Chapter 7: Beyond Definite Knowledge

- Lecture 1 Equality, inequality and the unique names assumption
- Lecture 2 Complete knowledge assumption and negation as failure.
> Lecture 3 Integrity Constraints, consistency-based diagnosis.

Equality

$>$ Sometimes two terms denote the same individual.
Example: Clark Kent \& superman. $4 \times 4 \& 11+5$. The projector we used last Friday \& this projector.
$>$ Ground term t_{1} equals ground term t_{2}, written $t_{1}=t_{2}$, is true in interpretation I if t_{1} and t_{2} denote the same individual in interpretation I.

Equality doesn't mean similarity

chair 1

chair 2
chair $1 \neq$ chair 2
chair_on_right $=$ chair2
chair_on_right is not similar to chair2, it is chair2.

Why is equality important?

> In a doctor's office, the doctor wants to know if a patient is the same patient that she saw last week (or is his twin sister).
$>$ In a criminal investigation, the police want to determine if someone is the same person as the person who committed some crime.
> When buying a replacement switch, an electrician may want to know if it was built in the same factory as the switches that were unreliable. (And if it is a different switch to the one that was replaced the previous time).

Allowing Equality Assertions

$>$ Without equality assertions, the only thing that is equal to a ground term is itself.

This can be captured as though you had the assertion $X=X$. Explicit equality never needs to be used.
> If you allow equality assertions, you need to derive what follows from them. Either:
$>$ axiomatize equality like any other predicate
$>$ build special-purpose inference machinery for equality

Axiomatizing Equality

$$
\begin{aligned}
& X=X \\
& X=Y \leftarrow Y=X \\
& X=Z \leftarrow X=Y \wedge Y=Z
\end{aligned}
$$

For each n-ary function symbol f there is a rule of the form

$$
\begin{gathered}
f\left(X_{1}, \ldots, X_{n}\right)=f\left(Y_{1}, \ldots, Y_{n}\right) \leftarrow \\
X_{1}=Y_{1} \wedge \cdots \wedge X_{n}=Y_{n}
\end{gathered}
$$

For each n-ary predicate symbol p, there is a rule of the form

$$
\begin{aligned}
& p\left(X_{1}, \ldots, X_{n}\right) \leftarrow \\
& \quad p\left(Y_{1}, \ldots, Y_{n}\right) \wedge X_{1}=Y_{1} \wedge \cdots \wedge X_{n}=Y_{n}
\end{aligned}
$$

Special-Purpose Equality Reasoning

paramodulation: if you have $t_{1}=t_{2}$, then you can replace any occurrence of t_{1} by t_{2}.

Treat equality as a rewrite rule, substituting equals for equals.

You select a canonical representation for each individual and rewrite all other representations into that representation.

Example: treat the sequence of digits as the canonical representation of the number.

Example: use the student number as the canonical representation for students.

Unique Names Assumption

The convention that different ground terms denote different individuals is the unique names assumption.

For every pair of distinct ground terms t_{1} and t_{2}, assume $t_{1} \neq t_{2}$, where " \neq " means "not equal to."

Example: For each pair of courses, you don't want to have to state, math $302 \neq p$ pyc $303, \ldots$

Example: Sometimes the unique names assumption is inappropriate, for example $3+7 \neq 2 \times 5$ is wrong.

Axiomatizing Inequality for the UNA

$>c \neq c^{\prime}$ for any distinct constants c and c^{\prime}.
$>f\left(X_{1}, \ldots, X_{n}\right) \neq g\left(Y_{1}, \ldots, Y_{m}\right)$ for any distinct function symbols f and g.
$>f\left(X_{1}, \ldots, X_{n}\right) \neq f\left(Y_{1}, \ldots, Y_{n}\right) \leftarrow X_{i} \neq Y_{i}$, for any function symbol f. There are n instances of this schema for every n-ary function symbol f (one for each i such that $1 \leq i \leq n$).
$>f\left(X_{1}, \ldots, X_{n}\right) \neq c$ for any function symbol f and constant c.
$>t \neq X$ for any term t in which X appears (where t is not the term X).

