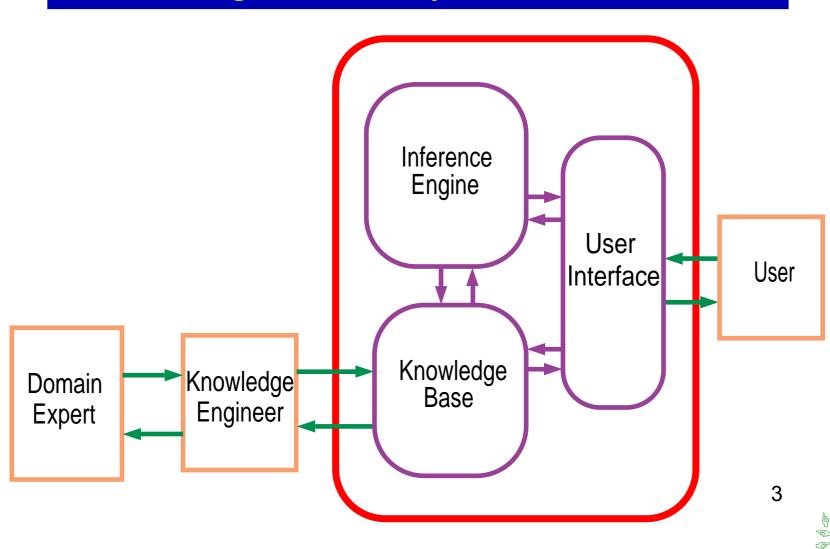
Chapter 6: Knowledge Engineering

- Lecture 1 Knowledge-based systems, roles of people involved, implementing KBSs: base and metalanguages.
- Lecture 2 Vanilla meta-interpreter, depth-bounded and delaying meta-interpreters.
- Lecture 3 Users. Ask-the-user.
- Lecture 4 Explanation and knowledge-based debugging tools.

Overview:

- How representation and reasoning systems interact with humans.
- Roles of people involved in a RRS.
- Building RRSs using meta-interpreters.
- Knowledge-based interaction and debugging tools

Knowledge-based system architecture



Roles for people in a KBS

- Software engineers build the inference engine and user interface.
- Knowledge engineers design, build, and debug the knowledge base in consultation with domain experts.
 - Domain experts know about the domain, but nothing about particular cases or how the system works.
- Users have problems for the system, know about particular cases, but not about how the system works or the domain.

Implementing Knowledge-based Systems

- To build an interpreter for a language, we need to distinguish
 - Base language the language of the RRS being implemented.
 - Metalanguage the language used to implement the system.
- They could even be the same language!

Implementing the base language

- Let's use the definite clause language as the base language and the metalanguage.
 - We need to represent the base-level constructs in the metalanguage.
- We represent base-level terms, atoms, and bodies as meta-level terms.
- > We represent base-level clauses as meta-level facts.
- In the non-ground representation base-level variables are represented as meta-level variables.

Representing the base level constructs

- Base-level atom $p(t_1, ..., t_n)$ is represented as the meta-level term $p(t_1, ..., t_n)$.
- Meta-level term $oand(e_1, e_2)$ denotes the conjunction of base-level bodies e_1 and e_2 .
- Meta-level constant *true* denotes the object-level empty body.
- The meta-level atom clause(h, b) is true if "*h* if *b*" is a clause in the base-level knowledge base.

Example representation

The base-level clauses

 $connected_to(l_1, w_0).$ $connected_to(w_0, w_1) \leftarrow up(s_2).$ $lit(L) \leftarrow light(L) \land ok(L) \land live(L).$

can be represented as the meta-level facts

 $clause(connected_to(l_1, w_0), true).$ $clause(connected_to(w_0, w_1), up(s_2)).$ clause(lit(L), oand(light(L), oand(ok(L), live(L)))).

Making the representation pretty

- ▶ Use the infix function symbol "&" rather than *oand*.
 ▶ instead of writing *oand*(e₁, e₂), you write e₁ & e₂.
 ▶ Instead of writing *clause*(h, b) you can write h ⇐ b, where ⇐ is an infix meta-level predicate symbol.
 - Thus the base-level clause " $h \leftarrow a_1 \land \cdots \land a_n$ " is represented as the meta-level atom $h \leftarrow a_1 \& \cdots \& a_n$.

