	nowledge representa clarative way.	tion is useful for specifying inference
<u>Example</u> (sce	ne interpretation):	
	region.color = green) an region.type = grass)	d (region.location = picture-bottom)
Rules may ex	press different types	of reasoning:
Rules may ex premise	press different types → conclusion	of reasoning: logical implication
premise antecedenc	→ conclusion e → consequence	logical implication inference from given preconditions
premise antecedenc evidence	→ conclusion e → consequence → hypothesis	logical implication inference from given preconditions interpretation of facts
premise antecedenc	→ conclusion e → consequence → hypothesis	logical implication inference from given preconditions

	What is the Meaning of a Rule?
	lles refering to a database may have one of two meanings r a mix of the two):
Α	If premise is fulfilled in the database, add conclusion to the database
в	If condition is fulfilled in database, execute specified action.
Co	ompare with DLs:
•	nplies (and person (some owns car) rich-person)) stance trabbi1 car)
	lated otto trabbi1 owns) (instance otto rich-person)
Rι	lle in OPS5:
[P	conclude-rich [person ^name <x1> ^owns <x2>] [car ^name <x2>]></x2></x2></x1>
	make person ^instance-of rich-person]

Example of a Decision Rule

IF	global-market = collaps
AND	product-segment = stagnation
AND	product-position = market-leader
AND	market-dynamics = stagnating-share
THEN	change-advertising-message
AND	change-distribution

Note need for human interpretation! Note different meanings of AND in IF-part and THEN-part! Note lack of protection against inconsistent rules!

<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text>

	Rul	e Selection
		t be completely controlled in a rule system. stracts from individual inference steps.
_	les are selected in a recour	nize-and-act cycle. If more than one rule
ки		
	n be applied, a "conflict res	•
cai	n be applied, a "conflict res	•
cai	n be applied, a "conflict res	olution" process decides.
cai	n be applied, a "conflict res	olution" process decides. available in a typical rule system:
cai Co	n be applied, a "conflict res nflict resolution strategies prefer old facts (goals)	olution" process decides. available in a typical rule system: breadth-first search
cai Co	n be applied, a "conflict res nflict resolution strategies prefer old facts (goals) prefer new facts (goals)	olution" process decides. available in a typical rule system: breadth-first search depth-first search

Conflict Resolution Based on Data Seniority

Data may get time stamp from inference cycle.

- Prioritizing most recent data
 Prefer rules whose instantiation involves recently generated data
 => work on new facts first
- Prioritize least oldest data
 Prefer rules whose instantiation has younger elements than the oldest element of other rules
 - => prefer rules which use the youngest facts
- · Avoid rule repetition
- · Avoid repeated instantiation

18

	Rules in OPS5
Syntax of a rule in	n OPS5:
<rule>::=</rule>	[P <rule-name> <antecedent>> <consequent>]</consequent></antecedent></rule-name>
<antecedent>::=</antecedent>	{ <condition>}</condition>
<condition> ::=</condition>	<pattern> - <pattern></pattern></pattern>
<pattern> ::=</pattern>	[<object> {^<attribute> <value>}]</value></attribute></object>
<consequent> ::=</consequent>	{ <action>}</action>
<action> ::=</action>	[MAKE <object> {^<attribute> <value>}] [MODIFY <pattern-number> {^<attribute> <value>}] [REMOVE <pattern-number>] [WRITE {<value>}]</value></pattern-number></value></attribute></pattern-number></value></attribute></object>
Example: "If there wheel pa	e are 2 disks close to each other and with equal size, make them air"
	r [disk ^location <x1> ^size <y>]</y></x1>
[P find-wheel-pair	[disk ^location <x2> - <x1> < 10 ^size <y>]>]</y></x1></x2>
[P find-wheel-pair	
[P find-wheel-pair	Variable

A rule: (P search-py	[brick / [pyrami	<pre>hame <cube1 weight="">200] d ^colour <<y on="" part)<="" pre=""></y></cube1></pre>			cube1 ^wei	ight < 15
Previous contents	time stamp	class	name	colour	weight	on
of WM:	1	cube	C1	blue	250	table
	4	cube	C2	red	100	table
	6	pyramid	P1	yellow	120	table
	9	pyramid	P2	white	NIL	C1
	12	brick	B1	blue	300	table
New data entered ir	nto WM: [15,	brick, B2, blue	, 280, NIL]		
How does the RET	E net compute	changes of	the cor	nflict set	generate	d by

