
Computational Intelligence Chapter 6

Chapter 6: Knowledge Engineering

• Lecture 1 Knowledge-based systems, roles of people

involved, implementing KBSs: base and metalanguages.

• Lecture 2 Vanilla meta-interpreter, depth-bounded and

delaying meta-interpreters.

• Lecture 3 Users. Ask-the-user.

• Lecture 4 Explanation and knowledge-based debugging

tools.

⇐H ©David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1997 ⇑H⇒1

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 1

Knowledge Engineering

Overview:

➤ How representation and reasoning systems interact with

humans.

➤ Roles of people involved in a RRS.

➤ Building RRSs using meta-interpreters.

➤ Knowledge-based interaction and debugging tools

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

2

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 2

Knowledge-based system architecture

Domain
Expert

Knowledge
Engineer

Knowledge
Base

Inference
Engine

User
 Interface User

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

3

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 3

Roles for people in a KBS

➤ Software engineersbuild the inference engine and user

interface.

➤ Knowledge engineersdesign, build, and debug the

knowledge base in consultation with domain experts.

➤ Domain expertsknow about the domain, but nothing

about particular cases or how the system works.

➤ Users have problems for the system, know about

particular cases, but not about how the system works or

the domain.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

4

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 4

Implementing Knowledge-based Systems

To build an interpreter for a language, we need to distinguish

➤ Base languagethe language of the RRS being

implemented.

➤ Metalanguagethe language used to implement the

system.

They could even be the same language!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

5

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 5

Implementing the base language

Let’s use the definite clause language as the base language

and the metalanguage.

➤ We need to represent the base-level constructs in the

metalanguage.

➤ We represent base-level terms, atoms, and bodies as

meta-level terms.

➤ We represent base-level clauses as meta-level facts.

➤ In the non-ground representationbase-level variables

are represented as meta-level variables.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

6

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 6

Representing the base level constructs

➤ Base-level atomp(t1, . . . , tn) is represented as the

meta-level termp(t1, . . . , tn).

➤ Meta-level termoand(e1, e2) denotes the conjunction of

base-level bodiese1 ande2.

➤ Meta-level constanttrue denotes the object-level empty

body.

➤ The meta-level atomclause(h, b) is true if “h if b” is a

clause in the base-level knowledge base.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

7

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 7

Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

clause(connected_to(l1, w0), true).

clause(connected_to(w0, w1), up(s2)).

clause(lit (L), oand(light(L), oand(ok(L), live(L)))).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

8

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 1, Page 8

Making the representation pretty

➤ Use the infix function symbol “&” rather thanoand.

➣ instead of writingoand(e1, e2), you writee1 & e2.

➤ Instead of writingclause(h, b) you can writeh ⇐ b,

where⇐ is an infix meta-level predicate symbol.

➣ Thus the base-level clause “h ← a1 ∧ · · · ∧ an” is

represented as the meta-level atom

h ⇐ a1 & · · · & an.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

9

http://www.cs.ubc.ca/spider/poole/ci.html

Non-ground Representation

syntactic construct meta-level representation

variable X variable X

constant c constant c

function symbol f function symbol f

predicate symbol p function symbol p

"and" operator ^ function symbol &

"if" operator <- predicate symbol <=

clause h <- a1 ^ ... ^ an atom h <= a1 & ... & an

clause h. atom h <= true.

Representing base-level expressions in a metalanguage:

10

Computational Intelligence Chapter 6, Lecture 1, Page 9

Example representation

The base-level clauses

connected_to(l1, w0).

connected_to(w0, w1) ← up(s2).

lit (L) ← light(L) ∧ ok(L) ∧ live(L).

can be represented as the meta-level facts

connected_to(l1, w0) ⇐ true.

connected_to(w0, w1) ⇐ up(s2).

lit (L) ⇐ light(L) & ok(L) & live(L).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

11

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 1

Vanilla Meta-interpreter

prove(G) is true when base-level bodyG is a logical

consequence of the base-level KB.

prove(true).

prove((A & B)) ←
prove(A) ∧
prove(B).

prove(H) ←
(H ⇐ B) ∧
prove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

12

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 2

Example base-level KB

live(W) ⇐
connected_to(W, W1) &

live(W1).

live(outside) ⇐ true.

connected_to(w6, w5) ⇐ ok(cb2).

connected_to(w5, outside) ⇐ true.

ok(cb2) ⇐ true.

