subsumes at least one premise in R1
• R1 and R2 are not identical

Example:

A, B, C, ... attributes
a, b, c, ... constants
X, Y, Z, ... variables

R1: {[A a] [B e] [C X] [D Y] => ...}
R2: {[A X] [B e] [D Y] => ...}

2. Comparison of instantiated rules

Analogous to 1), however no subsumption test for variables required

14

Conflict Resolution Based on
Data Seniority

Data may get time stamp from inference cycle.

• Prioritizing most recent data

Prefer rules whose instantiation involves recently generated data

=> work on new facts first

• Prioritize least oldest data

Prefer rules whose instantiation has younger elements than the
oldest element of other rules

=> prefer rules which use the youngest facts

• Avoid rule repetition

• Avoid repeated instantiation

8

15

The Rule System OPS5

OPS5 ("Official Production System, Version 5")
• developed at CMU 1980 ...
• implementation language for successful expert systems

(XCON, XSEL a.o.)

CLIPS
• reimplementation of OPS5 in C for NASA
• freeware

JESS
• reimplementation of OPS5 in Java
• freeware

16

Rules in OPS5
Syntax of a rule in OPS5:
<rule>::= [P <rule-name> <antecedent> --> <consequent>]
<antecedent>::= {<condition>}
<condition> ::= <pattern> | - <pattern>
<pattern> ::= [<object> {^<attribute> <value>}]
<consequent> ::= {<action>}
<action> ::= [MAKE <object> {^<attribute> <value>}] |

[MODIFY <pattern-number> {^<attribute> <value>}]
[REMOVE <pattern-number>] |
[WRITE {<value>}]

[P find-wheel-pair [disk ^location <x1> ^size <y>]
[disk ^location |<x2> - <x1>| < 10 ^size <y>] --> ...]

Variable

Example: "If there are 2 disks close to each other and with equal size, make them a
wheel pair"

• depth-first search
• limited expressiveness for constraints

9

17

RETE Algorithm in OPS5 (1)

Improving efficiency:

1. Pattern matching only for a small section of working memory (WM)

Rule applications usually lead to small changes of the WM and the conflict set
does not change drastically.

=> Store pattern matching results and check only changed WM elements in
next recognize-act cycle.

2. Identical premises occuring in multiple rules must only be evaluated once

Premises of different rules often share common conditions,

=> Analyze rules for common premises and optimal order of premise
evaluation.

A naive Implementation of the recognize-act cycle leads to unacceptably
poor runtime performance except for small knowledge bases.

18

RETE Algorithm in OPS5 (2)

Contruct a net [lat. rete] from the rules which holds code for premise
evaluation at its nodes.

net of
RETE algorithm

Input:

Changes of WM data
Output:

New conflict set

Net consists of unary nodes coding a condition on a single WM element,
and binary nodes for relations between unary nodes.

Example of unary node:

[cube ^colour red ^weight < 100]

A unary node receives WM elements marked for
adding or deleting as input, and delivers as
output elements which satisfy the conditions.

 class name = cube?

colour= red?

weight < 100 ?

10

19

RETE Algorithm in OPS5 (3)

Single element conditions may be combined by binary nodes.

[cube ^colour red ^weight < 100]
[pyramid ^colour yellow ^on table]

Binary nodes store the
WM elements received
via the two input lines to
generate all possible
combinations (cross
product).

The output of the last
node representing a rule
consists of tuples of
WM elements satisfying
the rule. alpha store

beta store

class name = cube?

colour = red

weight < 100 ?

class name = pyramid?

colour = yellow?

on = table?

20

RETE Algorithm in OPS5 (4)

Rules may be merged as long as their initial parts conincide.

