Computational Intelligence Chapter 6

Chapter 6: Knowledge Engineeri

Lecture 1 Knowledge-based systems, roles of people
iInvolved, implementing KBSs: base and metalanguaggs.

Lecture 2 Vanilla meta-interpreter, depth-bounded anc
delaying meta-interpreters.

Lecture 3 Users. Ask-the-user.

Lecture 4 Explanation and knowledge-based debuggigp
tools.

— ©David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1997 ‘" ——— 2

http://www.cs.ubc.ca/spider/poole/ci.html

Knowledge Engineeri

Overview:

[]

How representation and reasoning systems interact
humans.

Roles of people involved in a RRS.
Building RRSs using meta-interpreters.

Knowledge-based interaction and debugging tools

2

http://www.cs.ubc.ca/spider/poole/ci.html

Knowledge-based system architect

Inference
Engine
User
Domain > Knowledge Kng\évé%dge
Expert Engineer | _
3

m

http://www.cs.ubc.ca/spider/poole/ci.html

[]

[]

Roles for people in a KB

Software engineersuild the inference engine and us
Interface.

Knowledge engineerslesign, build, and debug the
knowledge base in consultation with domain experts.

Domain expertsknow about the domain, but nothing
about particular cases or how the system works.

Users have problems for the system, know about
particular cases, but not about how the system works
the domain. 4

C
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Implementing Knowledge-based Syste

To build an interpreter for a language, we need to disting!

L] Base languagé¢he language of the RRS being
Implemented.

L] Metalanguagethe language used to implement the
system.

They could even be the same language!

m

http://www.cs.ubc.ca/spider/poole/ci.html

Implementing the base langue

Let’s use the definite clause language as the base langu:
and the metalanguage.

L] We need to represent the base-level constructs in the
metalanguage.

L] We represent base-level terms, atoms, and bodies a:
meta-level terms.

L] We represent base-level clauses as meta-level facts.

L1 Inthe non-ground representatiobase-level variables
are represented as meta-level variables. 0

C
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Representing the base level constr

Base-level atonp(ty, ..., t,) Is represented as the
meta-level ternp(ty, ..., ty).

Meta-level termr oand(e;,) denotes the conjunction
base-level bodies; andey.

Meta-level constar true denotes the object-level emr
body.

The meta-level ator clauséh, b) iIs true if “hif b” is a

clause in the base-level knowledge base. ,

m

http://www.cs.ubc.ca/spider/poole/ci.html

Example representatic

The base-level clauses

connectedto(l1, Wp).

connectedto(wg, W) < up(sp).
lit (L) < light(L) A ok(L) A live(L).

can be

C
C
C

represented as the meta-level facts

ausgconnectedto(lq, wp), true).

ausgconnectedto(wp, W1), Up(s2)).

aus€lit (L), oand(light(L), oand(ok(L), live(L)))).

m

http://www.cs.ubc.ca/spider/poole/ci.html

Making the representation pre

L1 Use the infix function symbol “&” rather thaoand
L] instead of writingpand(e;, &), you writee; & .

L] Instead of writingclauseh, b) you can writeh < b,
where< is an infix meta-level predicate symbol.

|| Thus the base-level clausk “— a; A --- A&y is
represented as the meta-level atom
har & - & an.

m

http://www.cs.ubc.ca/spider/poole/ci.html

Non-ground Representation

Representing base-level expressions in a metalanguage:

syntactic construct
variable X
constant C
function symbol f
predicate symbol p
A

"and" operator

"if" operator <-
clause h<-a "..%a,
clause h.

meta-level representation
variable X
constant C
function symbol f

function symbol

o

function symbol
predicate symbol <=
atom h<=a, &..&a

atom h <= true.

10

Example representatic

The base-level clauses

connectedto(l1, Wp).
connectedto(wg, W) < up(sp).
lit (L) < light(L) A ok(L) A live(L).

can be represented as the meta-level facts

connectedto(l1, Wp) <« true.
connectedto(wg, Wy) < up(sp).
lit (L) < light(L) & ok(L) & live(L).

11

]

http://www.cs.ubc.ca/spider/poole/ci.html

Vanilla Meta-interprete

provegG) Is true when base-level bodyis a logical
consequence of the base-level KB.
provgtrue).
prove((A& B)) <«
proveA) A
provaB).
provaH) <
(H<B) A
provaB). 12

http://www.cs.ubc.ca/spider/poole/ci.html

Example base-level K

live(W) <
connectedto(W, W;) &
live(\W,).
live(outsidg « true.
connectedto(wg, Ws) < ok(chp).
connectedto(ws, outside « true.

ok(chp) « true.
provealive(wsg)).

