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What is High-level Scene Interpretation?
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Some Application Scenarios for
High-level Scene Interpretation

• street traffic observations (long history)

• cameras monitoring parking lots, railway platforms,
supermarkets, nuclear power plants, ...

• video archiving and retrieval

• soccer commentator

• smart room cameras

• autonomous robot applications
(eg robot watchmen, playmate for children )
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Characteristics of
High-level Scene Interpretation Tasks

• interpretations typically involve several interrelated objects

• spatial and temporal relations are important

• interpretations may build on common sense knowledge

• application scenarios are highly diverse

• domains may be very large

• learning and adaptation may be required

• reliability and complexity management may become important issues

• economical application development requires generic approach
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Context and Task Dependence

Interpretations may depend on
- domain context
- spatial context
- temporal context
- intentional context
- task context
- communicative context
- focus of attention
- a priori probabilities

Constructing an interpretation is not a mapping from
image data into interpretation space.
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Basic Structure of High-level Scene Interpretation

image elements

image sequences of dynamic scenes

high-level 
scene interpretations

scene modelstask context
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Historical Examples
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Early Traffic Scene Analysis (Badler 75)

15 "snapshots" of a car
leaving the driveway of a
house
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Directional Adverbials for Motion Description (Badler 75)

ACROSS
AFTER
AGAINST
AHEAD-OF
ALONG
APART
AROUND
AWAY
AWAY-FROM
BACK
BACK-AND-FORTH
BACKWARD
BEHIND
BY

CLOCKWISE
COUNTERCLOCKWISE
DOWN
FORWARD
FROM
IN
IN-THE-DIRECTION-OF
INTO
INWARD
OFF
OFF-OF
ON
ONTO
ONWARD

OUT
OUT-OF
OUTWARD
OVER
SIDEWAYS
THROUGH
TO
TO-AND-FRO
TOGETHER
TOWARD
UNDER
UP
UP-AND-DOWN
UPWARD
WITH
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Changing Scene Graph for Car Scene (Badler 75)
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Demon Representation of "ACROSS" Motion (Badler 75)

A NEAR-TO relation with one side of an object is broken and replaced by
a similar relation with the other side. There is an implicit sense of
passage ABOVE the object.

Precondition 1
NEAR-TO(X S1).
SUB-PART(Y S1) for some object Y and SUB-PART [chain] to object S1.
FRONT or BACK or LEFT-SIDE or RIGHT-SIDE(Y S1).
ACROSS remains active as long as NEAR-TO(X Y) and A�BOVE(X Y) hold.

Precondition 2
NEAR-TO(X S2).
SUB-PART(Y S2) for a SUB-PART [chain] to object S2.
FRONT or BACK or LEFT-SIDE or RIGHT-SIDE(Y S2) where S1 ≠≠≠≠ S2 and at least one
of the ORIENTATION relations to S1 (from Precondition 1) no longer holds.

Postcondition
SUBJECT X
DIRECTION PCONS((ACROSS Y), DIRECTION)
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Motion IS-A Hierarchy (Tsotsos 79)
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Left-ventricular Motion PART-OF Hierarchy (Tsotsos 79)

normal LV cycle

normal isovolumic
contraction

normal systole

normal maximum
ejection

contract normal apical
segment motion

normal posterior
segment motion

normal anterior
segment motion

normal reduced
ejection

normal isovolumic
relexation

normal diastole

normal rapid
inflow

normal
diastasis

normal filling
by atrial

contraction

PART-OF structure supports part-whole reasoning in recognition processes
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Model-based Prediction for Tracking a
Jointed Moving Object (Hogg 84)

Posture curves + constraints
represent coordinated motion of
joints of walker.

10
15

66
knee-curve

Example:

The case of highly coordinated motion of parts

angle

cycle
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NAOS - Natural Language Description of
Object Motions in Traffic Scenes

(Neumann & Novak 1986)

English paraphrase of automatically generated description:
The scene contains four moving objects: three cars and a pedestrian.

A VW drives from the Alte-Post to the front of the FBI. It stops.

Another VW drives towards Dammtor. It turns off Schlueterstrasse. It drives on
Bieberstrasse towards Grindelhof.

A BMW drives towards Hallerplatz. While doing so, it overtakes the VW which has
stopped, before Bieberstrasse. The BMW stops in front of the traffic lights.

The pedestrian walks towards Dammtor. While doing so, he crosses Schlueterstrasse
in front of the FBI.
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From Scene Data to a
Natural-language Scene Description (NAOS)

natural-language scene description

case frames

occurrences

primitive occurrences

perceptual primitives

geometrical scene description (GSD)
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Geometrical Scene Description (GSD) in NAOS

Quantitative description of all objects in a time-varying scene:

• name of all objects (class or identity)

• position of all objects at all times (location and orientation)

• illumination (if required for high-level description)

(LAGE VW2 (779. 170. 0.) (-1.0 0.0 0.0) 0)
(LAGE VW2 (753. 170. 0.) (-1.0 0.0 0.0) 1)
(LAGE VW2 (727. 170. 0.) (-1.0 0.0 0.0) 2)
(LAGE VW2 (701. 170. 0.) (-1.0 0.0 0.0) 3)
(LAGE VW2 (675. 170. 0.) (-1.0 0.0 0.0) 4)
(LAGE VW2 (649. 170. 0.) (-1.0 0.0 0.0) 5)
(LAGE VW2 (623. 170. 0.) (-0.999 0.037 0.0) 6)
(LAGE VW2 (596. 171. 0.) (-1.0 0.0 0.0) 7)
(LAGE VW2 (570. 171. 0.) (-1.0 0.0 0.0) 8)
(LAGE VW2 (544. 171. 0.) (-1.0 0.0 0.0) 9)

•
•
•

location orientation time

Example of a synthesized GSD in NAOS: 
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Occurrence Model for "OVERTAKE" (NAOS)

(OVERTAKE OBJ1 OBJ2 T1 T2)  <=>
(MOVE OBJ1 T1 T2)
(MOVE OBJ2 T1 T2)
(BEHIND OBJ1 OBJ2 T1 T3)
(BESIDE OBJ1 OBJ2 T3 T4)
(BEFORE OBJ1 OBJ2 T4 T2)
(APPROACH OBJ1 OBJ2 T1 T3)
(DIS-APPROACH OBJ1 OBJ2 T4 T2)

temporal constraint satisfaction for occurrence recognition

principled definition of primitive occurrences 
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Temporal Relations in NAOS

Unary temporal constraints: tmin ≤≤≤≤ t ≤≤≤≤ tmax

Binary temporal constraints: t1 ≥≥≥≥ t2 + c12

Convex interval relations may be expressed by inequalities:

I1 during I2 => I2.tb ≤≤≤≤ I1.tb

I1.te ≤≤≤≤ I2.te

NAOS temporal constraint propagation was later identified as a
convex time point algebra [Vila 94].