Non-ground Representation

Representing base-level expressions in a metalanguage:

syntactic construct		meta-level representation	
variable	Х	variable	Х
constant	c	constant c	
function symbol	f	function symbol	f
predicate symbol	p	function symbol p	
"and" operator	\wedge	function symbol &	
"if" operator	<-	predicate symbol	<=
clause	$h \leq a_1 \wedge \dots \wedge a_n$	atom $h \le a_1 \& \dots$	& a _n
clause	h.	atom h <= true.	

Example representation

The base-level clauses

 $connected_to(l_1, w_0).$ $connected_to(w_0, w_1) \leftarrow up(s_2).$ $lit(L) \leftarrow light(L) \land ok(L) \land live(L).$

can be represented as the meta-level facts

 $connected_to(l_1, w_0) \Leftarrow true.$ $connected_to(w_0, w_1) \Leftarrow up(s_2).$ $lit(L) \Leftarrow light(L) \& ok(L) \& live(L).$

Vanilla Meta-interpreter

prove(G) is true when base-level body G is a logical consequence of the base-level KB.

prove(true). $prove((A \& B)) \leftarrow$ $prove(A) \land$ prove(B). $prove(H) \leftarrow$ $(H \Leftarrow B) \land$ prove(B).

 $live(W) \Leftarrow$ connected_to(W, W_1) & $live(W_1)$. $live(outside) \Leftarrow true.$ connected_to(w_6, w_5) $\Leftarrow ok(cb_2)$. connected_to(w_5 , outside) \Leftarrow true. $ok(cb_2) \Leftarrow true.$ $?prove(live(w_6)).$

Expanding the base-level

Adding clauses increases what can be proved.

Disjunction Let *a*; *b* be the base-level representation for the disjunction of *a* and *b*. Body *a*; *b* is true when *a* is true, or *b* is true, or both *a* and *b* are true.

Built-in predicates You can add built-in predicates such as N is E that is true if expression E evaluates to number N.

Expanded meta-interpreter

prove(true). $prove((A \& B)) \leftarrow$ $prove(A) \wedge prove(B)$. $prove((A; B)) \leftarrow prove(A).$ $prove((A; B)) \leftarrow prove(B).$ $prove((N \text{ is } E)) \leftarrow$ N is E. $prove(H) \leftarrow$ $(H \Leftarrow B) \land prove(B).$

Depth-Bounded Search

> Adding conditions reduces what can be proved.

% *bprove*(G, D) is true if G can be proved with a proof tree

16

% of depth less than or equal to number *D*.

bprove(*true*, *D*). $bprove((A \& B), D) \leftarrow$ $bprove(A, D) \land bprove(B, D).$ $bprove(H, D) \leftarrow$ $D > 0 \wedge D_1$ is $D - 1 \wedge D_1$ $(H \Leftarrow B) \land bprove(B, D_1).$

Some goals, rather than being proved, can be collected in a list.

- To delay subgoals with variables, in the hope that subsequent calls will ground the variables.
- To delay assumptions, so that you can collect assumptions that are needed to prove a goal.

To create new rules that leave out intermediate steps.

> To reduce a set of goals to primitive predicates.

Delaying Meta-interpreter

% *dprove*(G, D_0, D_1) is true if D_0 is an ending of list of

% delayable atoms D_1 and $KB \wedge (D_1 - D_0) \models G$.

dprove(true, D, D). $dprove((A \& B), D_1, D_3) \leftarrow$ $dprove(A, D_1, D_2) \wedge dprove(B, D_2, D_3).$ $dprove(G, D, [G|D]) \leftarrow delay(G).$ $dprove(H, D_1, D_2) \leftarrow$ $(H \Leftarrow B) \land dprove(B, D_1, D_2).$

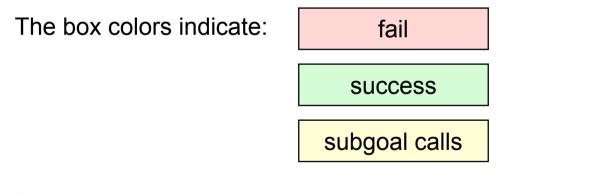
 $live(W) \Leftarrow$ connected_to(W, W_1) & $live(W_1)$. $live(outside) \Leftarrow true.$ connected_to(w_6, w_5) $\Leftarrow ok(cb_2)$. connected_to(w_5 , outside) \Leftarrow ok(outside_connection). delay(ok(X)).

