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Zusammenfassung

Konzeptuelle Modelle fiir die Hohere Bilddeutung werden neben Taxonomien bevorzugt in
Gestalt von kompostionellen Hierarchien organisiert. Modelle fiir Hiuserfassaden
beispielsweise (diese werden in dieser Arbeit als Beispiele verwendet) kdnnen mithilfe ihrer
konstituierenden Teile beschrieben werden (etwa Fensterreihen und Balkons), und diese
konnen wiederum in ihre Teile zerlegt werden. Obwohl kompositionelle Hierarchien bei der
Szeneninterpretation hdufig verwendet werden, ist bisher nur unzureichend dariiber bekannt,
wie man probabilistische Abhingigkeiten zwischen Aggregaten und ihren Teilen fiir den
Interpretationsprozess ausnutzen kann. Ein probabilistisches Rahmenwerk muss fiir diesen
Zweck in der Lage sein, Vorerwartungen zum Szeneninhalt bei fortschreitender schrittweiser
Interpretation kontinuierlich an neue Evidenz anzupassen. Es sind also nur effiziente
Verfahren geeignet.

In diesem Bericht stelle ich Bayes’sche Kompositionelle Hierarchien zur Reprédsentation und
Verarbeitung von Wahrscheinlichkeiten in kompositionellen Hierarchien vor. Der
Formalismus ist auf eine objektorientierte Wissensreprasentation eingestellt. Er erweitert
bisher vorgeschlagene probabilistische Strukturen dahingehend, dass beliebige
probabilistische Abhingigkeiten innerhalb von Aggregaten modelliert werden konnen, aber
dennoch eine einfache Propagationsstruktur erhalten bleibt. Dazu miissen bestimmte
Abstraktionsforderungen erfiillt sein, die sicherstellen, dass interne Aggregateeigenschaften in
hoheren Hierarchieebenen keine Rolle mehr spielen.

Es wird gezeigt, dass die fiir eine Szeneninterpretation erforderlichen a-priori
Wahrscheinlichkeiten mithilfe von Bayes’schen Kompositionellen Hierarchien dynamisch an
neue Evidenz angepasst werden konnen und so ein PraferenzmaB fiir Entscheidungen in
einem logikbasierten Interpretationssystem bieten.
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Abstract

In high-level vision, it is often useful to organize conceptual models in compositional
hierarchies. For example, models of building facades (which are used here as examples) can
be described in terms of constituent parts such as balconies or window arrays which in turn
may be further decomposed. While compositional hierarchies are widely used in scene
interpretation, it is not clear how to model and exploit probabilistic dependencies which may
exist within and between aggregates. A probabilistic framework has to meet the challenge that
probabilities must be continually updated as evidence becomes available and incremental
interpretation steps are performed. Hence computational efficiency is mandatory. In this
report I present Bayesian Compositional Hierarchies as a means to capture probabilistic
dependencies in an aggregate hierarchy. The formalism integrates well with object-centered
representations and extends Bayesian Networks by allowing arbitrary probabilistic
dependencies within aggregates. To obtain efficient inference procedures, the aggregate
structure must possess abstraction properties which ensure that internal aggregate properties
are only affected in accordance with the hierarchical structure. Using examples from the
building domain, it is shown that probabilistic aggregate information can thus be integrated
into a logic-based scene interpretation system and provide a preference measure for
interpretation steps.

1. Introduction

Interpretations are generally ambiguous and not clearly defined with respect to a task. When
constructing an explanation for evidence one often has the choice between alternatives. For
example, given a straight knowledge base about building facades, the image section marked in
Fig. 1 can be interpreted both as an entrance or a balcony. In the course of a stepwise
interpretation, there can be many more decision points where multiple choices are available.
As humans, we seem to exploit our experiences for such decisions and prefer the most likely
choice given all we know about sthe domain and the current scenario. Hence it appears
natural to provide a probabilistic model for the uncertainty of logically ambiguous choices.

Figure 1: Facade component in box may be both
a balcony or an entrance. (It is an entrance of a
house in Montreal).