• Observations provide begin and end time points of occurrences

• Models express qualitative constraints on time points
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Constraint Propagation for Occurrence Verification (1)

1. Initialize constraint net of occurrence model

mv1.tb mv1.te30

∞∞∞∞

-∞∞∞∞ -∞∞∞∞

∞∞∞∞

mv2.tb mv2.te30

∞∞∞∞

-∞∞∞∞ -∞∞∞∞

∞∞∞∞

2. Compute primitive events for scene

bh.tb bh.te
0

∞∞∞∞

-∞∞∞∞ -∞∞∞∞

∞∞∞∞
0

0
0

1

ID: move1
instance: move
parts: mv-ob = obj1

mv-tr = trj1
times: mv-tb = 13

mv-te = 47

ID: behind1
instance: behind
parts: bh-ob1 = obj1

bh-obj2 = obj2
times: bh-tb = 20

bh-te = 33

(and many more)

Example:  

Verify occurrence "two moving objects, one behind the other"
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Constraint Propagation for Occurrence Verification (2)

3. Instantiate parts in occurrence model

propagate minima and maxima of time points through constraint net:

- minima in edge direction t2min´= max {t2min, t1min + c12}

- maxima against edge direction t1max´= min {t1max, t2max - c12}

30

∞∞∞∞

-∞∞∞∞ -∞∞∞∞

∞∞∞∞

mv2.tb 30

∞∞∞∞

-∞∞∞∞ -∞∞∞∞

∞∞∞∞

0

-∞∞∞∞ -∞∞∞∞

∞∞∞∞

0

0

0

1

13

13

mv1.tb

47

47

mv1.te

∞∞∞∞

13 14

14

mv2.te

47

bh.te

46

bh.tb

ID: move1
instance: move
parts: mv-ob = obj1

mv-tr = trj1
times: mv-tb = 13

mv-te = 47

Example: move1 in scene instantiates mv1 of model
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Constraint Propagation for Occurrence Verification (3)

4. Consistency and completeness test

A (partially) instantiated model is inconsistent, if for any node T one
has: Tmin > Tmax

=> search for alternative instantiations or terminate with failure

An occurrence has been recognized if the occurrence model is
instantiated with sufficient completeness and the instantiation is
consistent.

Note:

• Incremental occurrence recognition follows an evolving scene

• A-posteriori occurrence recognition is carried out after observing a
scene (choice of order!)

• Partially instantiated models may be used for scene prediction
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Hierachy for Object Motions in Street Traffic (NAOS)

EXISTIERE

STEHEBEWEGEN

GEHE STEHENBLEIBE FAHRE WARTE STEHENBLEIBE

LAUFE LOSGEHE BETRETE DREHE WEITERGEHE KOMME FOLGE AUSWEICH NAEHERN ENTFERNEN WEITERFAHRE BESCHLEUNIG HALTE BREMSE

RENNE WEITERGEHE ABBIEGE UMDREH EINBIEGE

RASE WENDE UMKEHRE

HERANKOMM

ANKOMM

HINTERHERFAH BEGEGN

EINHOLE

ERREICHE

WEGGEH

PASSIERE

WEGFAHR

VERLASS

LOSFAHR

ABFAHRE STOPPE ANHALTE

PARKE

TREFFEN VORBEIFAHR

VORUEBERFAHR UEBERQUER

VORBEIGEH

VORUEBERGE

WEITERFAHRE ANFAHRE EINPARKE

UMFAHR UEBERHOL UMGEHE

agent is is pedestrian

agent is vehicle

mix of part_of and
ISA hierachy
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Generating a Natural-language Description

sentence

case frame

occurrence

Principle:

Problems:

• Which occurrences should be selected for verbalization?
• Which deep cases should be filled?
• Which addtitional time or location information is required?
• In which order should the information be presented?

Solution:

Speech planning based on hearer simulation

informing a hearer  <=>  enabling a hearer to imagine the scene

language-oriented AI
techniques
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Standard Plan for Generating Natural-language
Scene Descriptions in NAOS

• rules which assure that the hearer will be able to imagine the scene

• summary + descriptions of all object trajectories, each in
chronological order

• no explicit hearer simulation

Description of an object trajectory

1. Each time interval is described by the most special occurrence

2. The first occurrence begins at the beginning of the scene

3. The next occurrence follows in temporal order

4. Location information is given by prepositional expressions as
required

5. Temporal information is given by prepositional expressions or
references to other occurrences as required
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Relational Matching
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Example of a Relational Model for
Object Recognition (1)

A B

C D

E F

GH

K

L

shape to be
recognized:

primitive descriptive elements (nodes) properties

hole t type T1
f area
a axes relation

interior corner t type T2
w angle

exterior corner t type T3
w angle

(Bolles & Cain 83)
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Example of a Relational Model for
Object Recognition (2)

relations between primitive descriptive elements (edges)

...
d10 distance  10 ± 1
d12 distance  12 ± 1
d14 distance  14 ± 1
...

αααα

bisector of angle

...
o10 orientation  10 ± 5
o20 orientation  20 ± 5
o30 orientation  30 ± 5
...
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Example of a Relational Model for
Object Recognition (3)

A B

C D

E F

GH

K

L

A B

C D

E F

GH

K

L

d32

d10
o0

d10 o0

d12o45

o315

d12

o135

d12

o315d12

d26

o315

o45 o45

o280

o315

d42

d30

d24

d14
o135

(not all edges are shown)

A t T3
w 90

B t T3
w 90

C t T2
w 90

D t T2
w 90

E t T3
w 90

F t T3
w 45

G t T3
w 135

H t T3
w 90

K t T1
f 48
a 1

K t T1
f 48
a 1
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Relational Models for High-level Vision

Relational models describe objects (object classes) based on parts
(components ) and relations between the parts

nearby B A

A

B

C

Edges: relations between parts

A relational model can be represented as a structure with nodes and edges:

Nodes: parts with properties

A 
is-a person
state running

B 
is-a person
state jumping

C
is-a ball
colour black

holds B C

approaches A B n

a h
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Representing N-ary Relations

Awkward graphical representation:

r"hypergraph"

(BETWEEN  A  B  C) (INSTANCE  BETW1  BETWEEN)
(BETWEEN-ARG1  BETW1  A)
(BETWEEN-ARG2  BETW1  B)
(BETWEEN-ARG3  BETW1  C)

(OVERTAKE  VEH1  VEH2  23  46) (INSTANCE  OT1  OVERTAKE)
(OVERTAKER  OT1  VEH1)
(OVERTAKEE  OT1  VEH2)
(TBEG  OT1 23)
(TEND  OT1  42)

Reification:
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Recognition by Relational Matching

Principle:

• construct relational model(s) for object class(es)

• construct relational image description

• compute morphism (best partial match) between image and model(s)

A
B

C
D

E

F
G

r1
r2

r1

r1

r3

r3

r2

r4

r1r2

r4

a

b

c

d e

f

g

h

i

j

r1

r2
r3

r1

r2

r3

r1

r4

r4

r1

r2
r2

r2
r3

r3

r1
r1

r1

model image
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Compatibility of Relational Structures

1. Compatibility of nodes
An image node is compatible with a model node, if the properties of the
nodes match.

2. Compatibility of edges
An image edge is compatible with a model edge, if the edge types match.

3. Compatibility of structures
A relational image description B is compatible with a relational model M, if
there exists a bijective mapping of nodes of a partial structure B´of B onto
nodes of a partial structure M´of M such that

- corresponding nodes and edges are compatible
- M is described by M´ with sufficient completeness

Different from graphs, nodes and edges of relational structures may
represent entities with rich distinctive descriptions.

Example: nodes = image regions with diverse properties
edges = spatial relations
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Relational Matching Using a Compatibility Graph

A
B

C
D

E

F
G

r1
r2

r1

r1

r3

r3

r2

r4

r1r2

r4

a

b

c

d e

f

g

h

i

j

r1

r2
r3r1

r2

r3

r3

r4

r4

r1

r2
r2

r2
r3

r3

r1

r1

r1

model

image

nodes of compatibility graph = pairs with compatible properties
edges of compatibility graph = compatible pairs
cliques in compatibility graph = compatible partial structures

Ae

Ac
Ei

Bj
Df

Ei Fa

Ge

compatibility graph
(not shown completely)

violates unique
correspondence

incompatible
relations

r1
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Finding Maximal Cliques

Algorithms are available in the literature, e.g.

