

Example	User Action	Author	Thread	Length	Where Read
e1	skips	known	new	lona	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	lona	work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	lona	work
learning a	classifier fro	om exampl	es, one att	ribute has t	o be assigner

Learning Algorithm

Algorithm for learning a decision tree:

Given a set of examples, and a set of attributes and a goal attribute.

- A Stop if all examples have the same classification.
- Otherwise, choose an attribute to split on.
- B For each value of this attribute, build a subtree for those examples with this attribute value and repeat A and B.

Note that the choice of an attribute in step A is not specified.

What attribute choices will give a "good" decision tree?

Quality measures for decision trees:

- Depth of tree
- Number of nodes
- Expected number of steps given a probability distribution of the attributes

Example	User Action	Author	Thread	Length	Where Read
				•	
e1	skips	known	new	long	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	long	work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work
e7	skips	unknown	old	short	work
e8	reads	unknown	new	short	work
e9	skips	known	old	long	home
e10	skips	known	new	long	work
e11	skips	unknown	old	short	home
e12	skips	known	new	long	work
e13	reads	known	old	short	home
e14	reads	known	new	short	work
e15	reads	known	new	short	home
e16	reads	known	old	short	work
e17	reads	known	new	short	home
e18	reads	unknown	new	short	work

5

Natural Neural Networks

- ca. 10¹¹ neurons in human brain
- ca. 10⁴ inputs for each neuron (average in humans)
- · Spiked output
- Complex dynamical behaviour (e.g. cells fatigue)
- Various types of activation functions
- Several different cell types (e.g. multiplicative behaviour)
- Learning by mutual reinforcement

15

Example: Character Recognition with a Neural Net

Schematic drawing shows 3-layer feed-forward net:

