Partial-Order Planning

- traditional planner enforce a total ordering on the actions
- leads to a high number of alternative plans, even if the sequence of actions is irrelevant
- partial-order planning:
 - leave the order of actions underspecified
 - only commit to an ordering when forced to do
- also called non-linear planner

Partial Order

 explicit linear precedence relation between the possible actions of a plan

 $A_0 < A_1$

- linear precedence is transitive and asymmetric
- additionally assumed pseudo actions start and finish
- any total ordering consistent with the partial ordering is a solution
- two step procedure:
 - obtain a partial plan
 - extract a solution

Causal Links

• every precondition P of A_1 will have an action A_0 associated that achieves that precondition

 $cl(A_0, P, A_1)$

- if there is a causal link between A_0 and A_1 , $A_0 < A_1$ must be part of the plan
- A_0 is said to support P
- any action A_2 which deletes P must be either before A_0 or after A_1

Partial Plan

- a partial plan is a 3-tupel $(\mathcal{A}, \mathcal{O}, \mathcal{L})$ with
 - A a set of actions
 - \mathcal{O} a linear precedence relation over (\mathcal{A})
 - *L* a set of causal links
- plan $P_1 = (A_1, \mathcal{O}_1, \mathcal{L}_1)$ is an extension of plan $P_2 = (A_2, \mathcal{O}_2, \mathcal{L}_2)$ if $A_2 \subseteq A_1$ and $\mathcal{O}_2 \subseteq \mathcal{O}_1$ and $\mathcal{L}_2 \subseteq \mathcal{L}_1$
- action A threatens a causal link $cl(A_0, P, A_1)$ if A_0 deletes P
- a plan is safe whenever action A threatens $cl(A_0, P, A_1)$, the partial order A entails either $A < A_0$ or $A_1 < A$

Algorithm

- agenda: list of subgoals $goal(P, A_1)$
- initially: preconditions for finish, i.e. the final goal to be achieved
- choose a subgoal P which is a precondition for action A_1
- choose an action A_0 which supports P
 - if A_0 is already in the agenda:
 - add an ordering constraint $A_0 < A_1$
 - add a causal link between $cl(A_0, P, A_1)$
 - for any action A_2 in the plan that threatens P add a precedence constraint $A_2 < A_0$ or $A_1 < A_2$
 - if A_0 is a new action

UH

add its preconditions to the agenda

continue until the agenda is empty

Algorithm

- nondeterministic procedure with two choice points
 - Which action A_0 to selected to achieve P?
 - Whether to place action A_2 which deletes P before A_0 or after A_1 ?
- if actions may occur twice in a plan, they need to be indexed to be able to order instances of actions

Example

- goal: $carrying(rob, parcel) \land sitting_at(rob, lab2)$
- call:

```
? - pop(

plan([start, finish], [start < finish], []),

[goal(carrying(rob, parcel), finish),

goal(sitting_at(rob, lab2), finish)],

[]).
```


Example (cont.)

- select the first subgoal: goal(carrying(rob, parcel), finish)
- resulting plan:

 $plan([pickup(rob, parcel, P), start, finish], \\ [start < finish, \\ start < pickup(rob, parcel, P), \\ pickup(rob, parcel, P) < finish], \\ [cl(pickup(rob, parcel, P), carrying(rob, parcel), finish)])$

resulting agenda:

 $[goal(sitting_at(rob, lab2), finish), \\goal(sitting_at(parcel, P), pickup(rob, parcel, P)), \\goal(at(rob, P), pickup(rob, parcel, P))]$

Example (cont.)

- select the next subgoal: $goal(sitting_at(rob, lab2), finish)$
- resulting plan:

 $plan([move(rob, o103, lab2), pickup(rob, parcel, P), start, finish], \\ [start < finish, \\ start < pickup(rob, parcel, P), \\ pickup(rob, parcel, P) < finish, \\ start < move(rob, o103, lab2), \\ move(rob, o103, lab2) < finish], \\ [cl(move(rob, o103, lab2), sitting_at(rob, lab2), finish), \\ cl(pickup(rob, parcel, P), carrying(rob, parcel), finish)])$

Example (cont.)

• resulting agenda:

 $[goal(sitting_at(parcel, P), pickup(rob, parcel, P)),\\goal(at(rob, P), pickup(rob, parcel, P)),\\goal(unlocked(door1), move(rob, o103, lab2)),\\goal(sitting_at(rob, o103), move(rob, o103, lab2))]$

Example

Efficiency issues

- hierarchical planning
 - describe the problem space on different levels of granularity

traveling to Hong Kong			
reaching the airport		flying	finding the hotel
going by train	calling a taxi		preparing the a taxi address

Efficiency issues

- preprocessing
 - collect information about the planning problem
- reordering goals
 - computing of a goal agenda
 - fundamental relation: B needs to be achieved before B
 - domain dependent: $washing(X) \prec drying(X)$
 - domain independent: B cannot be achieved after A has been achieved
- incremental plan extension
 - start with a subset of goals

UHP extend it by including an increasing number of goals

Reactive planning

- the plan has to be found within certain temporal bounds
- incremental planning
 - planning and action needs to be interleaved
- plan refinement
 - start with a tentative plan and try to improve it by transformation