1

2

3

54

9

6

7

8

1

2

3

45

3

7 + + =

1

2

3

4

6

5

7

8

5

9

7

rule1 rule2 rule3

Order of premises influences effectiveness of rule merging.

merged rule1 - rule3

11

21

Example for RETE Algorithm (1)
A rule: (P search-pyramid [cube ^name <cube1> ^on table]

[brick ^weight >200]
[pyramid ^colour <<yellow white>> ^on cube1 ^weight < 200]
-> (action part)

Previous contents
of WM:

time stamp class name colour weight on
 1 cube C1 blue 250 table
 4 cube C2 red 100 table
 6 pyramid P1 yellow 120 table
 9 pyramid P2 white NIL C1
 12 brick B1 blue 300 table

New data entered into WM: [15, brick, B2, blue, 280, NIL]

How does the RETE net compute changes of the conflict set?

22

The Expert Configuration System
XCON

XCON has been developed in the early 80´s at CMU using OPS5. The task of
XCON was to configure computer systems by Digital Equipment Company.
XCON was the first commercially successful expert system.

incomplete component
list based on customer
wishes

complete and consistent
component list, floor plan
for cabinets, slot plan for
components

XCON

History:

• 1982 start of operations with 1000 rules, 7 min per configuration

• XCON earned money by avoiding configuration errors and delayed
customer payment

• 1988 more than 10000 rules:
- average of 6 conditions per rule
- average of 5 tests per condition
- average of 4 actions per rule

12

23

Typical Rule of XCON

IF: THE MOST CURRENT ACTIVE CONTEXT IS ASSIGNING A POWER SUPPLY
AND AN SBI MODULE OF ANY TYPE HAS BEEN PUT IN A CABINET
AND THE POSITION IT OCCUPIES IN THE CABINET IS KNOWN
AND THERE IS SPACE IN THE CABINET FOR A POWER SUPPLY
AND THERE IS NO AVAILABLE POWER SUPPLY
AND THE VOLTAGE AND FREQUENCY OF THE COMPONENTS IS KNOWN

THEN: FIND A POWER SUPPLY OF THAT VOLTAGE AND FREQUENCY
AND ADD IT TO THE ORDER

(paraphrase, not in OPS5 rule language)

24

Input of XCON
Typical component list based on customer wishes:

COMPONENTS ORDERED:
1 SV-AXMMA-LA [packaged system]
1 FP780-AA [floating point accelerator]
1 DW780-AA [unibus adaptor]
1 BA11-KE [unibus expansion cabinet box]
6 MS780-DC [memory]
1 MS780-CA [memory controller]
1 H9002-HA [cpu expansion cabinet]
1 H7111-A [clock battery backup]
1 H7112-A [memory battery backup]
1 REP05-AA [single port disk drive]
4 RP05-BA [dual port disk drive]
1 TEE16-AE [tape drive with formatter]
2 TE16-AE [tape drive]
8 RK07-EA [single port disk drive]
1 DR11-B [direct memory access interface]
1 LP11-CA [line printer]
1 DZ11-F [multiplexer with panel]
1 DZ11-B [multiplexer]
2 LA36-CE [hard copy terminal]

13

25

Example of a Configuration Run (1)

Numbers correspond to rule applications, lines show context transitions

 1. MAJOR-SUBTASK-TRANSITION
 2. SET-UP
 3. UNBUNDLE-COMPONENTS
 53. NOTE-CUSTOMER-GENERATED-EXCEPTION
 56. NOTE-UNSUPPORTED-COMPONENTS
 57. CHECK-VOLTAGE-AND-FREQUENCY
104. CHECK-FOR-TYPE-OR CLASS-CHANGES
110. VERIFY-SBI-AND-MB-DEVICE-ADEQUACY
111. COUNT-SBI-MODULES-AND-MB-DEVICES
126. GET-NUMBER-OF-BYTES-AND-COUNT-CONTROLLERS
137. FIND-UBA-HBA-CAPACITY-AND-USE
146. VERIFY-MEMORY-ADEQUACY
148. PARTITION-MEMORY
160. ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS
177. VERIFY-UB-MODULES-FOR-DEVICES-CONNECTING-TO-PANELS
178. FIND-ATTRIBUTE-OF-TYPE-IN-SYSTEM
180. VERIFY-COMPONENT-OF-SYSTEM
207. NOTE-POSSIBLY-FORGOTTEN-COMPONENTS
213. CHECK-FOR-MISSING-ESSENTIAL-COMPONENTS
215. MAJOR-SUBTASK-TRANSITION
216. DELETE-UNNEEDED-ELEMENTS-FROM-WM
236. FILL-CPU-OR-CPUX-CABINET
240. ADD-UBAS
248. ASSIGN-POWER-SUPPLY