The basic idea is to consider concepts as random variables with probability distributions
which govern the likelihood of possible instantiations represented by the concept. A general
approach to construct Bayesian Networks for first-order logic expressions is presented in
[Russell & Norvig 03]. Our approach, first sketched out in [Neumann & Moeller 06], exploits
the fact that aggregates are the concepts of interest for an interpretation task and dependencies
between objects can effectively be encapsulated in aggregates. Within aggregates, we do not
require conditional independence of parts given aggregate properties as in the pioneering
work of [Rimey 93] but allow arbitrary distributions. We will, however, impose certain
abstraction requirements in order to ensure that efficient propagation mechanisms can be
used.

To simplify the presentation, let us assume that each part may occur at most once in an
aggregate. Aggregates with repeated parts must be described by giving every possible part its
own representation within the aggregate. Alternatively, aggregates with different part
configurations can be treated as different concepts. We will be able to incorporate
taxonomical branchings in our model, so alternative aggregates do not pose problems.

This way, the space of all interpretations has an AND-OR node structure, with aggregate
nodes indicating an AND relation between parts, and concept specialisation nodes
(representing taxonomical branchings) an OR relation between specialisations.

The task is now to assign probability distributions to aggregates and their parts such that the
probability of any object (regarding its existence, location and other properties) can be
computed at any time during the interpretation process conditioned on the evidence which has
been incorporated so far. In other words: We want to be able to provide dynamic priors
exploiting high-level context and partial evidence.

Let A be an aggregate concept and B1 ... BN its part concepts. An aggregate will be
represented by the following random variables (the understroke denotes a vector):

Ax boolean random variable representing the existence probability of A

A vector-valued random variable representing simple properties of A

Blx ... BNx boolean random variables representing the existence probabilities of the parts
B1 ... BN vector-valued random variables representing the properties of the parts

Properties are assumed to map into a fixed domain of values, not into structured objects
(called simple functions in [Russell & Norvig 03], page 520). Similar models have been
proposed by [Laskey & al. 01] and [Gyftodimos & Flach 02] for situation modelling.

The probabilistic dependencies between the random variables are described as follows:
P(B1 .. BNBlx .. BNx | Ax=T)

This joint probability distribution (JPD) of part properties, called parts distribution, reflects all
constraints imposed by the aggregate definition. Note that the existence properties B1x ...
BNx allow to model aggregate configurations with varying numbers of parts. Note also, that
there is no meaningful distribution for parts if Ax =F.

a=fa(bl ... bN blx ... bNx)

The function fa is the abstraction function of aggregate A. For each part configuration
(expressed by blx ... bNx), fa maps (detailed) part properties into (less detailed) aggregate
properties. For example, fa could compute the bounding-box coordinates of an aggregate from
the bounding box coordinates of its parts.

From the parts distribution one can compute the JPD of aggregate properties A:
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P(A|BIl ... BN BIx ... BNx Ax=T)

The properties A are called external aggregate properties. They represent the aggregate as a
whole when it is part of a higher-level aggregate. Correspondingly, B1 ... BN are called
internal aggregate properties. Each Bk may simultaneously describe the external properties of
a lower-level aggregate. Parts which do not decompose further are called primitive parts.

An aggregate can be graphically represented as shown in Fig. 2. Each part of an aggregate can
be the root of further decompositions, hence aggregates give rise to a compositional hierarchy
as illustrated in Fig. 3.

A
O
P(A)
P(B, .- By)
O O O O O
Figure 2: Probabilistic aggregate structure Figure 3: Aggregates form a compositional

hierarchy

2. Bayesian Compositional Hierarchies

For probabilistic inferences in a compositional hierarchy, we have to be precise about
probabilistic dependencies beyond those expressed by the aggregate specifications. How does
evidence for one aggregate influence the probabilities in another aggregate? Note that the
aggregate hierarchy is not a Bayesian Network: Given the external aggregate properties, parts
are in general not statistically independent, hence subtrees below the parts will in general also
be dependent.

Intuitively, external aggregate properties should represent all information relevant for
probabilistic dependencies concerning the aggregate as a whole, abstracting from irrelevant
parts properties. We now state conditional independence requirements which reflect this
intuition, and show that the requirements give rise to an interesting factorisation theorem,
enabling efficient probabilistic inference procedures.

Let us simplify the notation by denoting the existence variable Ax of an object together with
its property values A by the augmented property vector 4 (in italic):

4=[AxA]

In the following, we always refer to objects in terms of their augmented property values. Let
parts(4) = B1 ... BN be the parts of an aggregate 4 (empty, if 4 is primitive) and succ(4) be all
objects in the hierarchy below 4 (including its parts).