Bron & Kerbusch, Finding all Cliques of an Undirected Graph,
Communications of the ACM, Vol. 16, Nr. 9, S. 575 - 577, 1973.

• Complexity is exponential relative to number of nodes of
compatibility graph

• Efficient (suboptimal) solutions based on heuristic search
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Relational Matching with Heuristic Search

Ab ... Aj Ba Bb ... Bj ... Ga Gb ... Gj

Stepwise correspondence search between model nodes {A ... G} and
image nodes {a ... j}

... Bj ... Gb ... Gj

Aa

Cc ... Cj ... Gc ... Gj

Bb • quality function evaluates partial
matches

• accept a partial match if 
quality > acceptance threshold

• refute a partial match, if 
quality < refutation threshold
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Shortcomings of Relational Matching for
High-level Scene Interpretation (1)

Natural hierarchical structures and groupings are not well represented
by flat relational structures

Example:  Modelling dining room views 

room

door   cupboard   table-group   lamp

table-top   chairs

dishes    candles   sets  

plate   cutlery-group   cup-group

cup   saucerknife   fork

In a model, repeated identical structures should only be represented once
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Shortcomings of Relational Matching for
High-level Scene Interpretation (2)

Node compatibility is not clearly defined

Logical relations between different node descriptions and different edge
labels must be clarified

A
is-a person
size tall

a
is-a man
size 198
state running 

model image

compatible?

Edge compatibility is not clearly defined

A B
nearby

a b
touch

compatible?
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Shortcomings of Relational Matching for
High-level Scene Interpretation (3)

Implicit information is not considered

model image

A

B
left-of compatible?

C
left-of

A B
right-of

C
left-of

Reasoning may be required to determine compatibility
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How Useful is Relational Matching?

• relational structure captures basic high-level notions

• graceful degradation w.r.t. completeness and degree of match

• well-understood computional procedures
-  finding maximal cliques in compatibility graphs
-  heuristic search
-  constraint satisfaction
-  neural network implementations

• improvement by hierarchical matching

• multi-level aggregate structure required

• differentiated compatibility measure required
-  fuzziness
-  compatibilty vs. consistency
-  probabilities

• reasoning about temporal, spatial, physical relations

• uncertainty management required
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Rule-based Interpretation
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Rule Systems

Rule systems provide

•   user specified inference steps
•   an inference engine which applies rules to a database
•   inference strategies which determine the order of rule applications

In principle, rule systems may provide inferencing capabilities needed
for relational matching, e.g.

(and (right-of X Y) (right-of Y Z))  =>  (right-of X Z)

The usability of rule systems is limited, however, because of

•  liberal rule specifications at the users discretion
•  lack of control over rule applications (data-driven paradigm)
•  no guarantees for logical correctness or completeness
•  lack of higher-level structures for data and rules
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Rule System OPS5

OPS5 ("Official Production System, Version 5")
- developed at CMU 1980 ...
- implementation language for successful XPS (XCON, XSEL a.o.)

CLIPS
- reimplementation of OPS5 in C for NASA
- freeware

JESS
- reimplementation of OPS5 in Java
- freeware
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Rules in OPS5
Syntax of a rule in OPS5:
<rule>::= [P <rule-name> <antecedent> --> <consequent>]
<antecedent>::= {<condition>}
<condition> ::= <pattern> | - <pattern>
<pattern> ::= [<object> {^<attribute> <value>}]
<consequent> ::= {<action>}
<action> ::= [MAKE <object> {^<attribute> <value>}] | 

[MODIFY <pattern-number> {^<attribute> <value>}]
[REMOVE <pattern-number>] |
[WRITE {<value>}]

[P find-wheel-pair [disk ^location <x1> ^size <y>]
[disk ^location |<x2> - <x1>| < 10 ^size <y>]  --> ... ]

Variable

Example: "If there are 2 disks close to each other and with equal size, make them a
wheel pair"

• depth-first search
• limited expressiveness for constraints
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When is Rule-based Interpretation Feasible?

• successful applications for restricted domains
-  recognising airports (McKeown et al. 85)
-  classification of forestry in aerial images (Pinz 85)
-  2D image analysis

• problems with degraded images

• domain knowledge and control not separated
-  free choice of interpretation strategy dependent on task and context
-  separation required for complexity management

• does not scale beyond - say - 1000 rules
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Description Logics
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Why a Logic-based Approach?

• exploring a logic-based approach for a task which
requires guess-work

• representing conceptual models with well-defined
semantics

• exploiting validated inference procedures

• interfacing to common-sense knowledge
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Description Logics for
Knowledge Representation

Family of knowledge-representation formalisms

• object-centered, roles and features (binary relations)

• necessary vs. sufficient attributes

• inference services
– subsumption check
– consistency check
– classification
– abstraction
– default reasoning
– spatial and temporal reasoning

• guaranteed correctness, completeness, decidability and
complexity properties

• highly optimized implementations (e.g. RACER)
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Development of Description Logics

There exist several commercial and experimental developments of DLs,
among them
• KL-ONE first conception of a DL (1985)
• CLASSIC commercial implementation by AT&T
• LOOM experimental system at USC

• FaCT experimental and commercial system (Horrocks, Manchester)
• RACER experimental system in Hamburg and Montreal

(Haarslev & Moeller)

There is active research on DLs:
• extending the expressivity of concept languages
• decidability and tractability of inference services
• integration of predicates over concrete domains (e.g. numbers)
• highly optimized implementations
• developing new inference services (e.g. for scene interpretation)
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Family of Description Logics

AL
Attribute Language   ∀∀∀∀    ∩∩∩∩

ALC
Complement

ALC(D)
concrete Domains  D, P

ALCRP(D)
Roles defined wrt Predicates

ALCNF  (KRIS)
Number restrictions (≥≥≥≥ n r) (≤≤≤≤ n r)
Features with same-as

ALCQRIFO   (LOOM)
Qualified number restrictions (≥≥≥≥ n r C)(≤≤≤≤ n r C)
Role conjunction, Inverse roles
Features with same-as, One-of, fills

ALCHfR+  (FaCT)
role Hierarchies with multiple parents
features without same-as
transitive Roles

ALNFIh  (CLASSIC)
Number restrictions (≥≥≥≥ n r) (≤≤≤≤ n r)
Features with same-as, Inverse
hierarchies with single inheritance

ALCNHR+  (RACE)
role Hierarchies with multiple parents
Number restrictions (≥≥≥≥ n r) (≤≤≤≤ n r)
transitive Roles

ALCQHIR+  (RACER)
role Hierarchies with multiple parents
 Qualified number restrictions (≥≥≥≥ n r C) (≤≤≤≤ n r C)
Inverse roles, transitive Roles, integers and reals
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RACER Concept Language

C  concept term
CN  concept name
R role term
RN role name

C  -> CN
*top*
*bottom*
(not  C)
(and  C1 ... Cn)
(or  C1 ... Cn)
(some  R C)
(all  R  C)
(at-least  n  R)
(at-most  n  R)
(exactly  n  R)
(at-least  n  R  C)
(at-most  n  R  C)
(exactly  n  R  C)
CDC

concept definition

(equivalent CN C)

concept axioms

(implies CN C)
(implies C1 C2)
(equivalent C1 C2)
(disjoint C1 ... Cn)

roles

R  -> RN
(inv RN)

concrete-domain concepts
AN attribute name

CDC  -> (a  AN)
(an  AN)
(no  AN)
(min  AN  integer)
(max  AN  integer)
(>  aexpr  aexpr)
(>=  aexpr  aexpr)
(<  aexpr  aexpr)
(<=  aexpr  aexpr)
(=  aexpr  aexpr)

aexpr  -> AN
real
(+ aexpr1 aexpr1*)
aexpr1

aexpr1 -> real
AN
(* real AN)
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Primitive and Defined Concepts

Concept expressions of a DL describe sets of entities within terms of
properties (unary relations) and the roles (binary relations).