26

Example of a Configuration Run (2)
251. ADD-MBAS
252. DISTRIBUTE-MB-DEVICES
260. ASSIGN-SLAVES-TO-MASTERS
269. ASSIGN-POWER-SUPPLY
272. FILL-MEMORY-SLOTS
278. SHIFT-BOARDS
298. ADD-MEMORY-MODULE-SIMULATORS
306. ASSIGN-POWER-SUPPLY
312. FILL-CPU-SLOTS
318. ASSIGN-POWER-SUPPLY
322. ADD-NECESSARY-SIMULATORS
326. DELETE-TEMPLATES
340. DELETE-UNNEEDED-ELEMENTS-FROM-WM
353. FILL-CPU-OR-CPUX-CABINET
356. ADD-MBAS
359. ASSIGN-POWER-SUPPLY
382. ADD-UBAS
384. FILL-MEMORY-SLOTS
388. SHIFT-BOARDS
389. ADD-MEMORY-MODULES-SIMULATORS
398. ASSIGN-POWER-SUPPLY
399. TERMINATE-SBI
402. ADD-NECESSARY-SIMULATORS
406. DELETE-TEMPLATES
415. MAJOR-SUBTASK-TRANSITION
417. GENERATE-OPTIMAL-SEQUENCE

14

27

Example of a Configuration Run (3)
436. ASSIGN-UBAS-TO-BOXES-TO-CABINETS
438. ASSIGN-UBAS-TO-BOXES
441. ATTRIBUTE-BOXES-AMONG-CABINETS
442. SET-UP-FOR-BOX-ASSIGNMENTS
446. ASSIGN-BOXES-TO-CABINETS
452. COMPUTE-DISTANCES-FROM-UBAS-TO-BOXES
458. SET-SEQUENCING-MODE
462. FILL-BOXES
465. FILL-HALF-BOXES
468. SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
470. ASSIGN-BACKPLANE-TO-BOX
474. GENERATE-SLOT-TEMPLATES
478. PUT-UB-MODULE
482. LEAVE-BACKPLAN
485. AUGMENT-UB-LENGTH
488. GET-UB-JUMPER
491. CHECK-NEED-FOR-UB-REPEATER
497. SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
501. ASSIGN-BACKPLANE-TO-BOX
505. GENERATE-SLOT-TEMPLATES
510. PUT-UB-MODULE
518. ADD-SUBOPTIMAL-UB-MODULE
527. LEAVE-BACKPLANE
540. AUGMENT-UB-LENGTH
543. GET-UB-JUMPER
547. CHECK-NEED-FOR-UB-REPEATER
553. LEAVE-HALF-BOX

28

Example of a Configuration Run (4)
559. CHECK-FOR-UB-JUMPER-CHANGES
561. CHECK-TERMINATION-CONDITIONS
568. SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
571. ASSIGN-BLACKPLANE-TO-BOX
576. GENERATE-SLOT-TEMPLATES
580. PUT-UB-MODULE
581. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
590. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
598. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
604. ADD-SUBOPTIMAL-UB-MODULE
608. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
615. ADD-SUBOPTIMAL-UB-MODULE
617. LEAVE-BACKPLANE
626. AUGMENT-UB-LENGTH
629. GET-UB-JUMPER
633. CHECK-NEED-FOR-UB-REPEATER
643. LEAVE-HALF-BOX
644. CHECK-FOR-UB-JUMPER-CHANGES
646. CHECK-TERMINATION-CONDITIONS
657. SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
660. ASSIGN-BACKPLANE-TO-BOX
663. GENERATE-SLOT-TEMPLATES
667. PUT-UB-MODULE
668. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
677. ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT
690. LEAVE-BACKPLANE
711. AUGMENT-UB-LENGTH

