
Computational Intelligence Slides Online Click on a highlighted lecture

Chapter 10: Using Uncertain

Knowledge

➤ Lecture 1 Uncertainty and Probability

➤ Lecture 2 Conditional Independence and Belief

Networks

➤ Lecture 3 Understanding Independence

➤ Lecture 4 Probabilistic Inference

➤ Lecture 5 Markov Chains and Hidden Markov Models

➤ Lecture 6 Making Decisions Under Uncertainty

☞ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002 ☞ ☞
1

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 1

Using Uncertain Knowledge

➤ Agents don’t have complete knowledge about the world.

➤ Agents need to make decisions based on their uncertainty.

➤ It isn’t enough to assume what the world is like.

Example: wearing a seat belt.

➤ An agent needs to reason about its uncertainty.

➤ When an agent makes an action under uncertainty it is

gambling�⇒ probability.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

2

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 2

Probability

➤ Probability is an agent’s measure of belief in some

proposition — subjective probability.

➤ Example:Your probability of a bird flying is your

measure of belief in the flying ability of an individual

based only on the knowledge that the individual is a bird.

➣ Other agents may have different probabilities, as they

may have had different experiences with birds or

different knowledge about this particular bird.

➣ An agent’s belief in a bird’s flying ability is affected

by what the agent knows about that bird.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

3

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 3

Numerical Measures of Belief
➤ Belief in proposition,f , can be measured in terms of a

number between 0 and 1 — this is theprobability off .

➣ The probabilityf is 0 means thatf is believed to be

definitely false.

➣ The probabilityf is 1 means thatf is believed to be

definitely true.

➤ Using 0 and 1 is purely a convention.

➤ f has a probability between 0 and 1, doesn’t meanf is

true to some degree, but means you are ignorant of its

truth value. Probability is a measure of your ignorance.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

4

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 4

Random Variables
➤ A random variableis a term in a language that can take

one of a number of different values.

➤ The domain of a variableX, writtendom(X), is the set

of valuesX can take.

➤ A tuple of random variables〈X1, . . . , Xn〉 is a complex

random variable with domaindom(X1) × · · · × dom(Xn).

Often the tuple is written asX1, . . . , Xn.

➤ AssignmentX = x means variableX has valuex.

➤ A proposition is a Boolean formula made from

assignments of values to variables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

5

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 5

Possible World Semantics

➤ A possible worldspecifies an assignment of one value

to each random variable.

➤ w |= X = x

means variableX is assigned valuex in world w.

➤ Logical connectives have their standard meaning:

w |= α ∧ β if w |= α andw |= β

w |= α ∨ β if w |= α or w |= β

w |= ¬α if w �|= α

➤ Let � be the set of all possible worlds.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

6

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 6

Semantics of Probability: finite case

For a finite number of possible worlds:

➤ Define a nonnegative measureµ(w) to each set of worlds

w so that the measures of the possible worlds sum to 1.

The measure specifies how much you think the worldw

is like the real world.

➤ The probability of propositionf is defined by:

P(f) =
∑
w|=f

µ(ω).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

7

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 7

Axioms of Probability: finite case

Four axioms define what follows from a set of probabilities:

Axiom 1 P(f) = P(g) if f ↔ g is a tautology. That is,

logically equivalent formulae have the same probability.

Axiom 2 0 ≤ P(f) for any formulaf .

Axiom 3 P(τ) = 1 if τ is a tautology.

Axiom 4 P(f ∨ g) = P(f) + P(g) if ¬(f ∧ g) is a tautology.

These axioms are sound and complete with respect to the

semantics.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

8

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 8

Semantics of Probability: general case

In the general case we have a measure on sets of possible

worlds, satisfying:

➤ µ(S) ≥ 0 for all S ⊆ �

➤ µ(�) = 1

➤ µ(S1 ∪ S2) = µ(S1) + µ(S2) if S1 ∩ S2 = {}.
Or sometimesσ -additivity:

µ(
⋃

i

Si) =
∑

i

µ(Si) if Si ∩ Sj = {}

ThenP(α) = µ({w|w |= α}).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

9

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 9

Probability Distributions

➤ A probability distribution on a random variableX is a

functiondom(X) → [0, 1] such that

x → P(X = x).