The main building blocks are primitive oder defined concepts.

Primitive concepts: concept => satisfied properties and relations

satisfied properties and relations are necessary conditions
for an object to belong to a class

Defined concepts: concept <=> satisfied properties and relations

satisfied properties and relations are necessary and sufficient
conditions for an object to belong to a classt

Primitive  concept "person":
(implies person (and human (some has-gender (or female male))))

Defined concept "parent":
(equivalent parent (and person (some has-child person)))
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Example of a TBox

(signature :atomic-concepts (person human female male woman man parent
mother father grandmother aunt uncle sister brother)

:roles ((has-child :parent has-descendant)
(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t)))

(implies *top* (all has-child person))
(implies (some has-child *top*) parent)
(implies (some has-sibling *top*) (or brother sister))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

(implies person (and human (some has-gender (or female male))))
(disjoint female male)
(implies woman (and person (some has-gender female)))
(implies man (and person (some has-gender male)))
(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

Signature of T-Box

domain and range
restrictions for
roles

concepts
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Concept and Role Hierachies
Implied by TBox

*top*

human

person

parent

mother

grandmother

*bottom*

man woman

brother father sister

auntuncle female

*r*

has-gender! has-sibling has-descendant*

has-brotherhas-sister has-child

*r* universal role
! attribute (feature)
* transitive role

male



Cognitive Systems 
LaboratoryCSL

56

TBox Inferences

A DL system offers several inference services. At the core is a
consistency test:

?
C *bottom*  (the empty concept)

Example: (and (at-least 1 has-child) (at-most 0 has-child))       *bottom*

Consistency checking is the basis for several other inference services:

• subsumption
(implies C1 C2)  <=>  (and C1 (not C2))        *bottom*

• classification of a concept expression
searches the existing concept hierarchy for the most special concept
which subsumes the concept expression
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ABox of a Description Logic System

TBox = terminological knowledge (concepts and roles)
ABox = assertional knowledge (facts)

An ABox contains:

- concept assertions (instance IN C)
individual  IN is instance of a concept expression C

- role assertions (related IN1 IN2 RN)
individual IN1 is related to IN2 by role RN

• An ABox always refers to a particular TBox.
• An ABox requires unique names
• ABox facts are assumed to be incomplete (OWA).

OWA = Open World Assumption
(new facts may be added, hence inferences are restricted)

CWA = Closed World Assumption
(no facts may be added)
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ABox Inferences

ABox inferences = inferring facts about ABox individuals

Typical queries:

• consistency is ABox consistent?

• retrieval which individuals satisfy a concept expression?

• classification what are the most special concept names which
describe an individual?

ABox consistency checking is in general more complicated than TBox
consistency checking

ABox consistent  <=>  there exists a "model" for ABox and TBox

All ABox inferences are based on the ABox consistency check.
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Example of ABox Queries
Contents of ABox
(instance alice mother)
(related alice betty has-child)
(related alice charles has-child)

(instance betty mother)
(related betty doris has-child)
(related betty eve has-child)

(instance charles brother)
(related charles betty has-sibling)
(instance charles (at-most 1 has-sibling))
(related doris eve has-sister)
(related eve doris has-sister)

doris

betty: mother

alice: mother eve

charles: (and brother (at-most 1 has-sibling))

has-
child

has-
child

has-
sister

has-
child

has-
child

has-
sibling

Questions and answers
(individual-instance? doris woman) Is doris instance of the concept woman?
T

(individual-types eve) Of which concept names is eve an instance?
((sister) (woman) (person) (human) (*top*))

(individual-fillers alice has-descendant) What are the descendants of eve?
(doris eve charles betty)

(concept-instances sister) Which instances has the concept sister?
(doris betty eve)
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Abstraction with Description Logics

abstraction = omission of properties or relations, extending a concept, 
generalization

Examples:

• superordinate concept name of a concept expression
(= concept classification)
(and person (some has-size tall)) →→→→   person

• generalization of concept expressions
(and (some has-occupation professor) (at-least 3 has-child))

(and (some has-occupation civil-servant) (at-least 1 has-child))

• concept expression which subsumes several individuals
1. classify individuals
2. determine least common subsumer (LCS)

-  for RACER:  trivial solution in terms of  (OR C1 ... Cn)
-  for DLs without OR:  special abstraction operator LCS
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Image Interpretation as Deduction
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Aerial Image Analysis as Classification

Classification of changes using a description logic
(Lange and Schroeder 95)

runway
prolongation

• Using the LOOM-classifier to determine the change concept which
describes given evidence

• Bottom-up analysis of images, no hypothesis generation, no predictive
control
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Concepts and Relations for
Airfield Classification (1)

(defconcept road-object
:is (:and scene-object

(> has-length has-width)
(:the has-material (:one-of concrete asphalt)

(defconcept runway
:is (:and road-object

rectangle
(:the has-length (:through 2150 4000))
(>= has-width 45)
(:at-least 1 has-connecting-driveway)
(:all has-connecting-driveway (>= has-width 23))
(:satisfies
   ((?x) ... driveway and taxiway constraints ...)))

(defrelation has-connecting-driveway
:is (:and has-neighbor

(:domain road-object)
(:range
  (:and  road-object

  (:at-least 2 has-neighbor road-object)))))

(defrelation has-neighbor
:function ((x) (compute-neighboring-objects x))
:characteristics (:symmetric :multiple-valued))

necessary and
sufficient conditions
for classifying
... a  road-object

... a  runway

procedural
constraints

important geometrical
relation  has-neighbor
must be implemented
procedurally
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Concepts and Relations for
Airfield Classification (2)

primitive concept
basic-change,
classification must be
provided interactively

defined concepts
elongation and
runway-elongation,
classification is
provided by deduction

(defconcept basic-change
:implies (:and (:exactly 1 has-before)

(:exactly 1 has-after)
(<   (:compose has-before has-time)

(:compose has-after has-time))))

(defconcept elongation
:is (:and basic-change

(:relates has-contained-object
has-before
has-after)

(< (:compose has-before has-length)
(:compose has-after has-length))

(= (:compose has-before has-width)
(:compose has-after has-width))

(defconcept runway-elongation
:is

(:and elongation
(:all has-before runway)
(:all has-after runway)))
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Image Interpretation as Deduction?

The classifier of a description logic carries out classifications
automatically:

evidence  =>  class (concept) membership

Problems:

• partial evidence must be sufficient

• deduction of all possible partial interpretations

• no goal-oriented analysis

• no comparative evaluation of conflicting interpretations

Support of hypothesize-and-test cycle is required !
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Hypothesizing Possible Concept Specializations

Extension of description logic reasoning service for hypothesis
generation:

• Which concept hypotheses can be specialized further consistent
with existing evidence?

• Which additional evidence is required for specialization?

1. partial evidence   =>   consistent concepts

2. partial evidence + concepts   =>   missing evidence
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Example for Possible Concept Specializations

T-Box

partial evidence

   scene-object 

{concrete, asphalt}material

leaves
material

plant-object

{sand, gravel}material
dirt-object

road-object

runway drivewaytaxiway

material

hightemperatureliving-object

material

{leaves, sand, gravel,
concrete, asphalt}

object A   {concrete, sand} 

possible
specializations



Cognitive Systems 
LaboratoryCSL

68

Hypothesizing Possible Aggregats (1)

For which concepts (aggregats) are roll fillers (parts) available?