We postulate that the following abstraction requirements must be fulfilled:

Requirement 1:
P(succ(parts(4)) | parts(4) 4) = P(succ(parts(4)) | parts(4)) (1)



Given properties of parts of an aggregate, the properties of successors of the parts do not
depend on the external properties of the aggregate.
Requirement 2:
Let BI ... BN be the parts of an aggregate 4.

P(succ(Bk) | BI ... BN) = P(succ(Bk) | Bk) (2)
Given aggregate properties, then properties of its parts do not depend on siblings of the
aggregate
Requirement 3:
Let BI ... BN be the parts of an aggregate 4.

P(succ(BI ... BN) | BI ... BN) =11 P(succ(Bk) | BI ... BN) 3)

Given their mother aggregates, parts of different aggregates are statistically independent.

From requirements 2 and 3 it follows that
P(succ(BI ... BN) | BI ... BN) =11 P(succ(Bk) | Bk)

The three abstraction requirements express that the JPD of any object in the compositional
hierarchy is only affected via its immediately connected hierarchy neighbours. Hence
evidence propagation will simply have to follow the hierarchical structure.

Exploiting these abstraction requirements, we can derive a factorisation formula for the JPD
of a complete compositional hierarchy. Let Zk, k = 0 ... M be all objects of the compositional
hierarchy and Z0 its root, then

P(Z0...ZM)  =P(Z0) P(succ(Z0) | 20) 4
= P(Z0) P(parts(Z0) succ(parts(£0)) | Z0)
= P(Z0) P(parts(£0)) | Z0) P(succ(parts(Z0)) | parts(Z0) Z0)
= P(Z0) P(parts(£0)) | Z0) P(succ(parts(Z0)) | parts(Z0)) )

The last step exploits Requirement 1. Let part(Z0i) be the ith part of Z0, then Eq. 2 can be
rewritten using Requirements 2 and 3:

P(Z0...ZM)  =P(Z0) P(parts(Z0)) | Z0) I1 P(succ(part(Z0i)) | part(Z0i)) (6)
Now the derivation steps from Eqs. 4 to 6 can be applied recursively, and we obtain
P(Z0 ... ZM) = P(Z0) 11 P(parts(Zk) | Zk), k=1..M (7)

Because of the remarkable similarity to the well-known Bayesian Network factorisation
formula, we call compositional hierarchies meeting the three abstraction conditions "Bayesian
Compositional Hierarchies" (BCHs). The BCH factorisation formula states that all
probabilistic inferences can be carried out solely based on aggregate descriptions in terms of
the JPD of internal aggregate properties given external aggregate properties.

It is interesting to rephrase the BCH factorisation formula in terms of aggregate descriptions
based on P(Zk | parts(Zk)). As shown earlier, these conditional probabilities are in fact
deterministic mappings from internal to external aggregate properties. We get the following
alternative formula:

P(Z20 ... ZM) =11 P(Zk | parts(Zk) C(parts(Zk)) k=1..M ()
with C(parts(Zk)) = P(parts(Zk)) / I1 P(Zki) where the Zki are all parts of Zk



C(parts(Zk)) reflects the correlation between the parts of an aggregate and equals 1 for
uncorrelated parts.

The alternative factorisation formula shows an intuitive way for determining the probabilities
of a BCH. Starting with the JPDs of primitive aggregate parts, the JPDs of external aggregate
properties are determined using the abstraction function which maps internal into external
property values. This process is continued incrementally for higher abstraction levels.

A challenging goal, of course, would be to learn aggregate definitions which meet the
abstraction conditions. At this time we are not aware of a clustering approach for finding a
BCH which approximates a given JPD of primitive parts.

3. Taxonomical Aggregate Relations

For model-based scene interpretation, it is also necessary to structure aggregate concepts in
taxonomical hierarchies based on specialisation relations, and a probabilistic model must
include such relations. Fortunately, the probabilistic model introduced for compositional
hierarchies can also be used for taxonomical hierarchies.

A concept A and its specialisations B1 ... BN are described as follows:

Ax boolean random variable representing the existence probability of A

A vector-valued random variable representing simple properties of A

Blx ... BNx boolean random variables representing the existence probabilities of the
specialisations

B1...BN vector-valued random variables representing the properties of the parts

The probabilistic dependencies can be described by the JPD P(B1 ... BN Blx ... BNx | A Ax).
Here P(B1x ... BNx | A Ax) models the probabilities for each of the possible specialisations
given properties of the mother concept A. Note that, in general, specialisations need not be
disjunctive, i.e. the concepts B1 ... BN may overlap.

