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Using Uncertain Knowledc

Agents don’t have complete knowledge about the wo

| Agents need to make decisions based on their uncert

It isn’t enough to assume what the world is like.
Example: wearing a seat belt.

An agent needs to reason about its uncertainty.

When an agent makes an action under uncertainty it

gambling=— probabillity.
2
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Probabilit

L1 Probability is an agent’s measure of belief in some
proposition — subjective probability.

L1 Example:Your probability of a bird flying is your
measure of belief in the flying ability of an individual
based only on the knowledge that the individual is a

L1 Other agents may have different probabilities, as
may have had different experiences with birds or
different knowledge about this particular bird.

L1 An agent’s belief in a bird’s flying ability is affectec
by what the agent knows about that bird.

Ll
[]
H
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Numerical Measures of Bell

1 Belief in propositionf, can be measured in terms of a
number between O @nl — this is the probability off .

Ll The probabilityf is 0 means thdt is believed to be
definitely false.

L1 The probabilityf is 1 means thdt is believed to be
definitely true.

L] Using 0 and 1 is purely a convention.

L1 f has a probability between 0 and 1, doesn’t me&n
true to some degree, but means you are ignorant of i
truth value. Probability is a measure of your igno?fanmg
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Random Variable

L] A random variableis a term in a language that can ta
one of a number of different values.

L] The domain of a variableX, written dom(X), is the set
of valuesX can take.

L1 Atuple of random variable&Xy, ..., X,) is a complex
random variable with domaitiom(X;1) x - -- x dom(X).
Often the tuple Is written aXy, ..., X;.

L] Assignmen X = x means variablX has valuex.

L1 A proposition is a Boolean formula made from

i : 5
assignments of values to variables.

jDI:J
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Possible World Semanti

L1 A possible worldspecifies an assignment of one valt
to each random variable.

] wEX=Xx
means variabl&X is assigned valur in world w.

1 Logical connectives have their standard meaning:

WEaABIfwlEoaandw = B

WEaVBifwWEooOrwE= S

WE —aif W o

L] Let 2 be the set of all possible worlds. °

jDI:J
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Semantics of Probabillity: finite ce

For a finite number of possible worlds:

L]l Define a nonnegative measuyréw) to each set of worlc
w so that the measures of the possible worlds sum tc

The measure specifies how much you think the warlc
IS like the real world.

L1 The probability of propositionf is defined by:

P(f) =) ).
wf

jDI:J
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Axioms of Probabillity: finite cas

Four axioms define what follows from a set of probabilitie

Axiom 1 P(f) = P(g) If f < gis atautology. That is,
logically equivalent formulae have the same probabill

Axiom 2 0 < P(f) for any formulaf .

Axiom 3 P(t) = 11if t Is a tautology.
Axiom 4 P(f vg) = P({)+ P(g) If =(f A Q) is atautology

These axioms are sound and complete with respect to th
8

Ll
[]
H

semantics.
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Semantics of Probability: general c:

In the general case we have a measure on sets of possik
worlds, satisfying:

L] w(S) >0forallScC Q
0 () =1
L w(SUS) =wS) +u)ifSSNS ={.

Or sometimes -additivity:

M(US) =Zu<s> ifSNS ={

ThenP(x) = n({wjw = «o}). 9

jDD
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Probability Distribution:

L1 A probability distribution on a random variabeis a
functiondom(X) — [0, 1] such that

X P(X = X).
This is written adP(X).

L] This also includes the case where we have tuples of
variables. E.g.P(X,Y,Z) meanP((X, Y, Z)).

L] Whendom(X) is infinite sometimes we need a

probability density function... 0

jDI:J


http://www.cs.ubc.ca/spider/poole/ci.html

Ll Probabilistic conditioning specifies how to revise beli
based on new information.

L] You build a probabilistic model taking all background
Information into account. This gives the
prior probability.

L1 All other information must be conditioned on.