 $?dprove(live(w_6), [], D).$

Trace of dprove example

Each forward step is indicated as a box:

?<goal of proof step> <pr



Subgoal successes are fed back to the parent box:

<pre><pre>cyproved goal></pre> <pre><pre>cyproved goal></pre></pre></pre>

Proof steps using dprove (1)

?dprove(live(w6), [], D)
dprove(G, D, [G| D]) <- delay(G)
dprove(live(w6), [], [live(w(6)]) <- delay(live(w6))</pre>

?dprove(live(w6), [], D)
dprove(H, D1, D2) <- (H <= B) ^dprove(B, D1, D2)
dprove(live(w6), [], D) <- (live(w6) <= B) ^dprove(B, [], D)</pre>

?(live(w6) <= B)
live(W) <= connected_to(W, W1) & live(W1)
live(w6) <= connected_to(w6, W1) & live(W1)</pre>

?dprove(connected_to(w6, W1) & live(W1), [], D) 2 4
dprove((A & B), D4, D6) <- dprove(A, D4, D5) ^dprove(B, D5, D6)
dprove((connected_to(w6, W1) & live(W1)), [], D) <dprove(connected_to(w6, W1), [], D5) ^dprove(live(W1), D5, D)</pre>

0 1

1 2

 $2 \ 3$

Proof steps using dprove (2)

 ?dprove(connected_to(w6, W1), [], D5)
 4 5

 dprove(G, D, [G| D]) <- delay(G)</td>

 dprove(connected_to(w6, W1), [], [connected_to(w6, W1)]) <- delay(connected_to(w6, W1))</td>

?(connected_to(w6, W1) <= B)
connected_to(w6, w5) <= ok(cb2)
connected_to(w6, w5) <= ok(cb2)</pre>

6 7

?dprove(ok(cb2), [], D5)
dprove(G, D9, [G| D9]) <- delay(G)
dprove(ok(cb2), [], [ok(cb2)]) <- delay(ok(cb2))</pre>

Proof steps using dprove (3)

?delay(ok(cb2))	8 9
delay(ok(X))	
delay(ok(cb2))	
dprove(ok(cb2), [], [ok(cb2)]) <- true	
dprove(connected_to(w6, w5), [], $[ok(cb2)]$) <- true	

dprove(ok(cb2), [], [ok(cb2)]) <- true

9 -> 8

dprove(connected_to(w6, w5), [], [ok(cb2)]) <- true

8 -> 6

 ?dprove(live(w5), [ok(cb2)], D)
 4 10

 dprove(G, D, [G| D]) <- delay(G)</td>

 dprove(live(w5), [ok(cb2)], [live(w5)| [ok(cb2)]]) <- delay(live(w5))</td>

Proof steps using dprove (4)

? (live(w5) <= B)</td>1112live(W2) <= connected_to(W2, W3) & live(W3)</td>live(w5) <= connected_to(w5, W3) & live(W3)</td>13?dprove((connected_to(w5, W3) & live(W3)), [ok(cb2)],)413dprove((A & B), D13, D15) <- dprove(A, D13, D14) \land dprove(B, D14, D15)dprove((connected_to(w5, W3) & live(W3)), [ok(cb2)], D) <-</td>dprove(connected_to(w5, W3), [ok(cb2)], D14) \land dprove(live(W3), D14, D)1314?dprove(G, D16, [Gl D16]) <- delay(G)</td>1314

 $\label{eq:connected_to(w5, W3), [ok(cb2)], [connected_to(w5, W3)| [ok(cb2)]]) <- delay(connected_to(w5, W3))$

?dprove(connected_to(w5, W3), [ok(cb2)], D14) 13 15 dprove(H, D17, D18) <- (H <= B) \land dprove(B, D17, D18) dprove(connected_to(w5, W3), [ok(cb2)], D14) <- (connected_to(w5, W3) <= B) \land dprove(B, [ok(cb2)], D14)

Proof steps using dprove (5)

? (connected_to(w5, W3) <= B)
connected_to(w5, outside) <= ok(outside_connection)
connected_to(w5, outside) <= ok(outside_connection)</pre>

?dprove(ok(outside_connection), [ok(cb2)], D14) 15 17 dprove(G, D19, [Gl D19]) <- delay(G) dprove(ok(outside_connection), [ok(cb2)], [ok(outside_connection)| [ok(cb2)]]) <- delay(ok(outside_connection))</pre>