• Provide concepts which are consistent with existing role fillers

• Which roles provide decisive evidence?

• Criteria for ranking hypotheses

runway

driveway

taxiway

road-object

has-part

airfield

highway

object A

Existing instance runway is
evidence for airfield and its
further parts  taxiway and
driveway.
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Hypothesizing Possible Aggregats (2)

ball-on-road child-on-road

child-running-after-ball

car-hits-child

car-on-road

car-running-over-ball

car1-on-road ball1-on-road

part-of structure

T-Box

A-Box

For which concepts (aggregats) are roll fillers (parts) available?

Generating temporal and spatial expectations:
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Exploiting A-Box Statistics

DW-1 9

DW-2 20

DW-3 11

.

.

.
DW-79 8

DW-80 18

RW-1 20

RW-2 25

RW-3 32

.

.

.
RW-37 25

RW-38 21

A-Box

road-object

driveway

[15 .. 50]
width

runway

width
object A 18

[5 .. 25]
width

What are the most probable
concepts (aggregates) for
given parts (role fillers)?

• using experiences for
predictions

• ranking hypotheses
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Logics of Image Interpretation
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Describing Image Interpretation in Logical Terms

deduction
"from the evidence
I conclude that this
is a table"

?

model
construction

"my conceptual model
of a table explains the
evidence"

!

Reiter & Mackworth 87, Matsuyama 90, Schröder 99
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Image Interpretation as (Logical) Model Construction

An interpretation  I = [ D, ϕϕϕϕ,,,,    ππππ    ] of a logical language maps
-  constant symbols of the language into elements of a real-world domain D
-  predicate symbols of the language into predicate functions over D

A model of some clauses is an interpretation where all predicates are true.

Image interpretation as model construction:

• establish mapping ϕϕϕϕ    by assigning segmentation results to constant
symbols

• establish mapping ππππ by assigning computational procedures to
predicate symbols

• find clauses for which predicates are true

Deciding whether a model exists is undecidable in FOPC!
There may be infinitely many models!
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Finite Model Construction (Reiter & Mackworth 87)

• an image consists of regions and chains (edges)

• the image elements constitute all constant symbols of an interpretation
(domain closure assumption)

• different constant symbols denote different image elements and vice
versa (unique name assumption)

Problem can be expressed in Propositional Calculus and solved as a
constraint satisfaction problem (CSP)

For MAPSEE, scene interpretation amounts to finding a mapping ππππ for
predicates road, river, shore, land, water.
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Logics of SIGMA (Matsuyama & Hwang 90)

Image interpretation is set of hypotheses which

• extend generic knowledge

• allow to deduce the observations

partial model construction

The number of existing objects must be limited for the interpretation
procedure to terminate. (e.g. no interpretations involving invisible
objects).
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ABox Consistency Checking in Description Logics

Consistency checking of an ABox amounts to model construction:

Consistency checking generates an interpretation including all additional
individuals which are required to satisfy a conceptual framework.

Example:   part-whole completion

leg1
leg2

leg3

plate1

However:
• Model construction in existing reasoning systems is an open-world

consistency check
• Additional individuals are hypothesised liberally to generate a model,

without consideration of missing visual evidence
• Ranking is required so that "preferred interpretations" can be delivered

conceptual model requires 4 legs
for a table

leg4 hallucinated 4th leg
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Image Interpretation as Configuration
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Image Interpretation as a Configuration Problem

What is a configuration problem?

Construct an aggregate (a configuration) given
- generic descriptions of parts
- compatibility constraints between parts
-  a concrete task description, possibly in terms of given parts

Image interpretation may be viewed as constructing a "scene aggregate"
which
• meets generic constraints and
• incorporates parts prescribed by the concrete task

Methods and tools of configuration technology may be exploited
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Illustration of Configuration

possible solutionconfiguration

config-A

comp-1 comp-2 comp-3 comp-4 comp-5

config-B config-C

comp-2A comp-2B comp-4A comp-4B

comp-6A comp-6B

comp-6 comp-7

part-of relation:

is-a relation:

• boxes (frames) specify
aggregate and
component properties

•  has-part relations bind
components to
aggregates

• is-a relations describe
variants of entities

• constraints between
entities (not shown)
restrict choices and
parameter combinations

comp-6A

comp-4A
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Signal-symbol Interface
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Computing Primitive Occurrences

Perceptual primitives

Geometric scene description (GSD)

Primitive occurrences

Qualitative primitives
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Geometric Scene Description (GSD)

The GSD is a quantitative object-level scene interpretation in terms of

- recognised objects and

- their (possibly time-varying) locations in the scene

• useful definition of input for high-level scene interpretation

• objects may only be roughly classified (e.g. "moving-object")

• high-level processes must be able to correct mistakes and fill in
missing evidence
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Perceptual Primitives

Perceptual primitives are geometrical and photometrical attributes
which can be immediately determined from a GSD.

For object configurations:

• objects provide reference features in terms of
-  locations (center of gravity, corners, surface markings,  etc.)
-  lines (edges, surface markings, axes of minimal inertia, etc.)
-  orientations (inate, motion, viewer)

• perceptual primitives are measurements between reference features:
-  distance
-  angle
-  temporal derivatives thereof
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Qualitative Primitives

Qualitative primitives are predicates over perceptual primitives
constant over some time interval.

• qualitatively constant values 
e.g. constant orientation, constant distance

• values within a certain range
e.g. topological relations, degrees of nearness, typical speeds

• values smaller or larger than a threshold
e.g. increase of distance, slowing down



85

Cognitive Systems 
LaboratoryCSL

Qualitative Predicates for Occurrences in Traffic Scenes

Used in NAOS: "Natural-language description of object motions in traffic
scenes"

exist
move
decelerate, accelerate
turn_left, turn_right
increasing_distance, reducing_distance
along, across
in_front_of, behind, beside
on, above, under, below
at, near_to
between
(and others)

Note that qualitative predicates
are often (but must not be) part
of natural language.

For technical applications one
may use technical (artificial)
qualitative predicates, e.g.

v50 (= 45 ≤ v ≤ 55 km/h)

shape_x (= shape_index ≤ 4.174)
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Primitive Occurrences

t

object A moves
straight ahead

object B turns 

distance between
objects A and B
gets smaller

object A nearby
object B

A primitive occurrence is a conceptual entity with one or more
objects for which a qualitative predicate is true over a time interval.