13

m

http://www.cs.ubc.ca/spider/poole/ci.html

Expanding the base-le

Adding clauses increases what can be proved.

L] Disjunction Let a; b be the base-level representation
the disjunction ofa andb. Bodya; b is true whema is
true, orbis true, or botha andb are true.

L] Built-in predicatesYou can add built-in predicates su
asN is E that is true if expressiok evaluates to numbe
N.

14

m

http://www.cs.ubc.ca/spider/poole/ci.html

Expanded meta-interpre

provgtrue).
prove((A& B)) <«
provgA) A provaB).
prova (A; B)) < provaA).
prove((A; B)) < provaB).
prove((N ISE)) <«
N IS E.
provaH) «
(H <= B) A proveB).

15

m

http://www.cs.ubc.ca/spider/poole/ci.html

Depth-Bounded Seart

1 Adding conditions reduces what can be proved.

WROprove G, D) is true if G can be proved with a proof tre
Wof depth less than or equal to numlhzr

bprovegtrue, D).
bprovg (A& B), D) <«
bproveg A, D) A bproveB, D).
bproveaH, D) «
D>0ADji1sD—-1A
(H < B) A bprovaB, Dy). 16

m

http://www.cs.ubc.ca/spider/poole/ci.html

Delaying Goal

Some goals, rather than being proved, can be collected |
list.

1 To delay subgoals with variables, in the hope that
subsequent calls will ground the variables.

L] To delay assumptions, so that you can collect
assumptions that are needed to prove a goal.

L] To create new rules that leave out intermediate steps

L] To reduce a set of goals to primitive predicates. .,

m

http://www.cs.ubc.ca/spider/poole/ci.html

Delaying Meta-interpret

W prove G, Do, D7) is true if Dg Is an ending of list of

%delayable atomB1 andKB A (D1 — Do)

dprovetrue, D, D).
dprove (A & B), D1, D3) <«

= .

dprovegA, D1, Do) A dproveB, Do, D3).

dprove G, D, [G|D]) < delayG).
dprovaH, D1, Dy) «
(H < B) A dproveB, D1, D).

18

m

http://www.cs.ubc.ca/spider/poole/ci.html

Example base-level K

live(W) <
connectedto(W, W;) &
live(\W,).
live(outsidg « true.
connectedto(wg, Ws) < ok(chp).
connectedto(ws, outside < ok(outside connection.
delay(ok(X)).
2dprovelive(wsg), [], D).

19

]

http://www.cs.ubc.ca/spider/poole/ci.html

Knowledge Based Systems

Trace of dprove example

Each forward step is indicated as a box:

7<goal of proof step> <parent box#> <box#>
<matching clause of knowledge base before unification>
<matching clause of knowledge base after unification>

The box colors indicate: fail

SUCCESS

subgoal calls

Subgoal successes are fed back to the parent box:

<proved goal> <box#> -> <parent box#>

Knowledge Based Systems

Proof steps using dprove (1)

?dprove(live(w6), [|, D)
dprove(G, D, [GI D]) <- delay(G)
dprove(live(w6), [], [live(w(6)]) <- delay(live(w6))

?dprove(live(w6), [|, D)
dprove(H, D1, D2) <- (H <= B) adprove(B, D1, D2)
dprove(live(w6), [|, D) <- (live(w6) <= B) adprove(B, [], D)

?(live(w6) <= B)
live(W) <= connected_to(W, W1) & live(W1)
live(w6) <= connected_to(w6, W1) & live(W1)

?dprove(connected_to(w6, W1) & live(W1), [], D)

dprove((A & B), D4, D6) <- dprove(A, D4, DS) adprove(B, D5, D6)
dprove((connected_to(w6, W1) & live(W1)), [], D) <-
dprove(connected_to(w6, W1), [], DS) adprove(live(W1), D5, D)

2 4

Knowledge Based Systems

Proof steps using dprove (2)

?dprove(connected_to(w6, W1), [], DS)

dprove(G, D, [GI D]) <- delay(G)

dprove(connected_to(w6, W1), [], [connected_to(w6, W1)]) <-
delay(connected_to(w6, W1))