Top-down procedure and the UNA

> Inequality isn't just another predicate. There are infinitely many answers to $X \neq f(Y)$.
$>$ If you have a subgoal $t_{1} \neq t_{2}$, for terms t_{1} and t_{2} there are three cases:
$>t_{1}$ and t_{2} don't unify. In this case, $t_{1} \neq t_{2}$ succeeds.
$>t_{1}$ and t_{2} are identical including having the same variables in the same positions. Here $t_{1} \neq t_{2}$ fails.
$>$ Otherwise, there are instances of $t_{1} \neq t_{2}$ that succeed and instances of $t_{1} \neq t_{2}$ that fail.

Implementing the UNA

Recall: in SLD resolution you can select any subgoal in the body of an answer clause to solve next.

Idea: only select inequality when it will either succeed or fail, otherwise select another subgoal. Thus you are delaying inequality goals.

If only inequality subgoals remain, and none fail, the query succeeds.

Inequality Example

$\operatorname{notin}(X,[])$.
$\operatorname{notin}(X,[H \mid T]) \leftarrow X \neq H \wedge \operatorname{notin}(X, T)$.
good_course $(C) \leftarrow$ course $(C) \wedge$ passes_analysis (C). course (cs312).
course(cs444).
course (cs322).
passes_analysis $(C) \leftarrow$ something_complicated (C).
?notin(C, [cs312, cs322, cs422, cs310, cs402])
\wedge good_course (C).

Complete Knowledge Assumption (CKA)

Sometimes you want to assume that a database of facts is complete. Any fact not listed is false.

Example: Assume that a database of enrolled relations is complete. Then you can define empty_course.

Example: Assume a database of video segments is complete.
The definite clause RRS is monotonic: adding clauses doesn't invalidate a previous conclusion.

With the complete knowledge assumption, the system is nonmonotonic: a conclusion can be invalidated by adding more clauses (but this must not be allowed).

CKA: propositional case

Suppose the rules for atom a are

$$
\begin{gathered}
a \leftarrow b_{1} . \\
\ldots \\
a \leftarrow b_{n} .
\end{gathered}
$$

or equivalently: $a \leftarrow b_{1} \vee \ldots \vee b_{n}$
Under the CKA, if a is true, one of the b_{i} must be true:

$$
a \rightarrow b_{1} \vee \ldots \vee b_{n}
$$

Under the CKA, the clauses for a mean Clark's completion:

$$
a \leftrightarrow b_{1} \vee \ldots \vee b_{n}
$$

CKA: Ground Database

Example: Consider the relation defined by:

student(mary).
student(john).
student(ying).
The CKA specifies these three are the only students:
student $(X) \leftrightarrow X=$ mary $\vee X=$ john $\vee X=$ ying.
To conclude \neg student(alan), you have to be able to prove
alan \neq mary \wedge alan \neq john \wedge alan \neq ying
This needs the unique names assumption.

Clark Normal Form

The Clark normal form of the clause:

$$
p\left(t_{1}, \ldots, t_{k}\right) \leftarrow B
$$

is the clause

$$
\begin{aligned}
& p\left(V_{1}, \ldots, V_{k}\right) \leftarrow \\
& \quad \exists W_{1} \ldots \exists W_{m} V_{1}=t_{1} \wedge \ldots \wedge V_{k}=t_{k} \wedge B
\end{aligned}
$$

where V_{1}, \ldots, V_{k} are k different variables that did not appear in the original clause.
W_{1}, \ldots, W_{m} are the original variables in the clause.

