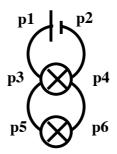
Übungen zur Vorlesung: Wissensbasierte Systeme

Blatt 5


Exercise 5.1:

s(X, Y)	voltage source
w(X, Y)	wire
b(X, Y)	bulb

The variables denote connection points. The behaviour of an intact source is described by the following rule:

$$level(X) \neq level(Y) \leftarrow ok(s(X, Y))$$

- a) Define similar rules for the behaviour of wires and bulbs.
- b) The figure below shows a simple circuit consisting of a source, 4 wires and 2 bulbs. Desribe the circuit in a knowledge base.

c) Because of a fault only the lower lamp is lit. Using Poole's algorithm for deriving conflicts, determine the conflicts for the given situation. Show how diagnoses can be derived from the conflicts.

Exercise 5.2

Give Clark's completion of the following knowledge base:

a <- d.

b <- e.

d <- e.

 $d \leftarrow f$.

f.

 $c \leftarrow h$

What literals are derived by a bottom-up proof procedure run on the above clauses?

Exercise 5.3

Give Clark's completion of the knowledge base:

```
\begin{split} & member(E, [E|\ L]). \\ & member(E, [H|\ T]) <- \ member(E,\ T). \\ & disjoint([\ ],\ L). \\ & disjoint([H|\ T],\ L) <- \ \ \sim member(H,\ L) \ \land \ disjoint(T,\ L). \end{split}
```

Show a bottom-up derivation that is able to answer the query:

```
?disjoint([a, d], [e, f]).
```