L] If evidenceeis the all of the information obtained
subsequently, th conditional probabilityP(h|e) of h

givene s the posterior probabilityof h. 11

jDD
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Semantics of Conditional Probabill

Evidenceerules out possible worlds incompatible weth
Evidencee induces a new measunee, over possible worlds

%x,u(a)) If w =e

If w &= e

te(w) =

The conditional probabillity of formull given evidence is

Phle) = ) ue(w)

wk=h

P(hAe)
P(e) 12

jDI:J
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Properties of Conditional Probabiliti

L] Chain rule:
PfiAfoA... AT
= P(f1) x P(f2|f1) x P(f3|fy A f2)

n
= [[Pdilfin- Afi_y)
=1

13

jl:lD
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Bayes’ theore

The chain rule and commutativity of conjunctidmA eis
equivalent tee A h) gives us:
P(hane) = P(hle) x P(e)
— P(elh) x P(h).
If P(e) # O, you can divide the right hand sides Bye):

P(elh) x P(h)
Pee

P(hle) =

This is Bayes’ theorem. »

]
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Why Is Bayes’ theorem interestin

1 Often you have causal knowledge:
P(symptom | disease)
P(light is off | status of switches and switch positions)
P@arm| fire)
P(imagelookslike-: | atreeisin front of a car)

L] and want to do evidential reasoning:
P(disease | symptom)
P(status of switches | light is off and switch positions)
P(fire | alarm).
P(atreeisin front of a car | imagelookslike-:) 15

]
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Conditional independent

Random variabl&X is independentof random variabley
given random variable if, for all x; € dom(X),

yj € dom(Y), yk € dom(Y) andzy € dom(Z2),
PX=X|Y=Y,ANZ =12Zn)
= PX=X|Y=WAZ=2y)
= PX=X|Z =1zm).

That is, knowledge of’s value doesn’t affect your belief in

the value ofX, given a value oF. 6
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Example domain (diagnostic assist

outside power

_@_ circuit
breaker
switch

twq-way

switch
light

o
i
-
o
_0

ower
gutlet 17

jl:lD
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Examples of conditional independe

The identity of the queen of Canada is independent ¢
whether lighti 1 is lit given whether there is outside
power.

Whether there is someone in a room is independent
whether a light2 is lit given the position of switck3.

Whether lighti1 is lit is independent of the position of
light switchs2 given whether there is power in wive,.

Every other variable may be independent of whether
light I1 is lit given whether there is power in wive, and
the status of light (if it's ok, or if not, how it's broken)
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|dea of belief networ

Whetherll is lit (I1_lit) de-
pends only on the status of the

light (11_st) and whether there G G
IS power in wirew0. Thus,

11 lit Is Independent of the

other variables givehl st and

wO. In a belief networkwO and

|1 st are parentsof |1 lit.

Similarly, wO depends only on whether there is powewih
whether there is power w2, the position of switcls2 "
(s2_pos), and the status of switcs® (s2_st).

jDD
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]

Belief networks
Totally order the variables of interesty, ..., X,

Theorem of probability theory (chain rule):
P(X1, ..., Xn) = [TiLs PXiIXa, ..., Xi—1)

The parentsmx, of X; are those predecessorsXfthat
renderX; independent of the other predecessors. The

SOP(Xy, ..., Xn) = [T, P(Xilmx)

L1 A belief network is a graph: the nodes are random

variables; there is an arc from the parents of eacz:gl NC
Into that node.

Ll
[]
H
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Belief network summar

A belief network is automatically acyclic by constructi

A belief network is a directed acyclic graph (DAG)
where nodes are random variables.

The parentsof a noden are those variables on which
directly depends.

A belief network is a graphical representation of
dependence and independence:

L1 Avariable is independent of its nondescendants ¢
its parents. 21

Ll
[]
H
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Components of a belief netwc

A belief network consists of:

L] adirected acyclic graph with nodes labeled with ranc
variables

| | adomain for each random variable

] a set of conditional probability tables for each variabl

given its parents (including prior probabilities for nod
with no parents).

22

jDI:J


http://www.cs.ubc.ca/spider/poole/ci.html

Example belief networ

COutside_power>

SEA: 7

:IDD
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Example belief network (continue

The belief network also specifies:

[l The domain of the variables:
W, . .., Wg have domairflive, dead}
S1_p0S, S, pos, andss_pos have domairfup, down}

s1 st has{ok, upside _down, short, intermittent, brokenj.