P(Bk Bk=T | A Ax) models the dependencies between properties of a specialisation and the
mother concept. Since all properties of A are inherited, one can think of Bk as a property
vector which refines and extends A.

For disjunctive specialisations, the JPDs of the specialisations are independent given the
mother concept:

P(BI1 ... BN Blx ... BNx | A Ax) =P(B1 Blx | A Ax) ... P(BN BNx | A Ax)

For the BCH factorisation formula to hold and for the validity of a probabilistic inference
scheme based on the three abstraction requirements, we must show that the abstraction
requirements also hold for taxonomical relations.

Consider a tree-shaped specialisation hierarchy where each concept has a single parent
(except the root) and specialisations of a concept are disjunctive. Let us call the immediate
specialisations of a concept "children" (replacing "parts" used for compositional hierarchies).
Then the first abstraction requirement is:

Requirement 1:
P(succ(children(4)) | children(4) 4) = P(succ(children(4)) | children(4))

Given properties of concept children, then properties of their successors do not depend on the
properties of the mother concept. This requirement is always fulfilled as children include all
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properties of their mother concept by definition of a specialisation, and the mother concept
does not add new information.
Requirement 2:
Let BI ... BN be the children of a concept 4.
P(succ(Bk) | BI ... BN) = P(succ(Bk) | Bk)

Given properties of a mother concept, then properties of its specialisations do not depend on
siblings of the mother concept. This is always the case as long as children of a concept are
disjunctive. If not, then information about a sibling of the mother concept could influence
expectations about the children.

Requirement 3:
Let BI ... BN be the children of a concept 4.
P(succ(BI ... BN) | BI ... BN) =11 P(succ(Bk) | BI ... BN)

Given their mother concepts, specialisations of different concepts are statistically
independent. Again, for this requirement to hold, children must be disjunctive.

Summarising this section, we have shown that for disjunctive specialisation, taxonomical
relations can also be modelled within the framework of Bayesian Compositional Hierarchies.

4. Probability Propagation

We have shown that in a BCH, aggregates influence each only via the connections in the tree
structure. We now describe probability propagation in detail. As an illustrating example
consider Fig. 4.

Facade
Y v v
Balcony Window-Array Entrance
—| B-Railing » A-Windowl —»| E-Stairs
— | B-Window » A-Window2 —»| E-Window
» B-Door » A-Window3 » E-Door

---%» One-Wing-Door

| i e

---%» Two-Wing-Door

Figure 4: Simple compositional hierarchy (solid arrows) for a facade including a taxonomical
refinement (dotted arrows)

Let us assume that all aggregates Zk are described by P(parts(Zk) | Zk) which specifies the
JPD of aggregate parts given the external aggregate properties. In order to determine the prior
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probabilities for all objects, we have to provide the prior root probability of the hierarchy
P(Z0). In the example, this could be the probability distribution for existence, location and
size of a facade. We now determine

P(parts(Z0) Z0) = P(parts(Z0) | Z0) P(Z0)

and then P(Z0k) for all parts of Z0 by marginalising. Proceeding top-down in the same
manner, we obtain priors for all objects of the hierarchy.

Let us now assume that evidence for a leaf object has been found. For our example, this could
be evidence for the Two-Wing-Door in terms of specific values for position and size. We
want to determine the influence of this evidence on the remaining random variables of the
hierarchy. As propagation will follow the hierarchical structure, it suffices to show how the
changed JPD of a part affects the JPD of the aggregate which contains it (bottom-up
propagation) and how the changed JPD of an aggregate affects its parts (top-dowm
propagation). To specify the propagation rules, we will denote the external properties of an
aggregate by 4 and the properties of its kth part by Bk.

For bottom-up propagation, let us assume that the JPD of Bk changes from P(Bk) to P'(Bk).
Then the changed JPD of 4 is determined by

P'(4 BI ... BN)=P(4 BI ... BN) P'(Bk) / P(Bk) ©)

followed by marginalisations. Similarly, for top-down propagation we assume that P(4) has
changed to P'(4). Then the changed JPD of the parts B/ ... BN is determined by

P'(ABI ... BN)=P( BI ... BN) P'(4) / P(4) (10)

followed by marginalisations. It is convenient to model the introduction of crisp evidence also
as a change of a JPD. Thus if the evidence B = b becomes available for an object with JPD
P(B), then the changed JPD of B is P'(B) = 1 for B =D und 0 otherwise.