?dprove(connected_to(w6, W1), [], DS) 46
dprove(H, D7, D8) <- (H <= B) adprove(B, D7, D8)
dprove(connected_to(w6, W1), [], DS) <- (connected_to(w6, W1) <= B)
Andprove(B, [], DS)

?(connected_to(w6, W1) <= B) 6 7
connected_to(w6, w5) <= ok(cb2)
connected_to(w6, w5) <= ok(cb2)

?dprove(ok(cb2), [], DS)
dprove(G, D9, [GI D9]) <- delay(G)
dprove(ok(cb2), [], [ok(cb2)]) <- delay(ok(cb2))

Knowledge Based Systems

Proof steps using dprove (3)

?delay(ok(cb2))

delay(ok(X))

delay(ok(cb2))

dprove(ok(cb2), [], [ok(cb2)]) <- true
dprove(connected_to(w6, w3), [|, [ok(cb2)]) <- true

dprove(ok(cb2), [], [ok(cb2)]) <- true

dprove(connected_to(w6, w3), [|, [ok(cb2)]) <- true

?dprove(live(wS), [ok(cb2)], D)
dprove(G, D, [GI D]) <- delay(G)
dprove(live(w3), [ok(cb2)], [live(w5)l [ok(cb2)]]) <- delay(live(wS))

?dprove(live(wS), [ok(cb2)], D) 4 11
dprove(H, D11, D12) <- (H <= B) adprove(B, D11, D12)
dprove(live(w5), [ok(cb2)], D) <- (live(w5) <= B) adprove(B, [ok(cb2)], D)

Knowledge Based Systems

Proof steps using dprove (4)

? (live(w5) <= B)
live(W?2) <= connected_to(W2, W3) & live(W3)
live(w5) <= connected_to(w5, W3) & live(W3)

?dprove((connected_to(wS, W3) & live(W3)), [ok(cb2)],) 4 13
dprove((A & B), D13, D15) <- dprove(A, D13, D14) adprove(B, D14, D15)
dprove((connected_to(wS, W3) & live(W3)), [ok(cb2)], D) <-
dprove(connected_to(wS, W3), [ok(cb2)], D14) adprove(live(W3), D14, D)

?dprove(connected_to(wS, W3), [ok(cb2)], D14) 13 14
dprove(G, D16, [Gl D16]) <- delay(G)

dprove(connected_to(wS, W3), [ok(cb2)], [connected_to(wS, W3)l [ok(cb2)]]) <-
delay(connected_to(w5, W3))

?dprove(connected_to(wS, W3), [ok(cb2)], D14) 13 15
dprove(H, D17, D18) <- (H <= B) adprove(B, D17, D18)
dprove(connected_to(wS, W3), [ok(cb2)], D14) <- (connected_to(w5, W3) <= B)
andprove(B, [ok(cb2)], D14)

Knowledge Based Systems

Proof steps using dprove (5)

? (connected_to(w5, W3) <= B)
connected_to(w5, outside) <= ok(outside_connection)
connected_to(w5, outside) <= ok(outside_connection)

?dprove(ok(outside_connection), [ok(cb2)], D14) 15 17
dprove(G, D19, [GI D19]) <- delay(G)

dprove(ok(outside_connection), [ok(cb2)], [ok(outside_connection)| [ok(cb2)]])
<- delay(ok(outside_connection))

?delay(ok(outside_connection))
delay(ok(X))
delay(ok(outside_connection))

dprove(ok(outside_connection), [ok(cb2)], [ok(outside_connection)| [ok(cb2)]])
<- true 18 ->17

Knowledge Based Systems

Proof steps using dprove (6)

dprove(connected_to(w3, outside), [ok(cb2)], [ok(outside_connection), ok(cb2)]) <-
true 17 ->15

?dprove(live(outside), [ok(outside_connection), ok(cb2)], D) 13 19
dprove(G, D20, [GI D20]) <- delay(G)

dprove(live(outside), [ok(outside_connection), ok(cb2)], [live(outside)l D20]) <-
delay(live(outside))

?dprove(live(outside), [ok(outside_connection), ok(cb2)], D) 13 20
dprove(H, D21, D22) <- (H <= B) adprove(B, D21, D22)

dprove(live(outside), [ok(outside_connection), ok(cb2)], D2) <- (live(outside) <= B)
andprove(B, [ok(outside_connection), ok(cb2)], D)