?prove(live(w6)).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

13

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 3

Expanding the base-level

Adding clauses increases what can be proved.

➤ Disjunction Let a; b be the base-level representation for

the disjunction ofa andb. Bodya; b is true whena is

true, orb is true, or botha andb are true.

➤ Built-in predicatesYou can add built-in predicates such

asN is E that is true if expressionE evaluates to number

N.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

14

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 4

Expanded meta-interpreter

prove(true).

prove((A & B)) ←
prove(A) ∧ prove(B).

prove((A; B)) ← prove(A).

prove((A; B)) ← prove(B).

prove((N is E)) ←
N is E.

prove(H) ←
(H ⇐ B) ∧ prove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

15

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 5

Depth-Bounded Search

➤ Adding conditions reduces what can be proved.

bprove(G, D) is true ifG can be proved with a proof tree%%%%%%%%%%%%

of depth less than or equal to numberD.%%%%%%%

bprove(true, D).

bprove((A & B), D) ←
bprove(A, D) ∧ bprove(B, D).

bprove(H, D) ←
D ≥ 0 ∧ D1 is D − 1 ∧
(H ⇐ B) ∧ bprove(B, D1).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

16

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 6

Delaying Goals

Some goals, rather than being proved, can be collected in a

list.

➤ To delay subgoals with variables, in the hope that

subsequent calls will ground the variables.

➤ To delay assumptions, so that you can collect

assumptions that are needed to prove a goal.

➤ To create new rules that leave out intermediate steps.

➤ To reduce a set of goals to primitive predicates.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

17

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 7

Delaying Meta-interpreter

dprove(G, D0, D1) is true ifD0 is an ending of list of%%%%%%%%%%%

delayable atomsD1 andKB ∧ (D1 − D0) |= G.%%%

dprove(true, D, D).

dprove((A & B), D1, D3) ←
dprove(A, D1, D2) ∧ dprove(B, D2, D3).

dprove(G, D, [G|D]) ← delay(G).

dprove(H, D1, D2) ←
(H ⇐ B) ∧ dprove(B, D1, D2).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

18

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 2, Page 8

Example base-level KB

live(W) ⇐
connected_to(W, W1) &

live(W1).

live(outside) ⇐ true.

connected_to(w6, w5) ⇐ ok(cb2).

connected_to(w5, outside) ⇐ ok(outside_connection).

delay(ok(X)).

?dprove(live(w6), [], D).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

19

http://www.cs.ubc.ca/spider/poole/ci.html

Knowledge Based Systems
�

Trace of dprove example

?<goal of proof step> <parent box#> <box#>
<matching clause of knowledge base before unification>
<matching clause of knowledge base after unification>

Each forward step is indicated as a box:

The box colors indicate: fail

success

subgoal calls

Subgoal successes are fed back to the parent box:

<proved goal> <box#> -> <parent box#>

20

Knowledge Based Systems
�

Proof steps using dprove (1)

?dprove(live(w6), [], D) 0 1
dprove(G, D, [G| D]) <- delay(G)
dprove(live(w6), [], [live(w(6)]) <- delay(live(w6))

?dprove(live(w6), [], D) 1 2
dprove(H, D1, D2) <- (H <= B) ∧dprove(B, D1, D2)
dprove(live(w6), [], D) <- (live(w6) <= B) ∧dprove(B, [], D)

?(live(w6) <= B) 2 3
live(W) <= connected_to(W, W1) & live(W1)
live(w6) <= connected_to(w6, W1) & live(W1)

?dprove(connected_to(w6, W1) & live(W1), [], D) 2 4
dprove((A & B), D4, D6) <- dprove(A, D4, D5) ∧dprove(B, D5, D6)
dprove((connected_to(w6, W1) & live(W1)), [], D) <-
dprove(connected_to(w6, W1), [], D5) ∧dprove(live(W1), D5, D)

21

Knowledge Based Systems
�

Proof steps using dprove (2)
?dprove(connected_to(w6, W1), [], D5) 4 5
dprove(G, D, [G| D]) <- delay(G)
dprove(connected_to(w6, W1), [], [connected_to(w6, W1)]) <-
delay(connected_to(w6, W1))