In our example, after receiving evidence for the Two-Wing-Door, the probabilities of the
superconcept E-Door and of the aggregates Entrance, Facade, Window-Array and Balcony
have to be recomputed, requiring five propagation steps.

This process is repeated whenever new evidence forces the change of a marginal probability.

5. Scene Interpretation with Probabilistic Guidance

The rationale of the BCH is to provide context-sensitive and dynamic priors for all objects for
which evidence may become available. In order to clarify the role of evidence, we have to
refine the hierarchy shown in Fig. 4. Every physical object concept will be connected to a
corresponding view concept which describes possible appearances of the physical object (Fig.
5). A view concept is modelled probabilistically as another concept, and its relation to the
physical object concept is expressed analog to the relation of a part to an aggregate containing
the part.

Object =P Object-View

Figure 5: Refined object representation with attached view concept

An alternative model would be to include appearance properties in the physical-object
concept. We prefer a separate view concept to emphasise the distinction between physical and
image objects.

An extended object concept is now modelled as follows:
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Ax  boolean random variable representing the existence probability of a physical
object A

A vector-valued random variable representing simple properties of A
Bx boolean random variable representing the existence probability of an object view
B vector-valued random variables representing the properties of the view

Note that this representation may be easily extended to describe multiple views by several
cameras or evidence by multimodal sensors.

Concrete evidence is considered as an instantiation of the random vector B. As in other
aggregates, B is related to 4 by a JPD P(B | 4) where 4 and B are taken to include the
existential variable Ax and Bx, respectively. This JPD allows to model the dependency of
views from properties of the physical object.

Obviously, camera parameters also play a part in determining the relation between an object
and its appearance. Hence B must be assumed to encompass such information. While this
information is not a natural part of the physical object representation 4, the abstraction
properties of a BCH require that this information must be channelled to B via 4 and its
compositional parents. This is the price one has to pay for the tree-shaped propagation
structure.

Given this extension of the BCH formalism to include view concepts, the dynamic state of a
BCH during interpretation can be described as follows. Let {Z0 ... ZM} be all concepts of the
BCH and

(20 ... ZM} = {XI ... XN YI ... YK}

where Y/ ... YK denote concepts with assigned evidences y/ ... vk. Then the JPD of the BCH
is

P(XI.. XN | YI=yl ... YK=vk)
and the dynamic priors of object classes Xi are given by the marginalisations
P(Xi | YI=yl ... YK=yk)

To provide these dynamic marginalisations for all potential objects of a domain using the
propagation procedure may seem a monstrous task, but the abstraction hierarchy allows to
perform valid probabilistic inferences without considering every branch of the interpretation
space in full detail, as will be shown in the following.

Consider a BCH structured as shown in Fig. 4, and a situation where some rectangular
evidence el is available which may be either a one-wing entrance door or a balcony door. For
an optimal decision, we have to compare the posterior probabilities of One-Wing-Door-View
and B-Door-View given the evidence.

Let us assume that this is the first evidence in the interpretation process, then the probabilities
are immediately available from the initialised values of the BCH, and we can compare P(One-
Wing-Door-View = el) and P(B-Door-View = el) and choose the most likely.

Assume now, that P(B-Door-View = ¢el) is larger and we decide that el is a Balcony-Door-
View. In order to compute the effect of this decision, we have to propagate this decision only
in the subtree of the BCH which may concern the next interpretation steps. For example, to
compute the effect of the balcony-door decision on the other parts of the balcony, we can
restrict propagation to the balcony subtree. Similarly, if we want to determine the effect on the
probabilities of the entrance, we have to propagate within the facade aggregate, but not in a
larger BCH of which the facade may be a part. This suggests that an efficient interpretation
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process will employ a strategy which one may call "lazy propagation": Effects of
interpretation decisions are only propagated as far as needed, and preference decisions can be
made by comparison within common subtrees, without knowledge of absolute probability
values.

Another effort-saving idea is to stop propagation when changes are negligible. For example, if
the position of the balcony door does not significantly affect the expected position of objects
in another storey of the building, propagation may be restricted accordingly.

