
Computational Intelligence Slides Online Click on a highlighted lecture

Chapter 5: Representing Knowledge

➤ Lecture 1 Knowledge representation issues. Defining a

solution. Choosing a representation. Mapping from a

problem to a representation.

➤ Lecture 2 Choosing objects and relations. Semantic

networks, frames, primitive and derived relations.

➤ Lecture 3 Knowledge sharing, ontologies.

☞ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002 ☞ ☞
1

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 1

Representing Knowledge
Given a problem to solve, how do you solve it?

➤ What is a solution to the problem?

➤ What do you need in the language to represent the
problem?

➤ How can you map from the informal problem description
to a representation of the problem?

➤ What distinctions in the world are important to solve the
problem?

➤ What knowledge is required?

➤ What level of detail is required?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

2

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 2

➤ What reasoning strategies are appropriate?

➤ Is worst-case performance or average-case performance

the critical time to minimize?

➤ Is it important for a human to understand how the answer

was derived?

➤ How can you acquire the knowledge from experts or

from experience?

➤ How can the knowledge be debugged, maintained, and

improved?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

3

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 3

Knowledge representation framework

problem

representation

solution

output

solve

compute

informal

formal
represent interpret

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

4

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 4

Defining a Solution

➤ Given an informal description of a problem, you need to

determine what would constitute a solution.

➤ Typically much is left unspecified, but the unspecified

parts can’t be filled in arbitrarily.

➤ Much work in AI is motivated by

common-sense reasoning. You want the computer to be

able to make common-sense conclusions about the

unstated assumptions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

5

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 5

Quality of Solutions

Does it matter if the answer is wrong or answers are missing?

Classes of solution:

Optimal solution the best solution according some measure

of solution quality.

Satisficing solution one that is good enough, according to

some description of which solutions are adequate.

Approximately optimal solution one whose measure of

quality is close to the best theoretically possible.

Probable solution one that is likely to be a solution.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

6

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 6

Decisions and Outcomes
➤ Good decisions can have bad outcomes. Bad decisions

can have good outcomes.

➤ Information can be valuable because it leads to better

decisions: value of information.

➤ You have to trade off computation time and solution

quality: an anytime algorithm can provide a solution at

any time; given more time it can produce better solutions.

You don’t only need to be concerned about finding the right

answer, but about acquiring the appropriate information, and

computing it in a timely manner.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

7

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 7

Solution quality and computation time

0 5 10 15 20

qu
al

ity

time

time independent quality
time-dependent value

time discount

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

8

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 8

Choosing a Representation Language

You need to represent a problem to solve it on a computer.



problem

−→ specification of problem

−→ appropriate computation




Example representations: C++, CILog/Prolog, English

A logic is a language + specification of what follows from

input in that language.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

9

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 9

Hierarchy of representations

problem solution

high-level specification

programming language

assembly language

digital circuit

currents and voltages

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

10

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 10

Knowledge & Symbol Levels

Two levels of abstraction seem to be common among

biological and computational entities:

Knowledge level in terms of an agent’s knowledge and

goals

Symbol level in terms of what symbols the agent is

manipulating.

The knowledge level is about the external world to the agent.

The symbol level is about what symbols an agent uses to

implement the knowledge level.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

11

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 11

Mapping from Problem to Representation
➤ What level of abstraction of the problem do you want to

have to represent?

➤ What objects and relations in the world do you want to

represent?

➤ How can you represent the knowledge to ensure that the

representation is natural, modular, and maintainable?

➤ How can you acquire the information from data, sensing,

experience, or other agents?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

12

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 1, Page 12

Choosing a level of abstraction

➤ A high-level description is easier for a human to specify

and understand.

➤ A low-level description can be more accurate and more

predictive. High-level descriptions abstract away details

that may be important for actually solving the problem.

➤ The lower the level, the more difficult it is to reason with.

➤ You may not know the information needed for a

low-level description.

It is sometime possible to use multiple levels of abstraction.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

13

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 1

Choosing Objects and Relations

How to represent: “Pen #7 is red.”

➤ 2 It’s easy to ask “What’s red?”

Can’t ask “what is the color ofpen7?”

➤ 3 It’s easy to ask “What’s red?”

It’s easy to ask “What is the color ofpen7?”

Can’t ask “What property ofpen7 has valuered?”

➤ 4 It’s easy to ask all these questions.

prop(Object, Attribute, Value) is the only relation needed:5

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

14

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 2

Choosing Objects and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”

Can’t ask “what is the color ofpen7?”

➤ 3 It’s easy to ask “What’s red?”

It’s easy to ask “What is the color ofpen7?”

Can’t ask “What property ofpen7 has valuered?”

➤ 4 It’s easy to ask all these questions.

prop(Object, Attribute, Value) is the only relation needed:5

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

15

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 3

Choosing Objects and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”

Can’t ask “what is the color ofpen7?”

color(pen7, red). It’s easy to ask “What’s red?”

It’s easy to ask “What is the color ofpen7?”

Can’t ask “What property ofpen7 has valuered?”