1 Conditional probabilities, including:
P(wy =livel]s; pos=Up A S st = ok A wg = live)
P(wp = livels; pos=up A S;_ St = o0k A w3z = dead)
P(s1_pos = up)

P(s;_st = upside down) 24

jDI:J
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Constructing belief networ

To represent a domain in a belief network, you need to
consider:

What are the relevant variables?

| What values should these variables take?

| What is the relationship between them? This should
expressed in terms of local influence.

L] How does the value of one variable depend on the
variables that locally influence it (its parents)? This s
expressed in terms of the conditional probabilityzﬁabée

[]
i
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Using belief network

The power network can be used in a number of ways:

L] Conditioning on the status of the switches and circuit
breakers, whether there is outside power and the po:
of the switches, you can simulate the lighting.

L] Given values for the switches, the outside power, anc
whether the lights are lit, you can determine the post
probability that each switch or circuit breakeolsor not.

L] Given some switch positions and some outputs and :
Intermediate values, you can determine the probabili
! : 26
any other variable in the network.

OJ
5
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Understanding independence: example

AN
YAEPA
Nt
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Understanding independence: questions

L] On which given probabilities does P(N) depend?

L1 If you wereto observe avaluefor B, which variables
probabilities will change?

L1 If you wereto observe avaluefor N, which variables
probabilities will change?

L1 Suppose you had observed avalue for M; if you were to
then observe avaluefor N, which variables
probabilities will change?

L] Suppose you had observed B and Q; which variables
probabilities will change when you observe N? *

jDI:J
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What variables are affected by observing?

L1 If you observe variable Y, the variables whose posterior
probability is different from their prior are:

| Theancestorsof Y and

] their descendants.

L] Intuitively (if you have a causal belief network):
L] You do abduction to possible causes and

[l prediction from the causes.
29

jDD
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Common descendants

amverng) - (fre

[]

[]

[]

tampering and fire are
Independent

tampering and fire are
dependent given alarm

Intuitively, tampering
can explain away fire

30

jl:lD
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Common ancestors

]

]

alarm and smoke are
dependent

alarmand smoke arein-
dependent given fire

Intuitively, fire can
explain  fire and
smoke; learning one
can affect the other by
changing your belief in
fire. 31

jl:lD
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[]

alarm and report are
dependent

alarm and report are
Independent given
leaving

Intuitively, the only
way that the alarm af-
fectsreport isby affect-
Ing leaving.

32

jl:lD


http://www.cs.ubc.ca/spider/poole/ci.html

d-separation

[l Xis d-separated fromY given Z if there is no path from
an element of X to an element of Y, where:
L] If thereare paths A —~ Band B — C suchthat B ¢ Z,
thereisapath A — C.
L] If therearepathsB — Aand B — C suchthat B ¢ Z,
thereisapath A — C.
L1 If thereare paths A — Band C — B suchthatB e Z,
thereisapath A — C.

[ Xisindependent Y given Z for some conditional

orobabilities iff X is d-separated from ¥ givenZ =~

]
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Belief network inference

Three main approaches to determine posterior distributionsin
belief networks:

L1 Exploiting the structure of the network to eliminate (sum
out) the non-observed, non-query variables one at atime.

| Search-based approaches that enumerate some of the
possible worlds, and estimate posterior probabilities
from the worlds generated.

L] Stochastic simulation where random cases are generated
according to the probability distributions. 34
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Summing out avariable: intuition

Suppose B isBoolean (B = trueisb and B = falseis —b)

(c) PCIA

= P(C ADBIA) + P(C A =b|A)

= P(C|b A APD|A) + P(C|=b A A)P(—Db|A)
o = P(CIb)P(bIA) + P(C|=b)P(=b|A)

= Y gP(C|B)P(B|A)
° We can compute the probability of some of the

variables by summing out the other variables. 35

Ll
[]
H
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A factor isarepresentation of afunction from atuple of
random variables into a number.

We will write factor f on variables Xg, ..., Xj as
f (X1, ..., %).

We can assign some or all of the variables of afactor:

L f(Xy=v1, X2, ..., X)), where vy € dom(Xy), isafactor
on Xz, ..., X.