?dprove(connected_to(w6, W1), [], D5) 4 6
dprove(H, D7, D8) <- (H <= B) ∧dprove(B, D7, D8)
dprove(connected_to(w6, W1), [], D5) <- (connected_to(w6, W1) <= B)
∧dprove(B, [], D5)

?(connected_to(w6, W1) <= B) 6 7
connected_to(w6, w5) <= ok(cb2)
connected_to(w6, w5) <= ok(cb2)

?dprove(ok(cb2), [], D5) 6 8
dprove(G, D9, [G| D9]) <- delay(G)
dprove(ok(cb2), [], [ok(cb2)]) <- delay(ok(cb2))

22

Knowledge Based Systems
�

Proof steps using dprove (3)
?delay(ok(cb2)) 8 9
delay(ok(X))
delay(ok(cb2))
dprove(ok(cb2), [], [ok(cb2)]) <- true
dprove(connected_to(w6, w5), [], [ok(cb2)]) <- true

?dprove(live(w5), [ok(cb2)], D) 4 10
dprove(G, D, [G| D]) <- delay(G)
dprove(live(w5), [ok(cb2)], [live(w5)| [ok(cb2)]]) <- delay(live(w5))

?dprove(live(w5), [ok(cb2)], D) 4 11
dprove(H, D11, D12) <- (H <= B) ∧dprove(B, D11, D12)
dprove(live(w5), [ok(cb2)], D) <- (live(w5) <= B) ∧dprove(B, [ok(cb2)], D)

dprove(ok(cb2), [], [ok(cb2)]) <- true 9 -> 8

dprove(connected_to(w6, w5), [], [ok(cb2)]) <- true 8 -> 6

23

Knowledge Based Systems
�

Proof steps using dprove (4)

?dprove((connected_to(w5, W3) & live(W3)), [ok(cb2)],) 4 13
dprove((A & B), D13, D15) <- dprove(A, D13, D14) ∧dprove(B, D14, D15)
dprove((connected_to(w5, W3) & live(W3)), [ok(cb2)], D) <-
dprove(connected_to(w5, W3), [ok(cb2)], D14) ∧dprove(live(W3), D14, D)

?dprove(connected_to(w5, W3), [ok(cb2)], D14) 13 14
dprove(G, D16, [G| D16]) <- delay(G)
dprove(connected_to(w5, W3), [ok(cb2)], [connected_to(w5, W3)| [ok(cb2)]]) <-
delay(connected_to(w5, W3))

?dprove(connected_to(w5, W3), [ok(cb2)], D14) 13 15
dprove(H, D17, D18) <- (H <= B) ∧dprove(B, D17, D18)
dprove(connected_to(w5, W3), [ok(cb2)], D14) <- (connected_to(w5, W3) <= B)
∧dprove(B, [ok(cb2)], D14)

? (live(w5) <= B) 11 12
live(W2) <= connected_to(W2, W3) & live(W3)
live(w5) <= connected_to(w5, W3) & live(W3)

24

Knowledge Based Systems
�

Proof steps using dprove (5)

? (connected_to(w5, W3) <= B) 15 16
connected_to(w5, outside) <= ok(outside_connection)
connected_to(w5, outside) <= ok(outside_connection)

?dprove(ok(outside_connection), [ok(cb2)], D14) 15 17
dprove(G, D19, [G| D19]) <- delay(G)
dprove(ok(outside_connection), [ok(cb2)], [ok(outside_connection)| [ok(cb2)]])
<- delay(ok(outside_connection))

?delay(ok(outside_connection)) 17 18
delay(ok(X))
delay(ok(outside_connection))

dprove(ok(outside_connection), [ok(cb2)], [ok(outside_connection)| [ok(cb2)]])
<- true 18 -> 17

25

Knowledge Based Systems
�

Proof steps using dprove (6)

?dprove(live(outside), [ok(outside_connection), ok(cb2)], D) 13 19
dprove(G, D20, [G| D20]) <- delay(G)
dprove(live(outside), [ok(outside_connection), ok(cb2)], [live(outside)| D20]) <-
delay(live(outside))

?dprove(live(outside), [ok(outside_connection), ok(cb2)], D) 13 20
dprove(H, D21, D22) <- (H <= B) ∧dprove(B, D21, D22)
dprove(live(outside), [ok(outside_connection), ok(cb2)], D2) <- (live(outside) <= B)
∧dprove(B, [ok(outside_connection), ok(cb2)], D)