This is written asP(X).

➤ This also includes the case where we have tuples of

variables. E.g.,P(X, Y , Z) meansP(〈X, Y , Z〉).
➤ Whendom(X) is infinite sometimes we need a

probability density function...

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

10

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 10

Conditioning

➤ Probabilistic conditioning specifies how to revise beliefs

based on new information.

➤ You build a probabilistic model taking all background

information into account. This gives the

prior probability.

➤ All other information must be conditioned on.

➤ If evidencee is the all of the information obtained

subsequently, theconditional probabilityP(h|e) of h

givene is the posterior probabilityof h.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

11

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 11

Semantics of Conditional Probability
Evidencee rules out possible worlds incompatible withe.

Evidencee induces a new measure,µe, over possible worlds

µe(ω) =

1
P(e) × µ(ω) if ω |= e

0 if ω �|= e

The conditional probability of formulah given evidencee is

P(h|e) =
∑
ω|=h

µe(w)

= P(h ∧ e)

P(e)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

12

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 12

Properties of Conditional Probabilities

➤ Chain rule:

P(f1 ∧ f2 ∧ . . . ∧ fn)

= P(f1) × P(f2|f1) × P(f3|f1 ∧ f2)

× · · · × P(fn|f1 ∧ · · · ∧ fn−1)

=
n∏

i=1

P(fi|f1 ∧ · · · ∧ fi−1)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

13

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 13

Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is

equivalent toe ∧ h) gives us:

P(h ∧ e) = P(h|e) × P(e)

= P(e|h) × P(h).

If P(e) �= 0, you can divide the right hand sides byP(e):

P(h|e) = P(e|h) × P(h)

P(e)
.

This is Bayes’ theorem.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

14

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 1, Page 14

Why is Bayes’ theorem interesting?

➤ Often you have causal knowledge:

P(symptom | disease)

P(light is off | status of switches and switch positions)

P(alarm | fire)

P(image looks like | a tree is in front of a car)

➤ and want to do evidential reasoning:

P(disease | symptom)

P(status of switches | light is off and switch positions)

P(fire | alarm).

P(a tree is in front of a car | image looks like)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

15

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 1

Conditional independence

Random variableX is independentof random variableY

given random variableZ if, for all xi ∈ dom(X),

yj ∈ dom(Y), yk ∈ dom(Y) andzm ∈ dom(Z),

P(X = xi|Y = yj ∧ Z = zm)

= P(X = xi|Y = yk ∧ Z = zm)

= P(X = xi|Z = zm).

That is, knowledge ofY ’s value doesn’t affect your belief in

the value ofX, given a value ofZ.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

16

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 2

Example domain (diagnostic assistant)

light

two-way
switch

switch

off

on

power
outlet

circuit
breaker

outside power

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1

s1

s2

s3

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

17

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 3

Examples of conditional independence

➤ The identity of the queen of Canada is independent of

whether lightl1 is lit given whether there is outside

power.

➤ Whether there is someone in a room is independent of

whether a lightl2 is lit given the position of switchs3.

➤ Whether lightl1 is lit is independent of the position of

light switchs2 given whether there is power in wirew0.

➤ Every other variable may be independent of whether

light l1 is lit given whether there is power in wirew0 and

the status of lightl1 (if it’s ok, or if not, how it’s broken).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

18

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 4

Idea of belief networks
Whether l1 is lit (l1_lit) de-

pends only on the status of the

light (l1_st) and whether there

is power in wire w0. Thus,

l1_lit is independent of the

other variables givenl1_st and

w0. In a belief network,w0 and

l1_st are parentsof l1_lit.

w1 w2

s2_pos

s2_st

w0

l1_lit

l1_st

...