6. Propagation of Location Information

So far, it has been assumed that evidence is related to an object property represented by a
random variable in our probabilistic aggregate representation. For example, evidence in terms
of a rectangular image segment would instantiate random variables for width, height and
colour of a door model. However, image analysis also provides evidence in terms of absolute
image locations which cannot be directly related to theproperty of a single object within a
BCH where location properties are specified relative to its parent aggregate. Fig. 6 illustrates
the situation for bounding-box aggregate representations in the building domain.

window

window-array

dl facade

scene

Figure 6: Relative location specification of a location q in a 2D aggregate hierarchy.
Bold lines represent bounding box vertices used as local reference frames. Object locations
are represented by offsets di relative to the reference frame of the parent aggregate.

Note that mapping between image coordinates and scene coordinates (measured in the
reference frame of the root node "scene" of the BCH) is assumed to be known. Hence
evidence in terms of absolute image locations corresponds to locations in the "scene"
reference frame. For objects modelled several levels down in the aggregate hierarchy,
absolute image locations therefore correspond to the sum of the offsets between the local
reference frame and the scene reference frame. We want to determine now which probability
updates must be performed if evidence for a location property within the aggregate hierarchy
is provided in absolute image coordinates.

To simplify the presentation, let us assume a 2D domain (such as the facades in the building
domain) where image coordinates directly represent coordinates in the "scene" reference
frame. Let g be a location of an object defined in a reference frame k levels deep in the
compositional hierarchy. Let g1 be the location of this point_in absolute image coordinates.
and D1 ... Dk be the random variables representing the offsets between the nested reference
frames. Then obtaining the absolute position of g amounts to obtaining the value for

ql=dl +d2+..+dk



Let Q1 be the random variable defined by
Q1 =DI1+D2+ ...+ Dk

then after observing g1, the updated joint distribution P’(Z) (where Z is any set of nodes of
the BCH) is defined by

P'(Z)=P(Z|Ql=gl)

To compute the update, we have to obtain the joint distribution of D1, D2 ... Dk and then
derive the distribution of the sum. Let us denote the aggregate descriptions containing D1 ...
Dk by P(B1 | A1), P(B2 | A2) ... P(Bk | Ak). Each internal property vector Bi contains the
offset Di to the next nested aggregate and its external properties Ai+1, among others, so by
marginalisation one gets P(D1 A2 | Al), P(D2 A3 | A2) ... P(Dk Ak+1 | Ak). From this, using
the conditional independence assumption expressed in the abstraction Requirement 1, one
gets the joint distribution

P(A1 D1 A2 D2 ... Ak Dk Ak+1) =P(A1) ITP(D1 A2 | Al) ... P(Dk Ak+1 | Ak) (11)
and by marginalisation P(D1, D2 ... Dk). In the situation depicted in Fig. 6, P(A1) is a known

factor since we assume that the properties of the scene reference frame are known. As shown
below, however, P(A1) has to be taken in account in more general situations.

We can summarize now the steps which must be carried out to compute the probabilistic
effect of observing q1:
Absolute Location Update Procedure

A Determine P(Al), P(D1 A2 | Al), P(D2 A3 | A2) ... P(Dk Ak+1 | Ak) for all aggregates
containing D1 ... Dk.

B Determine P( D1, D2 ... Dk) using Eq. 11 and marginalising.

C  Determine P(Q1 =D1+D2+ ... + Dk) and P(D1 ... Dk | Q1) from P(D1 ... Dk). From
this, one gets the updated distributions P'(D1) ... P'(Dk) and the updated aggregate
descriptions P'(B1 | Al), ... P’(Bk | Ak).

D  From the updated aggregate descriptions, propagate the changes into all other
aggregates using the regular propagation formulas Eqgs. 9 and 10.

As more absolute image locations become known, the update procedure becomes more
complex. Fig. 7 illustrates the general situation. g®... g represent locations in absolute
coordinates whose probabilistic effect has already been incorporated into the BCH. ¢¥ is a

new location evidence in absolute coordinates.

Figure 7: Updating probabilities in a BCH for evidence in absolute coordinates
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Observing q¥ directly affects all ancestor aggregates along the path up to the nearest absolute
position value, in the example ¢, and all descendant aggregates along the paths down to the
nearest absolute position values, in the example the aggregates on the paths from g(4) to g(l)
and g'. Descendant branches without previous absolute position values remain unaffected.
For each of these paths, the Absolute Location Update Procedure must be applied.