L fX1=v1, Xo=Vy, ..., X =Vj) isanumber that isthe
value of f when each X; has value .

Theformer isalso written asf (X1, Xo, ..., X{)x; =v;, etcc.)’6

jDI:J
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Example factors

X Y Z|va Y Z|va

t t t|O01 t t)0l

C ot ot ool TX=LY, D)t |09

t f t |02 tot]02
rGY. )t ff |08 r fr]os

f t t |04 Y | va

bt 1706 rx=t,Y,z=H)1t |09

f f t |03 f |08

ff f]07 r(X:t,Y:f,Z:f):O:% :
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Multiplying factors

The product of factor f1(X, Y) and fo(Y, Z), where Y are the
variablesin common, is the factor (f; x f2)(X, Y, Z) defined
by:

fi x X, Y, 2) = f1(X, V)fa(Y, 2).

38

jDD
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Multiplying factors example

val

—h—hr—l-r—l->

—hf—l-—hf—l-w

0.1
0.9
0.2
0.8

val

—h—hf—l-r—l-w

—hr—l-—hr—i-o

0.3
0.7
0.6
0.4

f]_ X f2:

>
Y,
O

val

—fy =y =—f =~ ~ ~ ~

—t = o~ e ey ey e~ e~

b 2 T e i » D e s » T s e » D =

0.03
0.07
0.54
0.36
0.06
0.14
0.48
0.32

39

jDI:J
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Summing out variables

We can sum out avariable, say X; with domain {vq, ..., W},
from factor f (Xq, ..., Xj), resulting in afactor on Xo, ..., X;
defined by:

Y HXa, ... %)

= 1=V, ... X))+ +TKi=W, ..., X))

40

jDD
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Multiplying factors example

A B C

val

t

— @ =h @ —h = o~

t

t
f
f

t
f

[ o T o . . T o o

0.03
0.07
0.54
0.36
0.06
0.14
0.48
0.32

ZB f3Z

A C| vd
t t | 0.57
t f | 043
f t | 054
f f |0.46

41

jDI:J
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If we want to compute the posterior probability of Z given
evidence Yy =Vi A ... A Y] =V

PZIY1=Vi,...,Y,=V)
P(Z,Y1=V1,...,Y]=V)
P(Yi=vi, ..., Y[ =V)
P(Z,Yi=Vv1,...,Yj=V))
S PZ, Yi=Vi, ..., Y, =V).

So the computation reduces to the probability of
P(Z, Yi=Vq,..., YJ =VJ)

42
We normalize at the end.

jDI:J
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Probability of a conjunction

Suppose the variables of the belief network are X4, ..., X.

To compute P(Z, Y1 =V1, ..., Yj =Vj), we sum out the other
variables, Z1, ..., Zx = {Xl,...,Xn}—{Z}—{Yl,...,Yj}.

We order the Z; into an elimination ordering.

Z Z 1_[ P(X| |TL’XI)Yl Vi, Yj =V~

Z]_Il 43

jDI:J
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

1 How can we compute ab + ac efficiently?

44

jDD
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

1 How can we compute ab + ac efficiently?

| Distribute out the a giving a(b + ¢)

45

jDD


http://www.cs.ubc.ca/spider/poole/ci.html

Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

1 How can we compute ab + ac efficiently?
| Distribute out the a giving a(b + ¢)

] How canwe compute Y, TiL; P(Xilmx) efficiently?

46

jDI:J
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

1 How can we compute ab + ac efficiently?
| Distribute out the a giving a(b + ¢)
] How canwe compute Y, TiL; P(Xilmx) efficiently?

| | Distribute out those factors that don’t involve Zj.

47

jDI:J
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Variable elimination algorithm

Tocompute P(Z|Y1=Vi A ... A Y] =V,):

| Construct afactor for each conditional probability.

Set the observed variables to thelr observed values.

Sum out each of the other variables (the {Z1, ..., Zk})
according to some elimination ordering.