Clark normal form: example

The Clark normal form of:
$\operatorname{room}(C$, room 208$) \leftarrow$

$$
\text { cs_course }(C) \wedge \text { enrollment }(C, E) \wedge E<120 .
$$

is

$$
\begin{aligned}
& \operatorname{room}(X, Y) \leftarrow \exists C \exists E X=C \wedge Y=\operatorname{room} 208 \wedge \\
& \quad \text { cs_course }(C) \wedge \operatorname{enrollment}(C, E) \wedge E<120
\end{aligned}
$$

Clark's Completion of a Predicate

Put all of the clauses for p into Clark normal form, with the same set of introduced variables:

$$
\begin{gathered}
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{1} \\
\vdots \\
p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{n}
\end{gathered}
$$

This is the same as: $\quad p\left(V_{1}, \ldots, V_{k}\right) \leftarrow B_{1} \vee \ldots \vee B_{n}$.
Clark's completion of p is the equivalence

$$
p\left(V_{1}, \ldots, V_{k}\right) \leftrightarrow B_{1} \vee \ldots \vee B_{n}
$$

That is, $p\left(V_{1}, \ldots, V_{k}\right)$ is true if and only if one B_{i} is true.

Clark's Completion Example

Given the mem function:

```
mem(X,[X|T]).
mem}(X,[H|T])\leftarrow\operatorname{mem}(X,T)
```

the completion is

$$
\begin{aligned}
& \operatorname{mem}(X, Y) \Longleftrightarrow(\exists T Y=[X \mid T]) \vee \\
& \quad(\exists H \exists T Y=[H \mid T] \wedge \operatorname{mem}(X, T))
\end{aligned}
$$

Clark's Completion of a KB

Clark's completion of a knowledge base consists of the completion of every predicate symbol, along with the axioms for equality and inequality.
$>$ If you have a predicate p defined by no clauses in the knowledge base, the completion is $p \leftrightarrow$ false. That is, $\neg p$.
$>$ You can interpret negations in the bodies of clauses. $\sim p$ means that p is false under the Complete Knowledge Assumption. This is called negation as failure.

Using negation as failure

Previously we couldn't define empty_course (C) from a database of enrolled (S, C).

This can be defined using negation as failure:
empty_course $(C) \leftarrow$
course $(C) \wedge$
~has_Enrollment (C).
has_Enrollment $(C) \leftarrow$ enrolled (S, C).

Bottom-up NAF proof procedure

$C:=\{ \} ;$
repeat
either select " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m} " \in K B$ such that

$$
b_{i} \in C \text { for all } i, \text { and } h \notin C ;
$$

$$
C:=C \cup\{h\}
$$

or select h such that
for every rule " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m} " \in K B$
either for some $b_{i}, \sim b_{i} \in C$ or some $b_{i}=\sim g$ and $g \in C$
$C:=C \cup\{\sim h\}$
until no more selections are possible

Negation as failure example

$$
\begin{aligned}
& p \leftarrow q \wedge \sim r \\
& p \leftarrow s \\
& q \leftarrow \sim s \\
& r \leftarrow \sim t \\
& t \\
& s \leftarrow w
\end{aligned}
$$

Top-Down NAF Procedure

If the proof for a fails, you can conclude $\sim a$.
Failure can be defined recursively.
Suppose you have rules for atom a :

$$
\begin{gathered}
a \leftarrow b_{1} \\
\vdots \\
a \leftarrow b_{n}
\end{gathered}
$$

If each body b_{i} fails, a fails.
A body fails if one of the conjuncts in the body fails.
Note that you require finite failure. Example: $p \leftarrow p$

Free Variables in Negation as Failure

Example:

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \wedge r(X) . \\
& q(a) \\
& q(b) \\
& r(d)
\end{aligned}
$$

There is only one answer to the query $? p(X)$, namely $X=d$.
For calls to negation as failure with free variables, you need to delay negation as failure goals that contain free variables until the variables become bound.

Floundering Goals

If the variables never become bound, a negated goal flounders.