➤ 4 It’s easy to ask all these questions.

prop(Object, Attribute, Value) is the only relation needed:5

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

16

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 4

Choosing Objects and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”

Can’t ask “what is the color ofpen7?”

color(pen7, red). It’s easy to ask “What’s red?”

It’s easy to ask “What is the color ofpen7?”

Can’t ask “What property ofpen7 has valuered?”

prop(pen7, color, red). It’s easy to ask all these questions.

prop(Object, Attribute, Value) is the only relation needed:5

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

17

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 5

Choosing Objects and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”

Can’t ask “what is the color ofpen7?”

color(pen7, red). It’s easy to ask “What’s red?”

It’s easy to ask “What is the color ofpen7?”

Can’t ask “What property ofpen7 has valuered?”

prop(pen7, color, red). It’s easy to ask all these questions.

prop(Object, Attribute, Value) is the only relation needed:

object-attribute-value representation

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

18

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 6

Universality ofprop

To represent “a is a parcel”

➤ prop(a, is_a, parcel), whereis_a is a special attribute

➤ prop(a, parcel, true), whereparcel is a Boolean attribute

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

19

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 7

Reification

➤ To representscheduled(cs422, 2, 1030, cc208). “section

2 of coursecs422 is scheduled at 10:30 in roomcc208.”

➤ Let b123 name the booking:

prop(b123, course, cs422).

prop(b123, section, 2).

prop(b123, time, 1030).

prop(b123, room, cc208).

➤ We havereified the booking.

➤ Reify means: to make into an object.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

20

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 8

Semantics Networks

When you only have one relation,prop, it can be omitted

without loss of information.

Write

prop(Obj, Att, Value)

as

Obj Att Val

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

21

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 9

An Example Semantic Network

comp_2347
owned_by

craig

room

r107

building comp_sci

deliver_to

mingroom

building
r117

model

lemon_laptop_10000

brand

lemon_computer

logo
lemon_disc

color

brown

size

medium

weight

light

packing

cardboard_box

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

22

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 10

Equivalent Logic Program

prop(comp_2347, owned_by, craig).

prop(comp_2347, deliver_to, ming).

prop(comp_2347, model, lemon_laptop_10000).

prop(comp_2347, brand, lemon_computer).

prop(comp_2347, logo, lemon_disc).

prop(comp_2347, color, brown).

prop(craig, room, r107).

prop(r107, building, comp_sci).
...

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

23

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 11

Frames
The properties and values for a single object can be grouped
together into aframe.

We can write this as a list ofattribute = value or slot = filler.

[owned_by = craig,

deliver_to = ming,

model = lemon_laptop_10000,

brand = lemon_computer,

logo = lemon_disc,

color = brown,

· · ·]
© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

24

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 12

Primitive versus Derived Relations

Primitive knowledgeis that which is defined explicitly by

facts.

Derived knowledgeis knowledge defined by rules.

Example:All lemon laptops may have havesize = medium.

Associate this property with the class, not the individual.

Allow a special attributeis_a between an individual and a

class or between two classes that allows for

property inheritance.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

25

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 13

A Structured Semantic Network

comp_2347owned_by

craig

room

r107

building

comp_sci

deliver_to

ming
room

building

r117

is_a

logo
lemon_disccolorbrown

size

medium
weight

light

packing

cardboard_box

is_a

is_a

computer

lemon_computer

lemon_laptop_10000

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

26

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 14

Logic of Property Inheritance

An arc
p−→ n from a classc means every individual in the

class has valuen of attributep:

prop(Obj, p, n)←
prop(Obj, is_a, c).

Example:

prop(X, weight, light)←
prop(X, is_a, lemon_laptop_10000).

prop(X, is_a, lemon_computer)←
prop(X, is_a, lemon_laptop_10000).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

27

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 15

Multiple Inheritance

➤ An individual is usually a member of more than one

class. For example, the same person may be a mother, a

teacher, a football coach,….

➤ The individual can inherit the properties of all of the

classes it is a member of:multiple inheritance.

➤ If there are default values, we can have a problem when

an individual inherits conflicting defaults from the

different classes: multiple inheritance problem.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

28

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 2, Page 16

Choosing Primitive and Derived Relations

➤ Associate an attribute value with the most general class

with that attribute value.

➤ Don’t associate contingent properties of a class with the

class. For example, if all of current computers just

happen to be brown.

➤ Axiomatize in thecausaldirection. You want

knowledge that is stable as the world changes.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

29

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 3, Page 1

Knowledge Sharing

➤ If more than one person is building a knowledge base,

they must be able to share the conceptualization.

➤ A conceptualization is a map from the problem domain

into the representation. A conceptualization specifies:

➣ What sorts of objects are being modelled

➣ The vocabulary for specifying objects, relations and

attributes

➣ The meaning or intention of the relations or attributes

➤ An ontology is a specification of a conceptualization.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

30

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 3, Page 2

Semantic Web

➤ Ontologies are published on the web in machine readable

form and are publically readable.

➤ Builders of knowledge bases or web sites adhere to and

refer to a published ontology:

➣ the same symbol means the same thing across the

various web sites that obey the ontology.