? (live(outside) <= B)
live(outside) <= true
live(outside) <= true

Knowledge Based Systems

Proof steps using dprove (7)

?dprove(true, [ok(outside_connection), ok(cb2)], D) 20 22
dprove(true, D23, D23)
dprove(true, [ok(outside_connection), ok(cb2)], [ok(outside_connection), ok(cb2)])

dprove((connected_to(w3, outside) & live(outside)), [ok(cb2)],
[ok(outside_connection), ok(cb2)]) <- true 22 ->20

dprove(live(outside), [ok(outside_connection), ok(cb2)], [ok(outside_connection),
ok(cb2)]) <- true 20 ->13

dprove(live(w5), [ok(cb2)], [ok(outside_connection), ok(cb2)]) <- true 13->11

dprove((connected_to(w6, w3) & live(w))), [|, [ok(outside_connection), ok(cb2)])
<- true 11->4

dprove(live(w6), [], [ok(outside_connection), ok(cb2)]) <- true 4->72

dprove(live(w6), [], [ok(outside_connection), ok(cb2)]) <- true 2->0

How can users provide knowledge when
| they don’t know the internals of the system

they aren’t experts in the domain

_| they don’t know what information is relevant

| they don’t know the syntax of the system

| but they have essential information about the particu

case of interest?
28

http://www.cs.ubc.ca/spider/poole/ci.html

Querying the Use

L] The system can determine what information is relevs
and ask the user for the particular information.

L1 A top-down derivation can determine what informatio
relevant. There are three types of goals:

|1 Goals for which the user isn't expected to know th
answer, so the system never asks.

] Goals for which the user should know the answer,
for which they have not already provided an answ

L] Goals for which the user has already provideZ%I an
answer.

C
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Yes/No guestion

L] The simplest form of a question is a ground query.

L] Ground queries require an answer of “yes” or “no”.

L] The user is only asked a question if
L1 the question is askable, and
L1 the user hasn't previously answered the question

L] When the user has answered a question, the answer

to be recorded.
30

m

http://www.cs.ubc.ca/spider/poole/ci.html

Ask-the-user meta-interpre

e prove) Is true If G is a logical consegquence of the
Whase-level KB and yes/no answers provided by the use

aprovgtrue).
aproveg (A& B)) < aprovgA) A aproveB).
aprovgH) < askabléH) A answeredH, yes.
aprovagH) <«
askabléH) A unanswere(H) A askH, Ang A
record(answeredH, Ang) A Ans= yes
aprovegH) < (H < B) A aprovaB). 31

m

http://www.cs.ubc.ca/spider/poole/ci.html

Functional Relation

You probably don’t want to askaggfred, 0),
?aggfred, 1), 7aggfred, 2), . ..

You probably want to ask for Fred’s age once, and
succeed for queries for that age and fall for other que

This exploits the fact thadgeis a functional relation.

Relationr (X, Y) is functional if, for every X there
exists a uniqué&’ such thar (X, Y) is true.
32

m

http://www.cs.ubc.ca/spider/poole/ci.html

Getting information from a ust

L] The user may not know the vocabulary that is expect
by the knowledge engineer.

L] Either:

L] The system designer provides a menu of items fre
which the user has to select the best fit.

L1 The user can provide free-form answers. The sys
needs a large dictionary to map the responses int

Internal forms expected by the system.
33

m

http://www.cs.ubc.ca/spider/poole/ci.html

More General Questio

Example: For the subgogb(a, X, f (Z)) the user can be
asked:

for which X, Z isp(a, X, f(2)) true?

L1 Should users be expected to give all instances whicr
true, or should they give the instances one at a time,
the system prompting for new instances?

Example: For whichS, C is enrolled(S, C) true?

L] Psychological issues are important. 34

m

http://www.cs.ubc.ca/spider/poole/ci.html

Reasking Questio

When should the system repeat or not ask a question?

Example: Query Ask? Response
P(X) yes p(f(2)
P(f(c)) no
@) yes yes
?P(X) yes no
P(C) no
Don’t ask a question that is more specific than a

query to which either a positive answer has already
been given or the user has replieal

m

http://www.cs.ubc.ca/spider/poole/ci.html

Delaying Asking the Use

L1 Should the system ask the question as soon as it's
encountered, or should it delay the goal until more
variables are bound?