? (live(outside) <= B) 20 21
live(outside) <= true
live(outside) <= true

dprove(connected_to(w5, outside), [ok(cb2)], [ok(outside_connection), ok(cb2)]) <-
true 17 -> 15

26

Knowledge Based Systems
�

Proof steps using dprove (7)

?dprove(true, [ok(outside_connection), ok(cb2)], D) 20 22
dprove(true, D23, D23)
dprove(true, [ok(outside_connection), ok(cb2)], [ok(outside_connection), ok(cb2)])

dprove(live(outside), [ok(outside_connection), ok(cb2)], [ok(outside_connection),
ok(cb2)]) <- true 20 -> 13

dprove((connected_to(w5, outside) & live(outside)), [ok(cb2)],
[ok(outside_connection), ok(cb2)]) <- true 22 -> 20

dprove(live(w5), [ok(cb2)], [ok(outside_connection), ok(cb2)]) <- true 13 -> 11

dprove((connected_to(w6, w5) & live(w5)), [], [ok(outside_connection), ok(cb2)])
<- true 11 -> 4

dprove(live(w6), [], [ok(outside_connection), ok(cb2)]) <- true 4 -> 2

dprove(live(w6), [], [ok(outside_connection), ok(cb2)]) <- true 2 -> 0

27

Computational Intelligence Chapter 6, Lecture 3, Page 1

Users

How can users provide knowledge when

➤ they don’t know the internals of the system

➤ they aren’t experts in the domain

➤ they don’t know what information is relevant

➤ they don’t know the syntax of the system

➤ but they have essential information about the particular

case of interest?

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

28

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 2

Querying the User

➤ The system can determine what information is relevant

and ask the user for the particular information.

➤ A top-down derivation can determine what information is

relevant. There are three types of goals:

➣ Goals for which the user isn’t expected to know the

answer, so the system never asks.

➣ Goals for which the user should know the answer, and

for which they have not already provided an answer.

➣ Goals for which the user has already provided an

answer.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

29

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 3

Yes/No questions

➤ The simplest form of a question is a ground query.

➤ Ground queries require an answer of “yes” or “no”.

➤ The user is only asked a question if

➣ the question is askable, and

➣ the user hasn’t previously answered the question.

➤ When the user has answered a question, the answer needs

to be recorded.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

30

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 4

Ask-the-user meta-interpreter

aprove(G) is true ifG is a logical consequence of the%%%%%%%%%%

base-level KB and yes/no answers provided by the user.%%%%%%%

aprove(true).

aprove((A & B)) ← aprove(A) ∧ aprove(B).

aprove(H) ← askable(H) ∧ answered(H, yes).

aprove(H) ←
askable(H) ∧ unanswered(H) ∧ ask(H, Ans) ∧
record(answered(H, Ans)) ∧ Ans= yes.

aprove(H) ← (H ⇐ B) ∧ aprove(B).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

31

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 5

Functional Relations

➤ You probably don’t want to ask ?age(fred, 0),

?age(fred, 1), ?age(fred, 2), . . .

➤ You probably want to ask for Fred’s age once, and

succeed for queries for that age and fail for other queries.

➤ This exploits the fact thatageis a functional relation.

➤ Relationr(X, Y) is functional if, for everyX there

exists a uniqueY such thatr(X, Y) is true.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

32

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 6

Getting information from a user

➤ The user may not know the vocabulary that is expected

by the knowledge engineer.

➤ Either:

➣ The system designer provides a menu of items from

which the user has to select the best fit.

➣ The user can provide free-form answers. The system

needs a large dictionary to map the responses into the

internal forms expected by the system.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

33

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 7

More General Questions

Example: For the subgoalp(a, X, f (Z)) the user can be

asked:

for whichX, Z is p(a, X, f (Z)) true?

➤ Should users be expected to give all instances which are

true, or should they give the instances one at a time, with

the system prompting for new instances?

Example: For whichS, C is enrolled(S, C) true?

➤ Psychological issues are important.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

34

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 8

Reasking Questions
When should the system repeat or not ask a question?