Similarly, w0 depends only on whether there is power inw1,

whether there is power inw2, the position of switchs2

(s2_pos), and the status of switchs2 (s2_st).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

19

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 5

Belief networks
➤ Totally order the variables of interest:X1, . . . , Xn

➤ Theorem of probability theory (chain rule):

P(X1, . . . , Xn) = ∏n
i=1 P(Xi|X1, . . . , Xi−1)

➤ The parentsπXi of Xi are those predecessors ofXi that

renderXi independent of the other predecessors. That is,

πXi ⊆ X1, . . . , Xi−1 andP(Xi|πXi) = P(Xi|X1, . . . , Xi−1)

➤ SoP(X1, . . . , Xn) = ∏n
i=1 P(Xi|πXi)

➤ A belief network is a graph: the nodes are random

variables; there is an arc from the parents of each node

into that node.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

20

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 6

Belief network summary

➤ A belief network is automatically acyclic by construction.

➤ A belief network is a directed acyclic graph (DAG)

where nodes are random variables.

➤ The parentsof a noden are those variables on whichn

directly depends.

➤ A belief network is a graphical representation of

dependence and independence:

➣ A variable is independent of its nondescendants given

its parents.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

21

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 7

Components of a belief network

A belief network consists of:

➤ a directed acyclic graph with nodes labeled with random

variables

➤ a domain for each random variable

➤ a set of conditional probability tables for each variable

given its parents (including prior probabilities for nodes

with no parents).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

22

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 8

Example belief network

outside_power

w6

cb2_st

p2

w3

cb1_st

p1
w1 w2

s1_sts1_pos

s2_pos

s2_st

w0

l1_lit

l1_st
w4

s3_pos
s3_st

l2_lit

l2_st

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

23

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 9

Example belief network (continued)

The belief network also specifies:

➤ The domain of the variables:

w0, . . . , w6 have domain{live, dead}
s1_pos, s2_pos, ands3_pos have domain{up, down}
s1_st has{ok, upside_down, short, intermittent, broken}.

➤ Conditional probabilities, including:

P(w1 = live|s1_pos = up ∧ s1_st = ok ∧ w3 = live)

P(w1 = live|s1_pos = up ∧ s1_st = ok ∧ w3 = dead)

P(s1_pos = up)

P(s1_st = upside_down)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

24

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 10

Constructing belief networks

To represent a domain in a belief network, you need to

consider:

➤ What are the relevant variables?

➤ What values should these variables take?

➤ What is the relationship between them? This should be

expressed in terms of local influence.

➤ How does the value of one variable depend on the

variables that locally influence it (its parents)? This is

expressed in terms of the conditional probability tables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

25

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 2, Page 11

Using belief networks
The power network can be used in a number of ways:

➤ Conditioning on the status of the switches and circuit

breakers, whether there is outside power and the position

of the switches, you can simulate the lighting.

➤ Given values for the switches, the outside power, and

whether the lights are lit, you can determine the posterior

probability that each switch or circuit breaker isok or not.

➤ Given some switch positions and some outputs and some

intermediate values, you can determine the probability of

any other variable in the network.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

26

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 4, Page 1

Understanding independence: example

B CA D E F

G H

M

I J K L

N

Q

R

O

S

P

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

27

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 4, Page 2

Understanding independence: questions

➤ On which given probabilities does P(N) depend?

➤ If you were to observe a value for B, which variables’
probabilities will change?

➤ If you were to observe a value for N , which variables’
probabilities will change?

➤ Suppose you had observed a value for M; if you were to
then observe a value for N , which variables’
probabilities will change?

➤ Suppose you had observed B and Q; which variables’
probabilities will change when you observe N?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

28

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 4, Page 3

What variables are affected by observing?

➤ If you observe variable Y , the variables whose posterior

probability is different from their prior are:

➣ The ancestors of Y and

➣ their descendants.