L1 Example consider query@X) & q(X), wherep(X) is
askable.

L1 If p(X) succeeds for many instancesXoaindq(X)
succeeds for few (or no) instancesXfit’s better to
delay askingp(X).

L1 If p(X) succeeds for few instancesXfandq(X)

succeeds for many instancesXafdon’t delay. %

]

http://www.cs.ubc.ca/spider/poole/ci.html

Explanatio

The system must be able to justify that its answer is
correct, particularly when it is giving advice to a hum:

The same features can be used for explanation and 1
debugging the knowledge base.

There are three main mechanisms:

AS
AS
AS

K HOW a goal was derived.

KWHYNOT a goal wasn’t derived.

KWHY a subgoal is being proved. -

http://www.cs.ubc.ca/spider/poole/ci.html

How did the system prove a go:

L1 If gis derived, there must be a rule instance

g<ar & ... & a.

where eacl®; Is derived.

Ll If the user ask$lOW g was derived, the system can
display this rule. The user can then ask

HOW 1.

to give the rule that was used to proae

L] TheHOW command moves down the proof tree. ;5

m

http://www.cs.ubc.ca/spider/poole/ci.html

Meta-interpreter that builds a proof t

W prova G, T) Is true iIf G can be proved from the base-le
9%KB, with proof treeT.

hprovetrue, true).
hprovg (A& B), (L & R)) «
hprovegA, L) A
hproveB, R).
hprovaH, if (H, T)) <
(H<B) A
hproveB, T). >

m

http://www.cs.ubc.ca/spider/poole/ci.html

It is useful to find out why a question was asked.

L1 Knowing why a question was asked will increase the
user’s confidence that the system is working sensibly

L] It helps the knowledge engineer optimize questions
asked of the user.

L] Anirrelevant question can be a symptom of a deeper
problem.

[l The user may learn something from the system by
knowing why the system is doing something. 4°

m

http://www.cs.ubc.ca/spider/poole/ci.html

WHY questio

L] When the system asks the user a quesgidhe user car
reply with

WHY

L1 This gives the instance of the rule
h< ... & g& ---
that is being tried to provek.

L] When the user ask&HY again, it explains wh was

proved. 41

m

http://www.cs.ubc.ca/spider/poole/ci.html

Meta-interpreter to collect rules foiy

W/ prove G, A) Is true if G follows from base-level KB, anc

A s a list of ancestor rules fdb.

wprovegtrue, Anc).

wprove (A & B), Anc) <
wprovegA, Anc A
wprove B, Ano).

wprovaH, Anc) <«
(H<B) A

wproveB, [(H < B)|Anc)).

42

m

http://www.cs.ubc.ca/spider/poole/ci.html

Debugging Knowledge Bas

There are four types of nonsyntactic errors that can arise
rule-based systems:

Ll Anincorrect answer is produced; that is, some atom
IS false in the intended interpretation was derived.

L] Some answer wasn'’t produced; that is, the proof faile
when it should have succeeded, or some particular t
atom wasn’t derived.

L1 The program gets into an infinite loop.

[The system asks irrelevant questions. 43

m

http://www.cs.ubc.ca/spider/poole/ci.html

Debugging Incorrect Answe

L] An incorrect answelis a derived answer which is fals
In the intended interpretation.

L] Anincorrect answer means a clause in the KB is fals
the intended interpretation.

L1 If gis false in the intended interpretation, there is a p
forgusingg < a; & ... & ak. Elther:

L] Someg; is false: debug it.

L1 All g are true. This rule is buggy. »

m

http://www.cs.ubc.ca/spider/poole/ci.html

Debugging Missing Answe

L] WHYNOT g. g fails when it should have succeeded.
Either:

[] There is an atom in a rule that succeeded with the
wrong answer, usedOW to debug it.

[l Thereis an atom in a body that failed when it shot
have succeeded, debug it usiwgYNOT.

[l There is a rule missing fag.

45

m

http://www.cs.ubc.ca/spider/poole/ci.html

Debugging Infinite Loop

Ll There is no automatic way to debug all such errors:
halting problem.

L] There are many errors that can be detected:
1 If a subgoal is identical to an ancestor in the proof
tree, the program is looping.
L1 Define a well-founded ordering that is reduced ea

time through a loop.
46

]

http://www.cs.ubc.ca/spider/poole/ci.html