Multiply the remaining factors. Normalize by dividing

the resulting factor f (Z) by > ", f(Z).
48

jDI:J
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Summing out a variable

To sum out avariable Z; from aproduct fq, .. ., fx of factors:

L] Partitiont
] thoset

he factors into

nat don’'t contain Zj, say fy, . . ., fi,

L] thoset

We know:

Zflx-
Z]

L] Explicitly

nat contain Zj, say fit1, ..., fk

oxfr=f1x - xfix (Zfi+1x---xfk) .
Z

construct a representation of the rightmost

factor. Replacethe factorsfiq, ..., fx by the new fa%qtorg

4
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Variable elimination example

— f1(B)
P(B|A)

P(C) |

P(D|BC) eim C f2(BDE)
P(E|C)

P(F|D)

P(G|FE)

P(A) } dim A

P(H|G) } Ob—S>H f3(G)

50

P(|G) } eim| f4(G)

]
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[l A Markov chainis a special sort of belief network:

L ThusP(§41l%, - -+, &) = P(§+119)-

L1 OftenS represented th state at timet. Intuitively §

conveys all of the information about the history that c
affect the future states.

L] “The past is independent of the future given the pres:

0]
o
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Stationary Markov chal

L] A stationary Markov chairis when for allt > 0, u > 0,
P(S:1|S) = P(Su+1]S,) we have .

] We specifyP(S) andP(S41|S).

L] Itis of interest because:

Simple model, easy to specify

| Natural

The network can extend indefinitely

52

jDD
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L] A Hidden Markov Model (HMM) is a belief network:

OnaOnaOnaOnaO
(@ @ ©@ ©@ (o

Hidden Markov Mode

P(S) specifies initial conditions
P(S.1|S) specifies the dynamics

P(G|S) specifies the sensor model

53

jl:lD
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Example: localizatio

L] Suppose a robot wants to determine its location base
Its actions and its sensor readings. Ca Localization

L] This can be represented by the augmented HMM:
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Example localization doma

Circular corridor, with 16 locations:

) 6 7 8 9 10 11 12 13 14 15
Doors at positions: 2,4, 7, 11.

Noisy Sensors

Stochastic Dynamics

Robot starts at an unknown location and must deterr
where it Is. 55

O
[l
i
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Example Sensor Mod

| P(Observe Door | At Door) = 0.8
] P(Observe Door | Not At Door) = 0.1

56

jl:lD
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Example Dynamics Modk

P(loci11 = L|action; = goRight Aloci = L) = 0.1
P(loci+ 1 = L + 1|action; = goRight A loc; = L) = 0.8
P(oci11 = L+ 2|action; = goRight Aloc; = L) = 0.074

P(loci 1 = L'|action; = goRight A loc; = L) = 0.002
for any other location.’.
L] All location arithmetic is modulo 16.

L] The actiongoLeft works the same but to the left.
57

jDI:J
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Sensor Fusio

L] We can have many (noisy) sensors for a property.

L] Example:

Animal Type)

SR
(522) () () (52228
58

Ll
[]
H
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Making Decisions Under Uncertal

What an agent should do depends on:

L] What the agent believed\ot only the most likely state
of affairs, but all ways the world could be, given the
agent’s knowledge. Sensing the world updates the
agent’s beliefs by conditioning on what is sensed.

Ll The agent’s goalsWhen an agent has to reason unds
uncertainty, it has to consider not only what will most
likely happen but everything that may possibly happe

Decision theory specifies how to trade off the desiralé)gility

probabilities of the possible outcomes for competing acti
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[]

Decision Variable

L1 Decision variablesare like random variables that an
agent gets to choose the value of.

A possible world specifies the value for each decisior
variable and each random variable.

For each assignment of values to all decision variabls
the measures of the worlds satisfying that assignmer
sum to 1.

The probability of a proposition is undefined unless y
condition on the values of all decision variables.60

Ll
[]
H
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Decision Tree for Delivery Rob

The robot can choose to wear pads to protect itself or not
The robot can choose to go the short way past the stairs
long way that reduces the chance of an accident.

There is one random variable of whether there is an accit

accidenty, w0 - moderate damage

wl - quick, extra weight

short way

Nno accident

wear pads long way accidenty, w2 - moderate damage
no accident> W3 - slow, extra weight
accidenty, w4 - severe damage
don’t short way no accident > W5 - quick, no weight
wear _
pads accidenty, w6 - severe damage

long way 61

w7 - slow, no weight

no acciden
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Expected Value

The expected value of a numerical random variable is its
average value, weighting possible worlds by their probab

Suppose/ is a numerical random variable aads a possibl
world. Letp(V, w) be the valu such thatw =V = x.