It is apparent that evidence in terms of absolute position information is against the grain of a
hierarchical model. The larger the hierarchical distance between successive evidence, the
higher is the computational cost for updating the aggregates on the paths between absolute
values. Hence interpretation procedures should collect evidence in spatially coherent regions
rather than shifting attention too often.

On the other hand, the computations of the updating procedure can be reasonably efficient as
shown in the following section where the distributions are assumed to be multivariate
Gaussians.

7. Propagation with Multivariate Gaussian Distributions

Gaussian densities are often acceptable approximations of unimodal probability distributions
as long as quantities are centered around a most likely mean, and deviations beyond a certain
distance from the mean are negligible. This is true for many random quantities which play a
part in the composition of a facade, e.g. window sizes, distances between windows, heights of
storeys etc. Simultaneously, it is obvious that none of these quantities are unlimited as
required for true Gaussians. Hence Gaussian models can be taken seriously only within
certain limits, say the range of -20 ... +20 of each variable. The biggest advantage of
Gaussian models, of course, is their compact representation in terms of two parameters for a
univariate variable, and N parameters for the means and N parameters for the covariances of
N multivariate Gaussian variables.

Regarding the probability propagation in a BCH, Gaussians also offer considerable
simplifications. First, marginalisations of a multivariate density can be obtained directly from
the covariance matrix, and second, the parameters of conditional densities can be computed
from a multivariate density by a closed-form formula.

It must be noted, however, that taxonomical branchings can only be modelled by Gaussians if
the external properties of alternative specialisations have the same distribution or can be
approximated by a single Gaussian (instead of a Gaussian mixture distribution). This is, for
example, the case for different types of facades if they have a similar bounding box as
external representation.

For multivariate Gaussian densities in a BCH, the propagation formulas can be specified as
follows. To simplify the presentation, we describe how an arbitrary subset of multivariate
Gaussians is updated. Let G = [C D] be a vector of Gaussian random variables where D is the

subset whose distribution is changed by propagation. Before propagation, the distribution of
Gis

P(G) = N(ug, Z5)

where ug is the mean vector and 2 the covariance matrix. The partitions corresponding to C
and D, respectively, are denoted as shown:

o= 12 Zepl U= lucl
IZCDTZD | lup |

For a probability update, we assume that the distribution of D is changed to
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P(D") = N(wy", Zp).
Then the new distribution P*(G) is
P(G) =N(us", Z5")

with 34" =13 S’ | U =1 e
150 'Sy | |yl

where 3 =3c-Zep 2! Zep’ + Zep 2o = 2 Sep” (12)
Zen = 2ep Zp ' Zp” (13)
Ue” = U+ Zep 27 (Up- Up) (14)

Eqgs. 12 to 14 can be derived by determining the resulting Gaussian distribution for
P’'(G)=P(C|D)P[D)
using the formulas for multivariate Gaussian conditionals:
P(CID) = N(®ep, Zeqp)

with pep = pe + Zcp 2 (d- up) (15)
and Zop=2c-Zqp ZD-I 2CDT (16)

Eqgs. 12 to 14 show that both upward and downward propagation for an aggregate with
random variables 4 B/ ... BN can be performed by fairly simple computations. For upward
propagation, D represents a subset of B/ ... BN, for downward propagation D represents a
subset of 4.

From the equations, we observe that the covariance matrix of D must be non-singular for its
inverse to exist. This is the case if two conditions are fulfilled:

(1) The prior covariance matrices of the external aggregate variables 4 and the internal
aggregate variable B/ ... BN must each be non-singular. Note that this does not preclude
deterministic mappings between B/ ... BN and A which are natural for aggregate descriptions
in a BCH.

(i1) Crisp evidence D = e which is introduced by updating D with
P(D) = N(up =g, Z,"=0)

may not be updated again (the inverse of Zp” does not exist, of course). This is naturally the
case in a monotonic interpretation process where evidence may not be retracted.

Absolute Position Values

The computation of the probabilistic effect of absolute position values which was treated in
Section 6, can also take a simplified form in the case of multivariate Gaussians. We assume
that a new absolute value of an object is observed and hence offset chains in the aggregate
hierarchy are constrained by knowledge of their sum. Let D1 ... Dk be such an offset chain
between nested reference frames with absolute position values at the beginning and at the
end., and d; be the known value for the sum of the offsets. The essential goal then is to
compute

P(DI D2 ... Dk | D1+D2+ ... +Dk = dy)

Steps A and B of the update procedure call for the computation of the joint distribution of the
corresponding aggregate descriptions.
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For Gaussians, it is convenient to describe an aggregate by the joint probability distribution of
its internal and external properties P(Ai Bi), specified my mean and covariance. To compute
P(D1 D2 ... Dk), we only need the components Di and Ai-1 which are contained in Bi, and
can reduce the aggregate covariance matrices accordingly. The covariance matrix Xpg p; can
be recursively determined as follows.

Let Zpk pi ai be the covariance matrix for Dk, Dk-1, ... Di, Ai. We want to extend it to include
Di-1 and Ai-1. Fig. 8 illustrates this recursive situation. From the aggregate descriptions we
know the covariance matrix of Di, Ai-1 and Di-1 (the box in the lower right corner).

i} | ‘ —_
2o | |
P l 1
i ZAi (k.Di) iz(Di-l Ai-1) (Dk..Di)
[} [}
| I
Zpi | l
_______ ST TS S s
Ai (Dk..Di) H ZAi ' 2(Di-1 Ai-1) Ai
B I_i _____________
o : - | “Di-1
2" Di1 Ai-1) (Dk.Di) i 2 it Ai-l)Aii i

Figure 8: Recursive computation of the covariance matrix of P(D1 D2 ... Dk) - see text.

To compute the submatrices in the shaded areas, we exploit the conditional independence
requirement for a BCH (Eq. 1). Note that for a multivariate Gaussian P(ABC ) with
covariance

12, 2.5 il
125 Zp e |
120 Zpe Zc |

the conditional independence condition P(AIB) = P(AIBC) holds iff =, = =, ;"' ;. From
this, the submatrices in the shaded area can be determined as

Z(Di»l Ai-1)(Dk..Di) — 2Ai (Dk..Di) ZAi-l 2 (Di-1 Ai-1) Ai
The recursive step is concluded by deleting the row and column for Ai, resulting in Spk pi-1 A-
1. After completion of all recursive steps, the covariance of P(D1 D2 ... Dk) is determined,
and Step C and D of the Absolute Position Update Procedure can be carried out. The updated
mean U p; px and covariance Z'p; px of P'(D1 ... Dk) = P(DI ... Dk | D1+...+Dk) can be
determined from the covariance matrix Zp; px based on the sums Zg; ... Zg of pairwise
covariances as follows:

g = SuUM(Zpy ;i 2y pj -+ 2pi o+ 2pk Di)
2 ok = Zppk - [Zsg - Zgid [sum(Z, ... ZSk)]-l [Z, ... 2Sk]T (17)
Wik = Mpp ok + [Zg - Zg ] [sSum(Zg, ... ZSk)]-l (dy - W) (18)

The update formulas (17) and (18) have been derived for vector-valued offsets di which can
be 3D vectors for general aggregate models, 2D vectors for special domains such us the
facade domain, or scalars if only one dimension has been observed, e.g. the horizontal
position of a facade boundary.
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8. Conclusions and Outlook

We have presented a probabilistic framework for computing dynamic priors based on
probabilistic dependencies between objects embedded in a compositional hierarchy. By
requiring certain abstraction properties, probability changes induced by evidence can be
propagated along the tree-shaped structure of the compositional hierarchy, and, in the case of
disjunctive specialisations, also along taxonomical branchings.A factorisation theorem similar
to the Bayesian Network factorisation formula has been derived which generalises a
conventional Bayesian Network representation of a compositional hierarchy by allowing
arbitrary probabilistic dependencies between the parts of an aggregate.

Implementations of the probabilistic framework are currently underway. In one approach,
objects are modelled by location and bounding box parameters, and Gaussian distributions
will be assumed. In this case, the abstraction function fa maps the bounding-box parameters
of the parts into the resulting bounding box parameters of the aggregate as a whole. If this
mapping is linear (which is the case for many realistic aggregates), Gaussian distributions for
primitive objects map into Gaussians at higher compositional levels, and probability updates
can be performed as shown in Section 7.

Another approach is to allow arbitrary distributions. However, preliminary work shows that
the probablity tables for realistic aggregates tend to be very large, and modelling has to be
done with special consideration of this aspect.
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