In this case you can't conclude anything about the goal.
Example: Consider the clauses:

$$
\begin{aligned}
& p(X) \leftarrow \sim q(X) \\
& q(X) \leftarrow \sim r(X) \\
& r(a)
\end{aligned}
$$

and the query

Integrity Constraints

$>$ In the electrical domain, what if we predict that a light should be on, but observe that it isn't? What can we conclude?
> We will expand the definite clause language to include integrity constraints which are rules that imply false, where false is an atom that is false in all interpretations.
$>$ This will allow us to make conclusions from a contradiction.

A definite clause knowledge base is always consistent. This won't be true with the rules that imply false.

Horn clauses

$>$ An integrity constraint is a clause of the form

$$
\text { false } \leftarrow a_{1} \wedge \ldots \wedge a_{k}
$$

where the a_{i} are atoms and false is a special atom that is false in all interpretations.

A Horn clause is either a definite clause or an integrity constraint.

Negative Conclusions

$>$ Negations can follow from a Horn clause KB.
The negation of α, written $\neg \alpha$ is a formula that
ν is true in interpretation I if α is false in I, and
$>$ is false in interpretation I if α is true in I.

Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow c .
\end{array}\right\} \quad K B \models \neg c
$$

Disjunctive Conclusions

$>$ Disjunctions can follow from a Horn clause KB.
The disjunction of α and β, written $\alpha \vee \beta$, is
$>$ true in interpretation I if α is true in I or β is true in I (or both are true in I).
∇ false in interpretation I if α and β are both false in I.

Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow d .
\end{array}\right\} \quad K B \models \neg c \vee \neg d
$$

Questions and Answers in Horn KBs

An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.

A conflict of $K B$ is a set of assumables that, given $K B$ imply false.

A minimal conflict is a conflict such that no strict subset is also a conflict.

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

$>\{c, d\}$ is a conflict
$>\{c, e\}$ is a conflict
$>\{c, d, e, h\}$ is a conflict

Using Conflicts for Diagnosis

Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
$>$ A light can't be both lit and dark. An outlet can't be both live and dead:

$$
\begin{aligned}
& \text { false } \Leftarrow \operatorname{dark}(L) \& \operatorname{lit}(L) \\
& \text { false } \Leftarrow \operatorname{dead}(L) \& \operatorname{live}(L) .
\end{aligned}
$$

> Make $o k$ assumable: assumable $(o k(X))$.
$>$ Suppose switches s_{1}, s_{2}, and s_{3} are all up: $u p\left(s_{1}\right) . u p\left(s_{2}\right) . u p\left(s_{3}\right)$.

Electrical Environment

$\operatorname{lit}(L) \Leftarrow \operatorname{ligh} t(L) \& o k(L) \& \operatorname{live}(L)$.
live $(W) \Leftarrow$ connected_to $\left(W, W_{1}\right) \&$ live $\left(W_{1}\right)$.
live $($ outside $) \Leftarrow$ true.
$\operatorname{light}\left(l_{1}\right) \Leftarrow$ true.
$\operatorname{light}\left(l_{2}\right) \Leftarrow$ true.
connected_to $\left(l_{1}, w_{0}\right) \Leftarrow$ true.
connected_to $\left(w_{0}, w_{1}\right) \Leftarrow u p\left(s_{2}\right) \& o k\left(s_{2}\right)$.
connected_to $\left(w_{1}, w_{3}\right) \Leftarrow u p\left(s_{1}\right) \& o k\left(s_{1}\right)$.
connected_to $\left(w_{3}, w_{5}\right) \Leftarrow o k\left(c b_{1}\right)$.
connected_to $\left(w_{5}\right.$, outside $) \Leftarrow$ true.
$>$ If the user has observed l_{1} and l_{2} are both dark: $\operatorname{dark}\left(l_{1}\right) . \operatorname{dark}\left(l_{2}\right)$.