?delay(ok(outside_connection))
delay(ok(X))
delay(ok(outside_connection))

17 18

15 16

dprove(ok(outside_connection), [ok(cb2)], [ok(outside_connection)| [ok(cb2)]]) <- true 18 -> 17

Proof steps using dprove (6)

dprove(connected_to(w5, outside), [ok(cb2)], [ok(outside_connection), ok(cb2)]) <true 17 -> 15

?dprove(live(outside), [ok(outside_connection), ok(cb2)], D) 13 19 dprove(G, D20, [Gl D20]) <- delay(G) dprove(live(outside), [ok(outside_connection), ok(cb2)], [live(outside)| D20]) <delay(live(outside))

?dprove(live(outside), [ok(outside_connection), ok(cb2)], D) 13 20 dprove(H, D21, D22) <- (H <= B) \land dprove(B, D21, D22) dprove(live(outside), [ok(outside_connection), ok(cb2)], D2) <- (live(outside) <= B) \land dprove(B, [ok(outside_connection), ok(cb2)], D)

? (live(outside) <= B)	20 21
live(outside) <= true	
live(outside) <= true	

Proof steps using dprove (7)

?dprove(true, [ok(outside connection), ok(cb2)], D) 20 22 dprove(true, D23, D23) dprove(true, [ok(outside_connection), ok(cb2)], [ok(outside_connection), ok(cb2)]) dprove((connected_to(w5, outside) & live(outside)), [ok(cb2)], [ok(outside_connection), ok(cb2)]) <- true $22 \rightarrow 20$ dprove(live(outside), [ok(outside_connection), ok(cb2)], [ok(outside_connection), ok(cb2)]) <- true $20 \rightarrow 13$ dprove(live(w5), [ok(cb2)], [ok(outside connection), ok(cb2)]) <- true 13 -> 11 dprove((connected_to(w6, w5) & live(w5)), [], [ok(outside_connection), ok(cb2)]) 11 -> 4<- true

dprove(live(w6), [], [ok(outside_connection), ok(cb2)]) <- true 4 -> 2

dprove(live(w6), [], [ok(outside_connection), ok(cb2)]) <- true

 $2 \rightarrow 0$

How can users provide knowledge when

- they don't know the internals of the system
- > they aren't experts in the domain
- they don't know what information is relevant
- they don't know the syntax of the system

but they have essential information about the particular case of interest?

- The system can determine what information is relevant and ask the user for the particular information.
- A top-down derivation can determine what information is relevant. There are three types of goals:
 - Goals for which the user isn't expected to know the answer, so the system never asks.
 - Goals for which the user should know the answer, and for which they have not already provided an answer.
 - Solution > Goals for which the user has already provided an answer.

Yes/No questions

- > The simplest form of a question is a ground query.
- Ground queries require an answer of "yes" or "no".
- > The user is only asked a question if
 - \succ the question is askable, and
 - \succ the user hasn't previously answered the question.
- When the user has answered a question, the answer needs to be recorded.

Ask-the-user meta-interpreter

% *aprove*(G) is true if G is a logical consequence of the% base-level KB and yes/no answers provided by the user.

aprove(true). $aprove((A \& B)) \leftarrow aprove(A) \land aprove(B).$ $aprove(H) \leftarrow askable(H) \land answered(H, yes).$ $aprove(H) \leftarrow$ $askable(H) \land unanswered(H) \land ask(H, Ans) \land$ $record(answered(H, Ans)) \land Ans = yes.$ 31 $aprove(H) \leftarrow (H \Leftarrow B) \land aprove(B).$

Functional Relations

- You probably don't want to ask ?age(fred, 0), ?age(fred, 1), ?age(fred, 2), ...
- You probably want to ask for Fred's age once, and succeed for queries for that age and fail for other queries.
- This exploits the fact that *age* is a functional relation.
- Relation r(X, Y) is functional if, for every X there exists a unique Y such that r(X, Y) is true.

Getting information from a user

- The user may not know the vocabulary that is expected by the knowledge engineer.
- Either:
 - The system designer provides a menu of items from which the user has to select the best fit.
 - The user can provide free-form answers. The system needs a large dictionary to map the responses into the internal forms expected by the system.

More General Questions

Example: For the subgoal p(a, X, f(Z)) the user can be asked:

for which *X*, *Z* is p(a, X, f(Z)) true?