Primitive occurrences provide the raw material for high-level scene
interpretations.
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Temporal Decomposition of Scenes

Compare with spatial decomposition

- by spatial segmentation:
image regions with spatially constant (uniform) properties

- by model matching:
image regions which obey a model

Temporal decomposition

- by temporal segmentation:
constancies of time-dependent properties of an image sequence

- by model matching:
occurrences which obey a model
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Interval Relations in
Allen´s Algebra

BEFORE (I1, I2)

MEETS (I1, I2)

STARTS (I1, I2)

OVERLAPS (I1, I2)

DURING (I1, I2)

EQUAL (I1, I2)

FINISHES (I1, I2)

<   >

m  mi

o  oi

f  fi

s  si

d  di

=
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Convex Time-point Algebra

Qualitative relations between time points which can be described by
the inequality

T1 + c12 ≤≤≤≤ T2

(T1, T2: time points;  c12: constant)

"Convex relation":

All intervals satisfying a convex relation can be generated by
continuous displacements of the begin and end points of an interval

In Allen´s Algebra:

convex relation e.g. d v m

non-convex relation e.g. b v bi
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Occurrence Models
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Structure of Occurrence Models

• An occurrence model describes a class of occurrences by
- properties
- sub-occurrences (= components of the occurrence)
- relations between sub-occurrences

• A primitive occurrence model consists of
- properties
- a qualitative predicate

• Each occurrence has a begin and end time point

Basic ingredients: • relational structure
• taxonomy
• partonomy
• spatial relational language
• temporal relational language
• object appearance models
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Occurrence Model for Overtaking in Street Traffic
Predicate: overtake

:is-a occurrence-model
:local-name ov

Arguments: (?veh1 :is-a vehicle)
(?veh2 :is-a vehicle)

Time marks: (ue.B ue.E)
Component events: (mv1 :is-a (move ?veh1 mv1.B mv1.E))

(mv2 :is-a (move ?veh2 mv2.B mv2.E))
(bh :is-a (behind ?veh1 ?veh2 bh.B bh.E))
(bs :is-a (beside ?veh1 ?veh2 bs.B bs.E))
(bf :is-a (before ?veh1 ?veh2 bf.B bf.E))
(ap :is-a (approach ?veh1 ?veh2 ap.B ap.E))
(rc :is-a (recede ?veh1 ?veh2 rc.B rc.E))

Temporal relations: (ov.B = bh.B)
(ov.E = bf.E)
(ap :during mv1)
(ap :during mv2)
(rc :during mv1)
(rc :during mv2)
(bh :overlaps bs)
(bs :overlaps bf)
(bh :during ap)
(bf :during rc)
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Table-laying Scenario

Important high-level characteristics:

• correlated multiple object motion
• intended actions
• influence of context (temporal, spatial,

task context)
• qualitative spatial and temporal relations
• uncertainty
• smart room learning context (supervised,

unsupervised)
• interface with common sense

Table-laying scenario
of project CogVis:

Stationary cameras
observe living room
scene and recognize
meaningful
occurrences, e.g.
placing a cover onto
the table.
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Occurrence Model for Placing a Cover

name: place-cover
parents: :is-a agent-activity
parts: pc-pl :is plate

pc-sc :is saucer
pc-cp :is cup
pc-tt :is table-top
pc-tp1 :is (transport with (tp-obj :is plate))
pc-tp2:is (transport with (tp-obj :is saucer))
pc-tp3 :is (transport with (tp-obj :is cup))
pc-cv :is cover

time marks: pc-tb, pc-te :is timepoint
constraints: pc-tp1.tp-ob = pc-cv.cv-pl = pc-pl

pc-tp2.tp-ob = pc-cv.cv-sc = pc-sc
pc-tp3.tp-ob = pc-cv.cv-cp = pc-cp
pc-cv.cv-tb ≥≥≥≥ pc-tp1.tp-te
pc-cv.cv-tb ≥≥≥≥ pc-tp2.tp-te
pc-cv.cv-tb ≥≥≥≥ pc-tp3.tp-te
pc-tp3.tp-te ≥≥≥≥ pc-tp2.tp-te
pc-tb ≤≤≤≤ pc-tp1.tb
pc-tb ≤≤≤≤ pc-tp2.tb
pc-tb ≤≤≤≤ pc-tp3.tb
pc-te ≥≥≥≥ pc-cv.cv-tb
pc-te ≥≥≥≥ pc-tb + 80∆∆∆∆t
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Parts Structure

• associational structure between aggregats and their parts
• probabilistic information may be added

place-cover

transport 
with 

(tp-obj :is plate)

transport 
with 

(tp-obj :is saucer)

transport 
with 

(tp-obj :is cup)

pc-pl pc-sc pc-cp pc-tt pc-tp1pc-cv pc-tp2 pc-tp3

plate saucer cup table-top cover
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Concept Hierarchy

straight-move
with

(sm-dir :is down)

• specialization hierarchy
• nodes are concept expressions
• multiple inheritance

place-
breakfast-cover

place-
dinner-cover

transport 
with 

(tp-obj :is plate)

transport 
with 

(tp-obj :is cup)

agent-move

straight-move pair-move

place-cover

transport

agent-activity

move
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Aggregates as DL Concepts

NAME
place-cover is-a agent-activity

PARTS
pc-tt is-a table-top
pc-tp1 is-a transport

with (tp-obj is-a  plate)
pc-tp2 is-a transport

with (tp-obj is-a  saucer)
pc-tp3 is-a transport

with (tp-obj is-a  cup)
pc-cv is-a  cover

CONSTRAINTS
<identity constraints on parts>
<spatial constraints on parts>
<temporal constraints on parts>

frame-like notation DL concept expressions

(equivalent  place-cover
(and  agent-activity

(some  pc-tt  table-top)
(some  pc-tp1  

(and  transport  
(some tp-obj plate) )

(some  pc-tp2  transport)
(and  transport  

(some tp-obj saucer) )
(some  pc-tp3  transport)

(and  transport  
(some tp-obj cup) )

(some  pc-cv  cover)
<identity constraints on parts>
<spatial constraints on parts>
<temporal constraints on parts>

name

roles

concrete
domain

predicates
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Navigating in Hallucination Space
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What is the Space of Interpretations?

Vision is controlled hallucination
(Kender 1985?)

• interpretations must be consistent
-  consistency is standard inference service of DLs
-  consistency tolerates interpretations without any evidence
   (complete hallucination)

• interpretations must be context and task dependent
-  do not expect beakfast covers at dinner time
-  "Is the table laid?"  narrows down the interpretation task

• interpretations must be "preferred"
-  aggregates vs. individual objects
-  most special concepts, basic categories, dissolved disjunctions
-  more likely vs. less likely interpretations



Cognitive Systems 
LaboratoryCSL

100

phys-obj

po-3D-body

po-3D-traj

ph-mov-obj
pm-3D-body

pm-3D-traj

scene-object
so-phys-obj

so-view

vi-motion
vm-reg

vm-traj

Aggregates in Taxonomical Hierarchies

sc-mov-obj
sm-ph-obj

sm-view

view

vi-region

vi-traj

2D-region

2D-trajectory

3D-body

3D-trajectory

sc-transport
stp-obj-mot

stp-ag-mot

vi-oval
vo-region

vo-traj sc-place-cover

spc-tt

spc-tp1

spc-tp2

spc-tp3

spc-cv

sc-cup
scc-ph-obj

scc-view

sc-saucer
scs-ph-obj

scs-view

sc-plate
scp-ph-obj

scp-view sc-cover

sccv-pl

sccv-cu

sccv-sa

sc-stat-obj
sso-ph-obj

sso-view

vi-saucer
vc-region

vc-traj

sc-place-cover

sc-cover

sc-transport
stp-obj-mot

stp-ag-mot
spc-tt

spc-tp1

spc-tp2

spc-tp3

spc-cv

sccv-pl

sccv-cu

sccv-sa

scene-object

sc-mov-obj

sc-cupsc-saucer sc-plate

sc-stat-obj
sso-ph-obj

sso-view

so-phys-obj

so-view

sm-ph-obj

sm-view

scc-ph-obj

scc-view

scs-ph-obj

scs-view

scp-ph-obj

scp-view

vi-motion
vm-reg

vm-traj

view

vi-region

vi-traj

vi-oval

vo-region

vo-traj

vi-saucer

vc-region

vc-traj

ph-plate
pp-3D-body

pp-3D-traj

2D-region

2D-trajectory

3D-
body

3D-
trajectory

phys-obj

ph-mov-obj

po-3D-body

po-3D-traj

pm-3D-body

pm-3D-traj

ph-plate

pp-3D-body

pp-3D-traj
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transport1 
with 

(tp-obj :is plate)

Typical Model-based Interpretation Steps

place-cover

pair-move

plate

move

object

transport 
with 

(tp-obj :is plate)

transport1 transport

disk-shaped-object

agent

plate1

pair-move1

disk-shaped-object1

agent1

move2
move1

object2
object1

cup

place-cover1

part

specialisation

instance
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 A A

Three Kinds of Interpretation Steps

aggregate instantiation
("part-whole-reasoning")

instance refinement
("specialisation")

instance merging
("converging evidence")

C

 A QP

Q1

C

 A QP

 A P1 Q1

C C´

C´´

P1

C C´

C´´

P1

 A QP

 A1 Q1P1  A2 Q2P2

B C

 A12 Q12P12

 A QP B C
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Recognizing Intentions
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Recognizing Intentions and Plans

Intention recognition in soccer games
(Retz-Schmidt 91):

"Brandt dribbelt, um dem
gegnerischen Tor nahe zu kommen"
("Brandt dribbles to get close to the
opposing goal")

"Meier läuft zu Brandt, um ihn am
Torschuß zu hindern"
("Meier runs to Brandt to prevent him
from shooting a goal")

• model-based representation of plans and counter plans

• partial instatiation allows predictions and explanations

Intention recognition has been used in robot soccer (RoboCup)
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Plan Recognition

Given:
- observed actions
- knowledge about likely goals of actor

predict further actions

plan own actions (cooperative or adversary) 

Example ("smart room" or service robotics scenario):

   Observations: tea-time: person gets up - person walks to door - ...

   Predictions: ... - person goes to kitchen - person prepares tea

Plan recognition by

- matching partial action sequences to plan models
(same principle as occurrence recognition)

- generating likely plans from the initial action sequence
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Models for Intention Recognition

name: scene-intended-place-cover
parents: :is-a scene-intended-action
parts: sipc-pc :is-a scene-place-cover

sipc-ag :is-a scene-agent
with (sipc-ag.desire = sipc-pc.goal)

constraints: (temporal, spatial and other constraints on parts)

intended-action           

agent

goal-directed action

agent        

activity

desire

goal-directed action

activity

goal

If an action is known to be
goal-directed and an agent
performs such an action,
the agent is ascribed the
intention to attain the goal.

Intended actions may be described by aggregates which connect observable
actions with (unobservable) intentions of an actor.
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Bayesian Nets
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Probabilistic Models for Occurrences

Modelling probabilistic dependencies (causalities) and independencies
between discrete events of a scene

Xi random variable models uncertain propositions about a scene

Xi = a hypothesis

Decomposition of joint probabilities:

P(X1, X2, X3, ... , Xn) = P(X1 | X2, X3, ... , Xn) • P(X2 | X3, X4, ... , Xn) • ... • P(Xn-1 | Xn) • P(Xn)

Simplification in the case of statistical independence:

X independent of Xi

P(X | X1, ... Xi-1 ,Xi, Xi+1 , ... , Xn) =  P(X | X1, ... Xi-1 ,Xi+1 , ... , Xn)

Joint probability of N variables may be simplified by ordering the
variables according to their direct dependence (causality)



109

Cognitive Systems 
LaboratoryCSL

Causality Graph

Conditional dependencies (causality relations) of random variables
define partial order.

Representation as a directed graph:

X7

X8

X6

X4

X5 X3

X1

X2

P(X1, X2, X3, ... , X8) = 
P(X1 | X2, X3, X4) • P(X2) • P(X3 | X4, X5) • P(X4 | X6) • P(X5 | X6) • P(X6 | X7X8) • P(X7) • P(X8)
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Constructing a Bayesian Net
By domain analysis:

1. Select discrete variables Xi relevant for domain

2. Establish partial order of variables according to causality

3. In the order of decreasing causality:
(i) Generate node Xi in net
(ii) As predecessors of Xi choose the smallest subset of nodes which are 

already in the net and from which Xi is causally dependent
(iii) determine a table of conditional probabilities for Xi

By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical
joint probablity distribution.
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Computing Inferences

We want to use a Bayesian Net for probabilistic inferences of the following kind:

Given a joint probability P(X1, ... , XN) represented by a Bayes Net,
and evidence Xm1

=am1
, ... , XmK

=amK
 for some of the variables, what is

the probability P(Xn= ai | Xm1
=am1

, ... , XmK
=amK

) of an unobserved
variable to take on a value ai ?

P(Xn= ai, Xm1
=am1

, ... , XmK
=amK

)
P(Xn= ai | Xm1

=am1
, ... , XmK

=amK
) =

 P(Xm1
=am1

, ... , XmK
=amK

)

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

- determining partial joint probabilities from the given total joint probability
by summing out unwanted variables

P(Xm1
=am1

, ... , XmK
=amK

) =      ΣΣΣΣ      P(Xm1
=am1

, ... , XmK
=amK

, Xn1
, ... , XnK

)
Xn1

, ... , XnK
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Example: Traffic Behaviour of Pedestrians

X4:
pedestrian
inattentive

X3:
 car comes

X2:
pedestrian
light red

X5:
pedestrian looks

on street

X1:
pedestrian

enters street

X6: 
traffic light red

Conditional probability table for each node must be known

Examples:    P(X1 | X2, X3, X4, X5) P(X2 | X6)

X1 X2 X3 X4 X5 P
T T T T T 0.3
F T T T T 0.7
T F T T T 0.9
F F T T T 0.1
• • • • • •
• • • • • •
• • • • • •

X2 X6 P
T T 0.2
F T 0.8
T F 1.0
F F 0.0
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Estimating Probabilities from a Database

Given a sufficiently large database with tupels a(1) ... a(N) of an unknown
distribution P(X), we can compute maximum likelihood estimates of all
partial joint probabilities and hence of all conditional probabilities.

Xm1
, ... , XmK

 = subset of X1, ... XL with K ≤≤≤≤ L

wa = number of tuples in database with Xm1
=am1

, ... , XmK
=amK

N   = total number of tuples

If a priori information is available, it may be introduced via a bias ma : 

      P´(Xm1
=am1

, ... , XmK
=amK

) = (wa + ma) / N

Often ma = 1 is chosen for all tupels a to express equal likelihoods in the
case of an empty database.

Maximum likelihood estimate of P(Xm1
=am1

, ... , XmK
=amK

) is

      P´(Xm1
=am1

, ... , XmK
=amK

) = wa / N
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Expectation Maximization (1)

Often databases are neither complete (insufficient samples, missing
attributes) nor precise (ambiguous or uncertain values). In this case
Expectation Maximation (EM) provides an iterative procedure to
estimate probabilities.

Recommended reading: Borgelt & Kruse, Graphical Models, Wiley 2002

1. Imprecise data

Given a tuple with ambiguous attributes

aT = [ {a11, a12, ...}, {a21, a22, ...}, ... , {aK1, aK2, ...} ]

and number of occurrence wa, redistribute wa equally among all
combinations of attribute values.

2. Incomplete database

Execute iterative 2-step procedure:

A Compute sample frequencies from estimated probabilities

B Estimate probabilities from samples, maximizing likelihood of data
(see previous slide)
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Expectation Maximization (2)
Expectation step of EM:

Use current (initial) probability estimates to compute probability P(a) for
all attribute combinations a.

For Bayes Nets, this requires computing P(a) from the conditional
probabilities assigned to the nodes.