There are two minimal conflicts:

$$
\begin{aligned}
& \left\{o k\left(c b_{1}\right), o k\left(s_{1}\right), o k\left(s_{2}\right), o k\left(l_{1}\right)\right\} \text { and } \\
& \left\{o k\left(c b_{1}\right), o k\left(s_{3}\right), o k\left(l_{2}\right)\right\} .
\end{aligned}
$$

> You can derive:

$$
\begin{aligned}
& \neg o k\left(c b_{1}\right) \vee \neg o k\left(s_{1}\right) \vee \neg o k\left(s_{2}\right) \vee \neg o k\left(l_{1}\right) \\
& \neg o k\left(c b_{1}\right) \vee \neg o k\left(s_{3}\right) \vee \neg o k\left(l_{2}\right) .
\end{aligned}
$$

$>$ Either $c b_{1}$ is broken or there is one of six double faulss.

A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
$>$ A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
> Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
$>$
Example: For the proceeding example there are seven minimal diagnoses: $\left\{o k\left(c b_{1}\right)\right\},\left\{o k\left(s_{1}\right), o k\left(s_{3}\right)\right\}$, $\left\{o k\left(s_{1}\right), \operatorname{ok}\left(l_{2}\right)\right\},\left\{\operatorname{ok}\left(s_{2}\right), \operatorname{ok}\left(s_{3}\right)\right\}, \ldots$

Meta-interpreter to find conflicts

\% dprove $\left(G, D_{0}, D_{1}\right)$ is true if list D_{0} is an ending of list D_{1} \% such that assuming the elements of D_{1} lets you derive G.
dprove (true, $D, D)$.
dprove $\left((A \& B), D_{1}, D_{3}\right) \leftarrow$ $\operatorname{dprove}\left(A, D_{1}, D_{2}\right) \wedge \operatorname{dprove}\left(B, D_{2}, D_{3}\right)$.
dprove $(G, D,[G \mid D]) \leftarrow \operatorname{assumable}(G)$.
dprove $\left(H, D_{1}, D_{2}\right) \leftarrow$

$$
(H \Leftarrow B) \wedge \operatorname{dprove}\left(B, D_{1}, D_{2}\right)
$$

conflict $(C) \leftarrow$ dprove(false, [], $C)$.
false $\Leftarrow a$.
$a \Leftarrow b \& c$.
$b \Leftarrow d$.
$b \Leftarrow e$.
$c \Leftarrow f$.
$c \Leftarrow g$.
$e \Leftarrow h \& w$.
$e \Leftarrow g$.
$w \Leftarrow d$.
assumable d, f, g, h.

Bottom-up Conflict Finding

$>$ Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
$>$ Initially, conclusion set $C=\{\langle a,\{a\}\rangle: a$ is assumable $\}$.
$>$ If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.
\rangle If $\left\langle a, A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subset A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.
\rangle If $\left\langle\right.$ false, $\left.A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subseteq A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.

Bottom-up Conflict Finding Code

$C:=\{\langle a,\{a\}\rangle: a$ is assumable $\} ;$
repeat
select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in T such that $\left\langle b_{i}, A_{i}\right\rangle \in C$ for all i and there is no $\left\langle h, A^{\prime}\right\rangle \in C$ or $\left\langle\right.$ false, $\left.A^{\prime}\right\rangle \in C$ such that $A^{\prime} \subseteq A$ where $A=A_{1} \cup \ldots \cup A_{m}$;
$C:=C \cup\{\langle h, A\rangle\}$
Remove any elements of C that can now be pruned; until no more selections are possible

Integrity Constraints in Databases

> Database designers can use integrity constraints to specify constraints that should never be violated.

Example: A student can't have two different grades for the same course.
false \leftarrow

$$
\begin{aligned}
& \operatorname{grade}\left(S t, \text { Course }, G r_{1}\right) \wedge \\
& \operatorname{grade}\left(S t, \text { Course } G r_{2}\right) \wedge \\
& G r_{1} \neq G r_{2} .
\end{aligned}
$$

$>$ When false is derived, HOW can be used to debug the ${ }^{4} \mathrm{~KB}$.