Should users be expected to give all instances which are true, or should they give the instances one at a time, with the system prompting for new instances?

Example: For which *S*, *C* is *enrolled*(*S*, *C*) true?

When should the system repeat or not ask a question?

Example:	Query	Ask?	Response
	p(X)	yes	p(f(Z))
	p(f(c))	no	
	p(a)	yes	yes
	p(X)	yes	no
	p(c)	no	

Don't ask a question that is more specific than a query to which either a positive answer has already $_{35}$ been given or the user has replied *no*.

Delaying Asking the User

- Should the system ask the question as soon as it's encountered, or should it delay the goal until more variables are bound?
- Example consider query p(X) & q(X), where p(X) is askable.
 - If p(X) succeeds for many instances of X and q(X) succeeds for few (or no) instances of X it's better to delay asking p(X).
 - > If p(X) succeeds for few instances of X and q(X)succeeds for many instances of X, don't delay. ³⁶

Explanation

The system must be able to justify that its answer is correct, particularly when it is giving advice to a human.

- The same features can be used for explanation and for debugging the knowledge base.
- > There are three main mechanisms:
 - > Ask HOW a goal was derived.
 - > Ask WHYNOT a goal wasn't derived.
 - > Ask WHY a subgoal is being proved.

How did the system prove a goal?

 \blacktriangleright If g is derived, there must be a rule instance

$$g \Leftarrow a_1 \& \ldots \& a_k.$$

where each a_i is derived.

If the user asks HOW g was derived, the system can display this rule. The user can then ask HOW i.

to give the rule that was used to prove a_i .

The HOW command moves down the proof tree.

Meta-interpreter that builds a proof tree

% *hprove*(*G*, *T*) is true if *G* can be proved from the base-level % KB, with proof tree *T*.

```
hprove(true, true).
hprove((A \& B), (L \& R)) \leftarrow
     hprove(A, L) \land
     hprove(B, R).
hprove(H, if(H, T)) \leftarrow
     (H \Leftarrow B) \land
     hprove(B, T).
```

Why Did the System Ask a Question?

- It is useful to find out why a question was asked.
 - Knowing why a question was asked will increase the user's confidence that the system is working sensibly.
- It helps the knowledge engineer optimize questions asked of the user.
- An irrelevant question can be a symptom of a deeper problem.
- The user may learn something from the system by knowing why the system is doing something.

When the system asks the user a question *g*, the user can reply with

WHY

This gives the instance of the rule

 $h \Leftarrow \cdots \& g \& \cdots$

that is being tried to prove *h*.

When the user asks WHY again, it explains why h was proved.

Meta-interpreter to collect rules for WHY

% *wprove*(*G*, *A*) is true if *G* follows from base-level KB, and % *A* is a list of ancestor rules for *G*.

```
wprove(true, Anc).
wprove((A \& B), Anc) \leftarrow
     wprove(A, Anc) \wedge
     wprove(B, Anc).
wprove(H, Anc) \leftarrow
     (H \Leftarrow B) \land
     wprove(B, [(H \Leftarrow B)|Anc]).
```

Debugging Knowledge Bases

There are four types of nonsyntactic errors that can arise in rule-based systems:

- An incorrect answer is produced; that is, some atom that is false in the intended interpretation was derived.
- Some answer wasn't produced; that is, the proof failed when it should have succeeded, or some particular true atom wasn't derived.
- > The program gets into an infinite loop.
- > The system asks irrelevant questions.

Debugging Incorrect Answers

- An incorrect answer is a derived answer which is false in the intended interpretation.
- An incorrect answer means a clause in the KB is false in the intended interpretation.
- ► If g is false in the intended interpretation, there is a proof for g using $g \leftarrow a_1 \& \ldots \& a_k$. Either:
 - > Some a_i is false: debug it.
 - > All a_i are true. This rule is buggy.

Debugging Missing Answers

- WHYNOT g. g fails when it should have succeeded.
 Either:
 - There is an atom in a rule that succeeded with the wrong answer, use HOW to debug it.
 - There is an atom in a body that failed when it should have succeeded, debug it using WHYNOT.
 - > There is a rule missing for g.

Debugging Infinite Loops

There is no automatic way to debug all such errors: halting problem.

> There are many errors that can be detected:

- If a subgoal is identical to an ancestor in the proof tree, the program is looping.
- Define a well-founded ordering that is reduced each time through a loop.