- average of 5 tests per condition
- average of 4 actions per rule

	Inpu	ut of XCON	
Typical compone	nt list based	on customer wishes:	
COMP	ONENTS ORDER	ED:	
1	SV-AXMMA-LA	[packaged system]	
1	FP780-AA	[floating point accelerator]	
1	DW780-AA	[unibus adaptor]	
1	BA11-KE	[unibus expansion cabinet box]	
6	MS780-DC	[memory]	
1	MS780-CA	[memory controller]	
1	H9002-HA	[cpu expansion cabinet]	
1	H7111-A	[clock battery backup]	
1	H7112-A	[memory battery backup]	
1	REP05-AA	[single port disk drive]	
4	RP05-BA	[dual port disk drive]	
1	TEE16-AE	[tape drive with formatter]	
2	TE16-AE	[tape drive]	
8	RK07-EA	[single port disk drive]	
1	DR11-B	[direct memory access interface]	
1	LP11-CA	[line printer]	
1	DZ11-F	[multiplexer with panel]	
1	DZ11-B	[multiplexer]	
2	LA36-CE	[hard copy terminal]	

Example of a Configuration Run (1)					
Numbers corresp	ond to rule applications, lines show context transitions				
1. M	AJOR-SUBTASK-TRANSITION				
2.	SET-UP				
3.	UNBUNDLE-COMPONENTS				
53.	NOTE-CUSTOMER-GENERATED-EXCEPTION				
56.	NOTE-UNSUPPORTED-COMPONENTS				
57.	CHECK-VOLTAGE-AND-FREQUENCY				
104.	CHECK-FOR-TYPE-OR CLASS-CHANGES				
110.	VERIFY-SBI-AND-MB-DEVICE-ADEQUACY				
111.	COUNT-SBI-MODULES-AND-MB-DEVICES				
126.	GET-NUMBER-OF-BYTES-AND-COUNT-CONTROLLERS				
137.	FIND-UBA-HBA-CAPACITY-AND-USE				
146.	VERIFY-MEMORY-ADEQUACY				
148.	PARTITION-MEMORY				
160.	ASSIGN-UB-MODULES-EXCEPT-THOSE-CONNECTING-TO-PANELS				
177.	VERIFY-UB-MODULES-FOR-DEVICES-CONNECTING-TO-PANELS				
178.	FIND-ATTRIBUTE-OF-TYPE-IN-SYSTEM				
180.	VERIFY-COMPONENT-OF-SYSTEM				
207.	NOTE-POSSIBLY-FORGOTTEN-COMPONENTS				
213.	CHECK-FOR-MISSING-ESSENTIAL-COMPONENTS				
215. M	AJOR-SUBTASK-TRANSITION				
216.	DELETE-UNNEEDED-ELEMENTS-FROM-WM				
236.	FILL-CPU-OR-CPUX-CABINET				
240.	ADD-UBAS				
248.	ASSIGN-POWER-SUPPLY				
		30			

Example of a Configuration Run (2)

251.	ADD-MBAS	
252.	DISTRIBUTE-MB-DEVICES	
260.	ASSIGN-SLAVES-TO-MASTERS	
269.	ASSIGN-POWER-SUPPLY	
272.	FILL-MEMORY-SLOTS	
278.	SHIFT-BOARDS	
298.	ADD-MEMORY-MODULE-SIMULATORS	
306.	ASSIGN-POWER-SUPPLY	
312.	FILL-CPU-SLOTS	
318.	ASSIGN-POWER-SUPPLY	
322.	ADD-NECESSARY-SIMULATORS	
326.	DELETE-TEMPLATES	
340.	DELETE-UNNEEDED-ELEMENTS-FROM-WM	
353.	FILL-CPU-OR-CPUX-CABINET	
356.	ADD-MBAS	
359.	ASSIGN-POWER-SUPPLY	
382.	ADD-UBAS	
384.	FILL-MEMORY-SLOTS	
388.	SHIFT-BOARDS	
389.	ADD-MEMORY-MODULES-SIMULATORS	
398.	ASSIGN-POWER-SUPPLY	
399.	TERMINATE-SBI	
402.	ADD-NECESSARY-SIMULATORS	
406.	DELETE-TEMPLATES	
415.	MAJOR-SUBTASK-TRANSITION	
417.	GENERATE-OPTIMAL-SEQUENCE	
		31