➤ Intuitively (if you have a causal belief network):

➣ You do abduction to possible causes and

➣ prediction from the causes.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

29

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 4, Page 4

Common descendants

tampering

alarm

fire

➤ tampering and fire are

independent

➤ tampering and fire are

dependent given alarm

➤ Intuitively, tampering

can explain away fire

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

30

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 4, Page 5

Common ancestors

smokealarm

fire

➤ alarm and smoke are

dependent

➤ alarm and smoke are in-

dependent given fire

➤ Intuitively, fire can

explain fire and

smoke; learning one

can affect the other by

changing your belief in

fire.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

31

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 4, Page 6

Chain

report

alarm

leaving

➤ alarm and report are

dependent

➤ alarm and report are

independent given

leaving

➤ Intuitively, the only

way that the alarm af-

fects report is by affect-

ing leaving.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

32

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 4, Page 7

d-separation

➤ X is d-separated from Y given Z if there is no path from

an element of X to an element of Y , where:

➣ If there are paths A → B and B → C such that B �∈ Z ,

there is a path A → C.

➣ If there are paths B → A and B → C such that B �∈ Z ,

there is a path A → C.

➣ If there are paths A → B and C → B such that B ∈ Z ,

there is a path A → C.

➤ X is independent Y given Z for some conditional

probabilities iff X is d-separated from Y given Z

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

33

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 1

Belief network inference

Three main approaches to determine posterior distributions in

belief networks:

➤ Exploiting the structure of the network to eliminate (sum

out) the non-observed, non-query variables one at a time.

➤ Search-based approaches that enumerate some of the

possible worlds, and estimate posterior probabilities

from the worlds generated.

➤ Stochastic simulation where random cases are generated

according to the probability distributions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

34

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 2

Summing out a variable: intuition

Suppose B is Boolean (B = true is b and B = false is ¬b)

C

B

A

P(C|A)

= P(C ∧ b|A) + P(C ∧ ¬b|A)

= P(C|b ∧ A)P(b|A) + P(C|¬b ∧ A)P(¬b|A)

= P(C|b)P(b|A) + P(C|¬b)P(¬b|A)

= ∑
B P(C|B)P(B|A)

We can compute the probability of some of the

variables by summing out the other variables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

35

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 3

Factors
A factor is a representation of a function from a tuple of
random variables into a number.

We will write factor f on variables X1, . . . , Xj as
f (X1, . . . , Xj).

We can assign some or all of the variables of a factor:

➤ f (X1 = v1, X2, . . . , Xj), where v1 ∈ dom(X1), is a factor
on X2, . . . , Xj.

➤ f (X1 = v1, X2 = v2, . . . , Xj = vj) is a number that is the
value of f when each Xi has value vi.

The former is also written as f (X1, X2, . . . , Xj)X1 = v1 , etc.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

36

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 4

Example factors

r(X, Y , Z):

X Y Z val

t t t 0.1

t t f 0.9

t f t 0.2

t f f 0.8

f t t 0.4

f t f 0.6

f f t 0.3

f f f 0.7

r(X=t, Y , Z):

Y Z val

t t 0.1

t f 0.9

f t 0.2

f f 0.8

r(X=t, Y , Z=f):

Y val

t 0.9

f 0.8

r(X=t, Y=f , Z=f) = 0.8

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

37

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 5

Multiplying factors

The product of factor f1(X, Y) and f2(Y , Z), where Y are the

variables in common, is the factor (f1 × f2)(X, Y , Z) defined

by:

(f1 × f2)(X, Y , Z) = f1(X, Y)f2(Y , Z).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

38

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 6

Multiplying factors example

f1:

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 × f2:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

39

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 7

Summing out variables

We can sum out a variable, say X1 with domain {v1, . . . , vk},
from factor f (X1, . . . , Xj), resulting in a factor on X2, . . . , Xj

defined by:

(
∑
X1

f)(X2, . . . , Xj)

= f (X1 = v1, . . . , Xj) + · · · + f (X1 = vk, . . . , Xj)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

40

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 8

Multiplying factors example

f3:

A B C val

t t t 0.03

t t f 0.07

t f t 0.54

t f f 0.36

f t t 0.06

f t f 0.14

f f t 0.48

f f f 0.32

∑
B f3:

A C val

t t 0.57

t f 0.43

f t 0.54

f f 0.46

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

41

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 9

Evidence

If we want to compute the posterior probability of Z given

evidence Y1 = v1 ∧ . . . ∧ Yj = vj:

P(Z|Y1 = v1, . . . , Yj = vj)

= P(Z, Y1 = v1, . . . , Yj = vj)

P(Y1 = v1, . . . , Yj = vj)

= P(Z, Y1 = v1, . . . , Yj = vj)∑
Z P(Z, Y1 = v1, . . . , Yj = vj).