The expected valueof V Is

EV) = ) p(V.0) x pw),

wel2

The conditional expected valuef V giveneis

EVIe) = ) p(V,0) X pe(w).
wkE=e

62
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Utility Is a measure of desirability of worlds to an age

Let U be a real-valued random variable such that
o (U, w) represents how good the world is to an agen

Simple goals can be specified by: worlds that satisfy
goal have utility 1; other worlds have utility O.

Often utilities are more complicated: for example, me
up from the amount of damage to a robot, how much
energy it has used up, what goals are achieved, and
much time it has taken. 63
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Single decision

In a single decision, the agent chooses a value for each
decision variable. Let compound decision variadlee the

tuple of all original decision variables. The agent can chc

d = dj for anyd;, € dom(d).
The expected utility of decisiond = d; isE(U |d = d)).

An optimal single decisions the decisior = dyax Whose
expected utility Is maximal:

EU|d=dmx) = max EU|d =d).
di edom(d) 64
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Sequential Decisio

An intelligent agent doesn’t make a multi-step decisic
and carry it out without considering revising it based
future information.

A more typical scenario is where the agent:
observes, acts, observes, acts, ...

Subsequent actions can depend on what is observec
What is observed depends on previous actions.

Often the sole reason for carrying out an action is to
provide information for future actions.

For example: diagnostic tests, spying. %
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Sequential decision proble

L] A sequential decision problemonsists of a sequence
decision variabledy, ..., d,.

] Eachd; has ar information setof variablesrg,, whose
value will be known at the time decisiah is made.

L] A policy is a sequencéy, ..., 8, of decision functions
§j : dom(mrg ) — dom(d).
This policy means that when the agent has observed
O € dom(mg,), it will do §;(O). o6
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Decision Network

L1 A decision networkis a graphical representation of a
finite sequential decision problem.

| ] Decision networks extend belief networks to include
decision variables and utility.

L1 A decision network specifies what information is
avalilable when the agent has to act.

L1 A decision network specifies which variables the utili
depends on.

67
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Decisions Networ

L1 A random variableis drawn as an
ellipse. Arcs into the node represent
probabilistic dependence.

] A decision variableis drawn as an
rectangle. Arcs into the node repre-
sent information available when the
decision is make.

Ll A value node is drawn as a dia-
mond. Arcs into the node represent
values that the value depends oms

Ll
[]
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Example Decision Netwo

This shows explicitly which nodes affect whether there is
accident. 69
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Decision Network for the Alarm Proble

see smoke

check

report

e for
smoke

W

call
fire
department
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Expected Value of a Polic

Ll A policy § is an assignment of a decision function

[]

§i : dom(rrg ) — dom(d;) to each decision variabl.

Possible worldv satisfiespolicy §, writtenw = § if the
world assigns the value to each decision node that tr
policy specifies.

The expected utility of policys Is

E@) = ) p(U, o) x u(w),
wk=6

An optimal policy is one with the highest expected
71
utility.
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Finding the optimal polic

,

[]

[]

]
]

If value node is only connected to a de

cision node and (some of) its parents
select a decision to maximize valut

for each assignment to the parent.

If itisn’t of this form, eliminate the non-
observed variables.

Replace decision node with value nod

Repeat till there are no more decisio
nodes. r2

OJ
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Reduced Alarm Examp

Eliminate the non-observed variables for the final decisio

Y
U
see smoke
check
report for
smoke
call

fire
department

73
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Complexity of finding the optimal polic

] If there arek binary parents, there a 2€ optimizations.

L] If there areb possible actions, there a v policies.

Ll The dynamic programming algorithm is much more
efficient than searching through policy space.

74
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Value of Informatio

L] We can determine the value of informatiXrfor a certair
decisionD is utility of the the network with an arc fron
X to D minus the utility of the network without the arc

L] The value of information is always non-negative.

L1 Itis positive only if the agent changes its action
depending oiX.

75
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