F	als of a Qarafian metion Dum (2)
Exam	ole of a Configuration Run (3)
436.	ASSIGN-UBAS-TO-BOXES-TO-CABINETS
438.	ASSIGN-UBAS-TO-BOXES
441.	ATTRIBUTE-BOXES-AMONG-CABINETS
442.	SET-UP-FOR-BOX-ASSIGNMENTS
446.	ASSIGN-BOXES-TO-CABINETS
452.	COMPUTE-DISTANCES-FROM-UBAS-TO-BOXES
458.	SET-SEQUENCING-MODE
462.	FILL-BOXES
465.	FILL-HALF-BOXES
468.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
470.	ASSIGN-BACKPLANE-TO-BOX
474.	GENERATE-SLOT-TEMPLATES
478.	PUT-UB-MODULE
482.	LEAVE-BACKPLAN
485.	AUGMENT-UB-LENGTH
488.	GET-UB-JUMPER
491.	CHECK-NEED-FOR-UB-REPEATER
497.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU
501.	ASSIGN-BACKPLANE-TO-BOX
505.	GENERATE-SLOT-TEMPLATES
510.	PUT-UB-MODULE
518.	ADD-SUBOPTIMAL-UB-MODULE
527.	LEAVE-BACKPLANE
540.	AUGMENT-UB-LENGTH
543.	GET-UB-JUMPER
547.	CHECK-NEED-FOR-UB-REPEATER
553.	LEAVE-HALF-BOX

Example of a Configuration	ation Run (4)
----------------------------	---------------

559.	CHECK-FOR-UB-JUMPER-CHANGES	
561.	CHECK-TERMINATION-CONDITIONS	
568.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU	
571.	ASSIGN-BLACKPLANE-TO-BOX	
576.	GENERATE-SLOT-TEMPLATES	
580.	PUT-UB-MODULE	
581.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT	
590.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT	
598.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT	
604.	ADD-SUBOPTIMAL-UB-MODULE	
608.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT	
615.	ADD-SUBOPTIMAL-UB-MODULE	
617.	LEAVE-BACKPLANE	
626.	AUGMENT-UB-LENGTH	
629.	GET-UB-JUMPER	
633.	CHECK-NEED-FOR-UB-REPEATER	
643.	LEAVE-HALF-BOX	
644.	CHECK-FOR-UB-JUMPER-CHANGES	
646.	CHECK-TERMINATION-CONDITIONS	
657.	SELECT-BOX-AND-UB-MODULE-FOR-NEXT-SU	
660.	ASSIGN-BACKPLANE-TO-BOX	
663.	GENERATE-SLOT-TEMPLATES	
667.	PUT-UB-MODULE	
668.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT	
677.	ASSOCIATE-MULTIPLEXER-WITH-PANEL-SLOT	
690.		
711.	AUGMENT-UB-LENGTH	
		33

714.	GET-UB-JUMPER
716.	CHECK-NEED-FOR-UB-REPEATER
732.	LEAVE-HALF-BOX
733.	CHECK-FOR-UB-JUMPER-CHANGES
735.	CHECK-TERMINATION-CONDITIONS
738.	ASSIGN-UB-JUMPER-CABLES-TO-BOX
749.	LEAVE-HALF-BOX
750.	CHECK-FOR-UB-JUMPER-CHANGES
752.	CHECK-TERMINATION-CONDITIONS
756.	ASSIGN-UB-JUMPER-CABLES-TO-BOX
769.	ACCEPT-UNIBUS-CONFIGURATION
832.	MAJOR-SUBTASK-TRANSITION
833.	ASSIGN-TERMINALS-TO-LINES
834.	PUT-PANELS-IN-UBX-CABINET
848.	MAKE-TERMINAL-ASSIGNMENT
854.	MAJOR-SUBTASK-TRANSITION
855.	LAY-OUT-SYSTEM
857.	FIND-FLOOR-RANKINGS
882.	DETERMINE-FLOOR-POSITIONS
888.	DETERMINE-FLOOR-POSITIONS-OF-CABINETS
893.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES
900.	DETERMINE-FLOOR-POSITIONS-OF-SLAVES
908.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES
920.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES
934.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES
942. 973.	DETERMINE-FLOOR-POSITIONS-OF-DEVICES

Example of a Configuration Run (6)

974.	COMPUTE-CABLE-LENGTHS
1021.	FIND-LENGTHS-OF-CABLES-IN-ORDER
1135.	ASSIGN-CABLES
1179.	FIND-LENGTHS-OF-CABLES-IN-ORDER
1183.	FIND-LENGTHS-OF-CABLES-IN-ORDER
1187.	FIND-LENGTHS-OF-CABLES-IN-ORDER
1192.	NOTE-POSSIBLY-FORGOTTEN-COMPONENT
1198.	GENERATE-COMPONENT-NUMBERS-FOR-CABLES
1248.	GENERATE-OUTPUT

The trace shows the complexity of the resulting process. The context structure has been forced onto the process against the spirit of the data-driven operations of rule-based systems.