So the computation reduces to the probability of

P(Z, Y1 = v1, . . . , Yj = vj).

We normalize at the end.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

42

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 10

Probability of a conjunction

Suppose the variables of the belief network are X1, . . . , Xn.

To compute P(Z, Y1 = v1, . . . , Yj = vj), we sum out the other

variables, Z1, . . . , Zk = {X1, . . . , Xn} − {Z} − {Y1, . . . , Yj}.
We order the Zi into an elimination ordering.

P(Z, Y1 = v1, . . . , Yj = vj)

=
∑
Zk

· · ·
∑
Z1

P(X1, . . . , Xn)Y1 = v1,...,Yj = vj .

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P(Xi|πXi)Y1 = v1,...,Yj = vj .

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

43

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 11

Computing sums of products

Computation in belief networks reduces to computing the

sums of products.

➤ How can we compute ab + ac efficiently?

➤ Distribute out the a giving a(b + c)

➤ How can we compute
∑

Z1

∏n
i=1 P(Xi|πXi) efficiently?

➤ Distribute out those factors that don’t involve Z1.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

44

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 12

Computing sums of products

Computation in belief networks reduces to computing the

sums of products.

➤ How can we compute ab + ac efficiently?

➤ Distribute out the a giving a(b + c)

➤ How can we compute
∑

Z1

∏n
i=1 P(Xi|πXi) efficiently?

➤ Distribute out those factors that don’t involve Z1.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

45

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 13

Computing sums of products

Computation in belief networks reduces to computing the

sums of products.

➤ How can we compute ab + ac efficiently?

➤ Distribute out the a giving a(b + c)

➤ How can we compute
∑

Z1

∏n
i=1 P(Xi|πXi) efficiently?

➤ Distribute out those factors that don’t involve Z1.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

46

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 14

Computing sums of products

Computation in belief networks reduces to computing the

sums of products.

➤ How can we compute ab + ac efficiently?

➤ Distribute out the a giving a(b + c)

➤ How can we compute
∑

Z1

∏n
i=1 P(Xi|πXi) efficiently?

➤ Distribute out those factors that don’t involve Z1.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

47

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 15

Variable elimination algorithm

To compute P(Z|Y1 = v1 ∧ . . . ∧ Yj = vj):

➤ Construct a factor for each conditional probability.

➤ Set the observed variables to their observed values.

➤ Sum out each of the other variables (the {Z1, . . . , Zk})
according to some elimination ordering.

➤ Multiply the remaining factors. Normalize by dividing

the resulting factor f (Z) by
∑

Z f (Z).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

48

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 16

Summing out a variable
To sum out a variable Zj from a product f1, . . . , fk of factors:

➤ Partition the factors into

➣ those that don’t contain Zj, say f1, . . . , fi,

➣ those that contain Zj, say fi+1, . . . , fk

We know:

∑
Zj

f1× · · · ×fk = f1× · · · ×fi×

∑

Zj

fi+1× · · · ×fk

 .

➤ Explicitly construct a representation of the rightmost

factor. Replace the factors fi+1, . . . , fk by the new factor.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

49

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 3, Page 17

Variable elimination example

A

B
C

D

E

F

G

H I

P(A)

P(B|A)

elim A−→ f1(B)

P(C)

P(D|BC)

P(E|C)

elim C−→ f2(BDE)

P(F|D)

P(G|FE)

P(H|G)

} obs H−→ f3(G)

P(I|G)

} elim I−→ f4(G)

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

50

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 1

Markov chain

➤ A Markov chain is a special sort of belief network:

S0 S1 S2 S3 S4

➤ ThusP(St+1|S0, . . . , St) = P(St+1|St).

➤ OftenSt represented thestate at timet. Intuitively St

conveys all of the information about the history that can

affect the future states.

➤ “The past is independent of the future given the present.”

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

51

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 2

Stationary Markov chain

➤ A stationary Markov chainis when for allt > 0, u > 0,

P(St+1|St) = P(Su+1|Su) we have .

➤ We specifyP(S0) andP(St+1|St).

➤ It is of interest because:

➣ Simple model, easy to specify

➣ Natural

➣ The network can extend indefinitely

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

52

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 3

Hidden Markov Model
➤ A Hidden Markov Model (HMM) is a belief network:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

➤ P(S0) specifies initial conditions

➤ P(St+1|St) specifies the dynamics

➤ P(Ot|St) specifies the sensor model

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

53

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 4

Example: localization
➤ Suppose a robot wants to determine its location based on

its actions and its sensor readings. CalledLocalization

➤ This can be represented by the augmented HMM:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

A0 A1 A2 A3

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

54

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 5

Example localization domain

➤ Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

➤ Doors at positions: 2, 4, 7, 11.

➤ Noisy Sensors

➤ Stochastic Dynamics

➤ Robot starts at an unknown location and must determine

where it is.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

55

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 6

Example Sensor Model

➤ P(Observe Door | At Door) = 0.8

➤ P(Observe Door | Not At Door) = 0.1

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

56

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 7

Example Dynamics Model

➤ P(loct+1 = L|actiont = goRight ∧ loct = L) = 0.1

➤ P(loct+1 = L + 1|actiont = goRight ∧ loct = L) = 0.8

➤ P(loct+1 = L+2|actiont = goRight ∧ loct = L) = 0.074

➤ P(loct+1 = L′|actiont = goRight ∧ loct = L) = 0.002

for any other locationL′.
➣ All location arithmetic is modulo 16.

➣ The actiongoLeft works the same but to the left.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

57

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 5, Page 8

Sensor Fusion

➤ We can have many (noisy) sensors for a property.

➤ Example:

Animal Type

Sound

Size
Hair Tail

Speed

Horns

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

58

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 1

Making Decisions Under Uncertainty
What an agent should do depends on:

➤ What the agent believes.Not only the most likely state

of affairs, but all ways the world could be, given the

agent’s knowledge. Sensing the world updates the

agent’s beliefs by conditioning on what is sensed.

➤ The agent’s goals.When an agent has to reason under

uncertainty, it has to consider not only what will most

likely happen but everything that may possibly happen.

Decision theory specifies how to trade off the desirability and

probabilities of the possible outcomes for competing actions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

59

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 2

Decision Variables

➤ Decision variablesare like random variables that an

agent gets to choose the value of.

➤ A possible world specifies the value for each decision

variable and each random variable.

➤ For each assignment of values to all decision variables,

the measures of the worlds satisfying that assignment

sum to 1.

➤ The probability of a proposition is undefined unless you

condition on the values of all decision variables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

60

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 3

Decision Tree for Delivery Robot

The robot can choose to wear pads to protect itself or not.

The robot can choose to go the short way past the stairs or a

long way that reduces the chance of an accident.

There is one random variable of whether there is an accident.

wear pads

don’t
wear
pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident

accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w6 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

61

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 4

Expected Values
The expected value of a numerical random variable is its
average value, weighting possible worlds by their probability.

SupposeV is a numerical random variable andω is a possible
world. Letρ(V , ω) be the valuex such thatω |= V = x.

The expected valueof V is

E(V) =
∑
ω∈�

ρ(V , ω) × µ(ω).

The conditional expected valueof V givene is

E(V |e) =
∑
ω|=e

ρ(V , ω) × µe(ω).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

62

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 5

Utility

➤ Utility is a measure of desirability of worlds to an agent.

➤ Let U be a real-valued random variable such that

ρ(U, ω) represents how good the world is to an agent.

➤ Simple goals can be specified by: worlds that satisfy the

goal have utility 1; other worlds have utility 0.

➤ Often utilities are more complicated: for example, made

up from the amount of damage to a robot, how much

energy it has used up, what goals are achieved, and how

much time it has taken.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

63

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 6

Single decisions

In a single decision, the agent chooses a value for each

decision variable. Let compound decision variabled be the

tuple of all original decision variables. The agent can choose

d = di for anydi ∈ dom(d).

The expected utilityof decisiond = di is E(U|d = di).

An optimal single decisionis the decisiond = dmax whose

expected utility is maximal:

E(U|d = dmax) = max
di∈dom(d)

E(U|d = di).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

64

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 7

Sequential Decisions

➤ An intelligent agent doesn’t make a multi-step decision

and carry it out without considering revising it based on

future information.

➤ A more typical scenario is where the agent:

observes, acts, observes, acts, …

➤ Subsequent actions can depend on what is observed.

What is observed depends on previous actions.

➤ Often the sole reason for carrying out an action is to

provide information for future actions.

For example: diagnostic tests, spying.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

65

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 8

Sequential decision problems

➤ A sequential decision problemconsists of a sequence of

decision variablesd1, . . . , dn.

➤ Eachdi has aninformation setof variablesπdi , whose

value will be known at the time decisiondi is made.

➤ A policy is a sequenceδ1, . . . , δn of decision functions

δi : dom(πdi) → dom(di).

This policy means that when the agent has observed

O ∈ dom(πdi), it will do δi(O).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

66

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 9

Decision Networks

➤ A decision networkis a graphical representation of a

finite sequential decision problem.

➤ Decision networks extend belief networks to include

decision variables and utility.

➤ A decision network specifies what information is

available when the agent has to act.

➤ A decision network specifies which variables the utility

depends on.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

67

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 10

Decisions Networks
➤ A random variableis drawn as an

ellipse. Arcs into the node represent

probabilistic dependence.

➤ A decision variableis drawn as an

rectangle. Arcs into the node repre-

sent information available when the

decision is make.

➤ A value node is drawn as a dia-

mond. Arcs into the node represent

values that the value depends on.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

68

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 11

Example Decision Network

wear
pads? which

way?

accident

utility

This shows explicitly which nodes affect whether there is an

accident.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

69

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 12

Decision Network for the Alarm Problem

tampering

alarm

fire

leaving

report

see smoke

check
for

smoke
call
fire

department

U
smoke

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

70

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 13

Expected Value of a Policy

➤ A policy δ is an assignment of a decision function

δi : dom(πdi) → dom(di) to each decision variabledi.

➤ Possible worldω satisfiespolicy δ, writtenω |= δ if the

world assigns the value to each decision node that the

policy specifies.

➤ The expected utility of policyδ is

E(δ) =
∑
ω|=δ

ρ(U, ω) × µ(ω),

➤ An optimal policy is one with the highest expected

utility.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

71

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 14

Finding the optimal policy

...

...

➤ If value node is only connected to a de-

cision node and (some of) its parents

➥ select a decision to maximize value

for each assignment to the parent.

➤ If it isn’t of this form, eliminate the non-

observed variables.

➤ Replace decision node with value node.

➤ Repeat till there are no more decision

nodes.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

72

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 15

Reduced Alarm Example

Eliminate the non-observed variables for the final decision.

report

see smoke

check
for

smoke
call
fire

department

U

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

73

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 16

Complexity of finding the optimal policy

➤ If there arek binary parents, there are2k optimizations.

➤ If there areb possible actions, there areb2k
policies.

➤ The dynamic programming algorithm is much more

efficient than searching through policy space.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

74

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 10, Lecture 6, Page 17

Value of Information

➤ We can determine the value of informationX for a certain

decisionD is utility of the the network with an arc from

X to D minus the utility of the network without the arc.

➤ The value of information is always non-negative.

➤ It is positive only if the agent changes its action

depending onX.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

75

http://www.cs.ubc.ca/spider/poole/ci.html