At the initial step, absolute frequencies of missing attribute tuples a* are
completed:

a* = [ * , X2=am2, X3=am3, ... ]  wa*

a1 = [X1=a1 , X2=am2, X3=am3, ... ]    wa* • P(a1)

•
•
•

 missing attribute       absolute frequency        completed database

a2 = [X1=a2 , X2=am2, X3=am3, ... ]    wa* • P(a2)

aM = [X1=aM , X2=am2, X3=am3, ... ]    wa* • P(aM)
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Example for Expectation Maximization (1)

(adapted from Borgelt & Kruse, Graphical Models, Wiley 2002)

Given 4 binary probabilistic variables A, B, C, H with known dependency
structure:

A B C

H

Given also a database with tuples [ * A B C]  where H is a missing attribute.

H A B C w
 * T T T 14
 * T T F 11
 * T F T 20
 * T F F 20
 * F T T 5
 * F T F 5
 * F F T 11
 * F F F 14

absolute frequencies
of occurrence

Estimate of the conditional probabilities of the Bayes Net nodes !
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Example for Expectation Maximization (2)

Initial (random) probability assignments:

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.3 T T 0.4 T T 0.7 T T 0.8
F 0.7 T F 0.6 T F 0.8 T F 0.5

F T 0.6 F T 0.3 F T 0.2
F F 0.4 F F 0.2 F F 0.5

With P H A B C
P A H P B H P C H P H

P A H P B H P C H P H
H

( | , , )
( | )• ( | )• ( | )• ( )

( | )• ( | )• ( | )• ( )
==
∑∑

one can complete the database:

H A B C w
T T T T 1.27
T T T F 3.14
T T F T 2.93
T T F F 8.14
T F T T 0.92
T F T F 2.37
T F F T 3.06
T F F F 8.49

H A B C w
F T T T 12.73
F T T F 7.86
F T F T 17.07
F T F F 11.86
F F T T 4.08
F F T F 2.63
F F F T 7.94
F F F F 5.51
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Example for Expectation Maximization (3)
Based on the modified complete database, one computes the maximum
likelihood estimates of the conditional probabilities of the Bayes Net.

Example: P A T H T( | )
. • . • . • .

. • . • . • . • , • . • . • .
.== == ≈≈ ≈≈

1 27 3 14 2 93 8 14
1 27 3 14 2 93 8 14 0 92 2 73 3 06 8 49

0 51

This way one gets new probability assignments:

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.3 T T 0.51 T T 0.25 T T 0.27
F 0.7 T F 0.71 T F 0.39 T F 0.60

F T 0.49 F T 0.75 F T 0.73
F F 0.29 F F 0.61 F F 0.40

This completes the first iteration. After ca. 700 iterations the modifications
of the probabilities are less than 10-4. The resulting values are

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.5 T T 0.5 T T 0.2 T T 0.4
F 0.5 T F 0.8 T F 0.5 T F 0.6

F T 0.5 F T 0.8 F T 0.6
F F 0.2 F F 0.2 F F 0.4
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Summary
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Computer Vision Across Abstraction Levels

symbolic descriptions
abstract concepts,
concepts for occurrences, 
plans, predictions

qualitative descriptions
object categories,
qualitative spatial and 
temporal relations

quantitative  descriptions
metric conceptual spaces, 
perceptual primitives

physical signals
sensor input

recognizing
high-level

concepts in
lower-level

descriptions

exploiting
high-level
context for
lower-level

analysis

Representation
and interpretation
formalisms must
support
integration across
abstraction levels
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Aggregates as Basic Representational Units

Probabilistic view

Object configurations
in space and time
governed by joint
probabilities

• Bayes Net
representations

• part-whole reasoning by
probabilistic inference

• uncertainty management
for hypothesis formation

• concept learning

Relational view

Frames with part-of
structure embedded
in taxonomical and
part-of hierarchies

Logical view

Expressions of a
logic-based concept
language

• intuitive object-centered
notation

• highly expressive

• work-horse for knowledge
representation

• established tools for
configuration
methodology

• well-founded inference
procedures

• image interpretation as
abduction

• inductive learning

• logic-based reasoning
about actions

• temporal and spatial
logics
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Integrating Aggregates and Bayes Nets

NAME
place-cover is-a agent-activity

PARTS
pc-tt is-a table-top
pc-tp1 is-a transport

with (tp-obj is-a  plate)
pc-tp2 is-a transport

with (tp-obj is-a  saucer)
pc-tp3 is-a transport

with (tp-obj is-a  cup)
pc-cv is-a  cover

CONSTRAINTS
<identity constraints on parts>
<spatial constraints on parts>
<temporal constraints on parts>

pc-tt pc-tp1 pc-tp2 pc-tp3 pc-cv

place-cover

Probabilistic inference for part-whole
reasoning:

pc-tt pc-tp1 pc-tp2 pc-tp3 pc-cv

place-cover

evidence
? ?

?

frame Bayes Net
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Integrating Aggregates and Description Logics

NAME
place-cover is-a agent-activity

PARTS
pc-tt is-a table-top
pc-tp1 is-a transport

with (tp-obj is-a  plate)
pc-tp2 is-a transport

with (tp-obj is-a  saucer)
pc-tp3 is-a transport

with (tp-obj is-a  cup)
pc-cv is-a  cover

CONSTRAINTS
<identity constraints on parts>
<spatial constraints on parts>
<temporal constraints on parts>

Frame-based notation Concept expressions
of the Description Logic ALCF(D)

(equivalent  place-cover
(and  agent-activity

(some  pc-tt  table-top)
(some  pc-tp1

(and  transport
(some tp-obj plate) )

(some  pc-tp2  transport)
(and  transport

(some tp-obj saucer) )
(some  pc-tp3  transport)

(and  transport
(some tp-obj cup) )

(some  pc-cv  cover)

<feature agreement constraints>
<admissible numerical constraints>

name

roles

concrete
domain

predicates
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Extending Symbolic Space into Metric Space

symbolic domain

metric domain

signal domain

(Gärdenfors 2000)

space
time
colour
shape
...

reasoning may incorporate
measures of distance and
similarity

Examples:

• interval durations in
occurrence models

• distances in spatial relations

ALCF(D)
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Reasoning services available in Description Logics

Standard reasoning services

– consistency check
– subsumption check
– classification

– abstraction
– default reasoning

Extensions of reasoning services necessary for high-level vision:

• temporal reasoning

• spatial reasoning

• generating specialization hypotheses

• generating aggregate hypotheses

available in optimized reasoning systems,
e.g. in the system RACER
RACER User´s Guide and Reference Manual Version 1.7,
 http://www.fh-wedel.de/˘mo/3214/racer-manual-1-7.pdf

Designed,
partially implemented
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Bayes-net guided Interpretation Steps

 A  Q

 Q1

 P A  Q P

 A1 Q1P1

 CC

Aggregate instantiation
Aggregate A1 is instantiated
based on instance Q1

 A

C

P

 A1 P1

 A

 C

 P

 C´

 A1  P1

 C´´

 C´

 C´´ Instance refinement
Instance P1 in aggregate A1 is
specialised from concept C to C´

 C

P1 Q1 PQ1

 C Instance merging
Instances P1 and Q1 are merged to
PQ1
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Conclusions

. Generic high-level image sequence interpretation requires
model-based approach

• Specialisation and aggregation hierarchies support
efficient navigation in interpretation space

• Spatial, temporal and task context is modelled by
instantiated high-level aggregates

• Temporal and spatial constraints require dedicated
constraint satisfaction mechanisms

• Statistics of vision memory may feed Bayes Net for
hypotheses ranking