Example: Query Ask? Response

?p(X) yes p(f (Z))

?p(f (c)) no

?p(a) yes yes

?p(X) yes no

?p(c) no

Don’t ask a question that is more specific than a
query to which either a positive answer has already
been given or the user has repliedno.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

35

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 3, Page 9

Delaying Asking the User

➤ Should the system ask the question as soon as it’s

encountered, or should it delay the goal until more

variables are bound?

➤ Example consider query ?p(X) & q(X), wherep(X) is

askable.

➣ If p(X) succeeds for many instances ofX andq(X)

succeeds for few (or no) instances ofX it’s better to

delay askingp(X).

➣ If p(X) succeeds for few instances ofX andq(X)

succeeds for many instances ofX, don’t delay.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

36

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 1

Explanation

➤ The system must be able to justify that its answer is

correct, particularly when it is giving advice to a human.

➤ The same features can be used for explanation and for

debugging the knowledge base.

➤ There are three main mechanisms:

➣ Ask HOW a goal was derived.

➣ Ask WHYNOT a goal wasn’t derived.

➣ Ask WHY a subgoal is being proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

37

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 2

How did the system prove a goal?

➤ If g is derived, there must be a rule instance

g ⇐ a1 & . . . & ak.

where eachai is derived.

➤ If the user asksHOW g was derived, the system can

display this rule. The user can then ask

HOW i.

to give the rule that was used to proveai .

➤ TheHOW command moves down the proof tree.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

38

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 3

Meta-interpreter that builds a proof tree

hprove(G, T) is true ifG can be proved from the base-level%%%%%%%%%%

KB, with proof treeT.%%%%

hprove(true, true).

hprove((A & B), (L & R)) ←
hprove(A, L) ∧
hprove(B, R).

hprove(H, if (H, T)) ←
(H ⇐ B) ∧
hprove(B, T).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

39

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 4

Why Did the System Ask a Question?

It is useful to find out why a question was asked.

➤ Knowing why a question was asked will increase the

user’s confidence that the system is working sensibly.

➤ It helps the knowledge engineer optimize questions

asked of the user.

➤ An irrelevant question can be a symptom of a deeper

problem.

➤ The user may learn something from the system by

knowing why the system is doing something.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

40

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 5

WHY question

➤ When the system asks the user a questiong, the user can

reply with

WHY

➤ This gives the instance of the rule

h ⇐ · · · & g & · · ·
that is being tried to proveh.

➤ When the user asksWHY again, it explains whyh was

proved.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

41

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 6

Meta-interpreter to collect rules forWHY

wprove(G, A) is true ifG follows from base-level KB, and%%%%%%%%%%

A is a list of ancestor rules forG.%%%%%%%%

wprove(true, Anc).

wprove((A & B), Anc) ←
wprove(A, Anc) ∧
wprove(B, Anc).

wprove(H, Anc) ←
(H ⇐ B) ∧
wprove(B, [(H ⇐ B)|Anc]).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

42

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 7

Debugging Knowledge Bases

There are four types of nonsyntactic errors that can arise in

rule-based systems:

➤ An incorrect answer is produced; that is, some atom that

is false in the intended interpretation was derived.

➤ Some answer wasn’t produced; that is, the proof failed

when it should have succeeded, or some particular true

atom wasn’t derived.

➤ The program gets into an infinite loop.

➤ The system asks irrelevant questions.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

43

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 8

Debugging Incorrect Answers

➤ An incorrect answeris a derived answer which is false

in the intended interpretation.

➤ An incorrect answer means a clause in the KB is false in

the intended interpretation.

➤ If g is false in the intended interpretation, there is a proof

for g usingg ⇐ a1 & . . . & ak. Either:

➣ Someai is false: debug it.

➣ All ai are true. This rule is buggy.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

44

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 9

Debugging Missing Answers

➤ WHYNOT g. g fails when it should have succeeded.

Either:

➣ There is an atom in a rule that succeeded with the

wrong answer, useHOW to debug it.

➣ There is an atom in a body that failed when it should

have succeeded, debug it usingWHYNOT.

➣ There is a rule missing forg.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

45

http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 6, Lecture 4, Page 10

Debugging Infinite Loops

➤ There is no automatic way to debug all such errors:

halting problem.

➤ There are many errors that can be detected:

➣ If a subgoal is identical to an ancestor in the proof

tree, the program is looping.

➣ Define a well-founded ordering that is reduced each

time through a loop.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

46

http://www.cs.ubc.ca/spider/poole/ci.html