15

29

Example of a Configuration Run (5)
 714. GET-UB-JUMPER
 716. CHECK-NEED-FOR-UB-REPEATER
 732. LEAVE-HALF-BOX
 733. CHECK-FOR-UB-JUMPER-CHANGES
 735. CHECK-TERMINATION-CONDITIONS
 738. ASSIGN-UB-JUMPER-CABLES-TO-BOX
 749. LEAVE-HALF-BOX
 750. CHECK-FOR-UB-JUMPER-CHANGES
 752. CHECK-TERMINATION-CONDITIONS
 756. ASSIGN-UB-JUMPER-CABLES-TO-BOX
 769. ACCEPT-UNIBUS-CONFIGURATION
 832. MAJOR-SUBTASK-TRANSITION
 833. ASSIGN-TERMINALS-TO-LINES
 834. PUT-PANELS-IN-UBX-CABINET
 848. MAKE-TERMINAL-ASSIGNMENT
 854. MAJOR-SUBTASK-TRANSITION
 855. LAY-OUT-SYSTEM
 857. FIND-FLOOR-RANKINGS
 882. DETERMINE-FLOOR-POSITIONS
 888. DETERMINE-FLOOR-POSITIONS-OF-CABINETS
 893. DETERMINE-FLOOR-POSITIONS-OF-DEVICES
 900. DETERMINE-FLOOR-POSITIONS-OF-SLAVES
 908. DETERMINE-FLOOR-POSITIONS-OF-DEVICES
 920. DETERMINE-FLOOR-POSITIONS-OF-DEVICES
 934. DETERMINE-FLOOR-POSITIONS-OF-DEVICES
 942. DETERMINE-FLOOR-POSITIONS-OF-DEVICES
 973.

30

Example of a Configuration Run (6)

 974. COMPUTE-CABLE-LENGTHS
1021. FIND-LENGTHS-OF-CABLES-IN-ORDER
1135. ASSIGN-CABLES
1179. FIND-LENGTHS-OF-CABLES-IN-ORDER
1183. FIND-LENGTHS-OF-CABLES-IN-ORDER
1187. FIND-LENGTHS-OF-CABLES-IN-ORDER
1192. NOTE-POSSIBLY-FORGOTTEN-COMPONENT
1198. GENERATE-COMPONENT-NUMBERS-FOR-CABLES
1248. GENERATE-OUTPUT

The trace shows the complexity of the resulting process.

The context structure has been forced onto the process against the
spirit of the data-driven operations of rule-based systems.

16

31

Example of a OPS5 Rule in XSEL

XSEL has been developed 1980 - 1982 by CMU for DEC as a companion
system for XCON. The task was to support salespersons acquiring
customer wishes.

[p capacity-specified:1:adjust-requirement

; if memory capacity was ordered on the same line as the system [e.g. system

; with 4 meg of memory], then assume the user wants the requirement in total

; and not in addition to what is returned as part of the system, therefore,

; adjust the requirement

[context ^status active ^cname capacity-specified]

[line-item ^status input ^class memory ^name nil ^units kilobytes

^kilobytes {<required> >0 } ^token <token>]

[line-item ^status pending ^class system ^parse-token <token>]

[bus-node ^class memory ^name <device> ^ordered <count>]

- [local ^information count-memory-capacity ^source <device>]

[component ^status reference ^name <device> ^number-of-kilobytes <kb>]

-->

[bind <ordered> [compute <quantity> * <kb>]]

[bind <difference> [compute <required> - <ordered>]]

[remove 3]

[modify 2 ^kilobytes <difference>]

[make local ^type temporary ^context capacity-specified

^information count-memory-capacity ^source <device>]]

32

Example for RETE Algorithm (2)

[15, brick, B2, blue, 280, NIL]

^class = cube?

^on = table? ^weight > 200 ?

^class = cube?

^colour <<yellow white>>?

^weight < 150 ?

1

4

12 15

^class = pyramid?

^on of token in alpha store =
 ^name of first token in beta store ?

1 12

4 12

1 15

4 15

6 9

1 12 9

1 15 9