➣ if someone wants to refer to some other object or

relation, the ontology is expanded. The community

needs to agree to the new terminology.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

31

http://www.cs.ubc.ca/spider/poole/ci.html

Semantic Information Processing
Based on the Semantic Web

• Web information is linked to a web-based ontology by means
of a XML annotation

• An ontology defines semantic relations between identifiers:
• synonyms, subclasses, superclasses
• classes vs. individuals
• properties of classes and relations between classes
• possible values for properties

• An inference system processes web information based on the
ontology and derives implicit knowledge

• For content-based information processing applications make
use of the inference system

32

Knowledge Based Systems
�

Ontology Definitions with DAML+OIL (1)
<daml:Class rdf:ID="Animal">
 <rdfs:label>Animal</rdfs:label>
 <rdfs:comment>
 This class of animals is illustrative of a number of ontological idioms.
 </rdfs:comment>
</daml:Class>

<daml:Class rdf:ID="Male">
 <rdfs:subClassOf rdf:resource="#Animal"/>
</daml:Class>

<daml:Class rdf:ID="Female">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <daml:disjointWith rdf:resource="#Male"/>
</daml:Class>

<daml:Class rdf:ID="Man">
 <rdfs:subClassOf rdf:resource="#Person"/>
 <rdfs:subClassOf rdf:resource="#Male"/>
</daml:Class>

(http://www.daml.org/2001/03/daml+oil)

33

Knowledge Based Systems
�

Ontology Definitions with DAML+OIL (2)
<daml:Class rdf:ID="Person">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#hasParent"/>
 <daml:toClass rdf:resource="#Person"/>
 </daml:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#hasFather"/>
 </daml:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#shoesize"/>
 <daml:minCardinality>1</daml:minCardinality>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

34

Knowledge Based Systems
�

Ontology Definitions with DAML+OIL (3)

<daml:ObjectProperty rdf:ID="hasParent">
 <rdfs:domain rdf:resource="#Animal"/>
 <rdfs:range rdf:resource="#Animal"/>
</daml:ObjectProperty>

<daml:DatatypeProperty rdf:ID="age">
 <rdfs:comment>
 age is a DatatypeProperty whose range is xsd:decimal.
 age is also a UniqueProperty (can only have one age)
 </rdfs:comment>
 <rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
 <rdfs:range rdf:resource="http://www.w3.org/2000/10/XMLSchema#nonNegativeInteger"/>
</daml:DatatypeProperty>

35

Knowledge Based Systems
�

Ontology Definitions with DAML+OIL (4)

<daml:Class rdf:about="#Person">
 <rdfs:subClassOf>
 <daml:Restriction daml:maxCardinalityQ="1">
 <daml:onProperty rdf:resource="#hasOccupation"/>
 <daml:hasClassQ rdf:resource="#FullTimeOccupation"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

<daml:UniqueProperty rdf:ID="hasMother">
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 <rdfs:range rdf:resource="#Female"/>
</daml:UniqueProperty>

<daml:ObjectProperty rdf:ID="hasChild">
 <daml:inverseOf rdf:resource="#hasParent"/>
</daml:ObjectProperty>

36

Knowledge Based Systems
�

Inferences Based on Ontologies - Example

Consistency check of E-business internet catalogue:

SPECIAL OFFER:

MMZ100, year 2000, à EUR 75,-

Elsewhere in the internet:

MMZ100 is a Multimedia Center
MMZ100 has a list price of DM 150,-
All entertainment systems built before 2002
are sold with 20% rebate on the list price
A Multimedia Center is a special TV set
A TV set is an entertainment system
1 EUR = 1,95583 DM

information is
inconsistent !

37

Computational Intelligence Chapter 5, Lecture 3, Page 3

Challenges of building ontologies

➤ They can be huge: finding the appropriate terminology

for a concept may be difficult.

➤ How one divides the world can depend on the application.

Different ontologies describe the world in different ways.

➤ People can fundamentally disagree about the appropriate

structure.

➤ Different knowledge bases can use different ontologies.

➤ To allow KBs based on different ontologies to

interoperate, there must be mapping between different

ontologies.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

38

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 3, Page 4

➤ It has to be in user’s interests to use an ontology.

➤ The computer doesn’t understand the meaning of the

symbols. The formalism can constrain the meaning, but

can’t define it.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

39

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 3, Page 5

Concept Hierarchy

➤ The core of an ontology are concept hierachies.

➤ A concept hierarchy is a tree (or trees) where

➣ the nodes correspond to concepts or classes and

➣ the parents of a node correspond to a more general

concept

➣ children of a node are mutually exclusive

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

40

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 5, Lecture 3, Page 6

Example Concepts in an Ontology

The following are some of the concepts in an ontology for

documents.

http://www.cs.umd.edu/projects/plus/DAML/onts/docmnt1.0.daml

homepage correspondence publication

letter periodical article

book letter magazine

journal document communication

workshopPaper journalPaper discussion

newspaper PersonalHomepage Speech

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

41

http://www.cs.ubc.ca/spider/poole/ci.html

