
Alpha-Shapes and Flow Shapes are Homotopy Equivalent ∗

[Extended Abstract]

Tamal K. Dey
The Ohio State University,

USA

tamaldey@cis.ohio-
state.edu

Joachim Giesen
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ABSTRACT
In this paper we establish a topological similarity between
two apparently different shape constructors from a set of
points. Shape constructors are geometric structures that
transform finite point sets into continuous shapes. Due to
their immense practical importance in geometric modeling
various shape constructors have been proposed recently. Un-
derstanding the relations among them often leads to new in-
sights that are potentially helpful in applications. Here we
discover a topological equivalence among two such geometric
structures, namely α-shapes and flow shapes. Both shapes
found applications in surface reconstruction and molecular
modeling

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations; I.3.5 [Computational
Geometry and Object Modeling]: Curve, surface, solid,
and object representations

General Terms
Theory, Algorithms

1. INTRODUCTION
Sample based shape modeling has gained popularity in re-
cent years because of its wide applicability in science and
engineering [1, 2, 3, 4, 7]. For example, it is almost rou-
tine to obtain sample points from the boundary of an ob-
ject with recent scanning devices. Shape modeling reverses
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this process of discretization, that is, it creates a continuous
shape out of these discrete points. The α-shapes originally
proposed by Edelsbrunner et al. [8] and later extended by
Edelsbrunner and Mücke [10] provide an efficient means for
creating shapes out of point sets. Recently, flow shapes dis-
covered by Giesen and John [11] and also by Edelsbrunner [6]
provide another means of creating shapes out of a point set.
In fact both α-shapes and flow shapes can be used to define
a hierarchy of shapes from a set of points. This allows multi
scale modeling which turns out to be useful in detecting fea-
tures at different length scales such as detecting pockets in
macromolecules [7].
α-shapes put a ball of radius

√
α around each point and con-

struct a simplicial complex that respects the intersections
among these balls. The underlying space of this simplicial
complex is defined as the α-shape. As α changes, new sim-
plices are added or deleted as intersections among the balls
appear or disappear. This means a hierarchy of shapes can
be defined using α as a scale parameter. Flow shapes, on
the other hand, are defined as a cell decomposition of the
embedding space of the sample points. The decomposition
is based on the gradient flow of a distance function. The
cells of this decomposition can be ordered by some distance
values giving a hierarchy of shapes.
While both α-shapes and flow shapes define a hierarchy of
shapes using some scale parameter, they are quite different
geometrically. We illustrate this fact later using an example
data set. Naturally a relevant question is raised whether
the two hierarchy have any kind of similarity. We show that
indeed the two hierarchies have a certain topological sim-
ilarity, namely they are homotopy equivalent. Specifically,
both α-shapes and flow shapes change their topology only at
discrete critical levels in the hierarchy. These critical levels
turn out to be the same in both hierarchies. We show that
at any critical level the two shapes are homotopy equivalent.
The homotopy equivalence between two shapes holds even
between two consecutive critical levels. However, there is a
striking difference between α-shapes and flow shapes in these
intervals between critical levels. Many α-shapes that are dif-
ferent as sets but have the same homotopy type may appear
in these intervals while different flow shapes only appear at
critical levels. Our result shows that, even in the presence of
this difference one does not miss any topological change cap-
tured by the α-shape hierarchy when taking the flow shape
hierarchy instead. This sparseness of the flow shape hierar-
chy should be beneficial for some applications. Furthermore
the definition of flow shapes has a strong Morse theoretic
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flavor which might allow the use of Morse theoretic con-
cepts that are not directly applicable to the α-shapes. Also,
many applications of α-shapes may benefit from taking the
advantages of flow shapes which sometimes seem to capture
geometry better as we will demonstrate later in Figure 11.

2. COMPLEXES
The α-shape and the flow shape are the underlying spaces of
cell complexes called the α-complex and the flow complex,
respectively. These cell complexes are derived more or less
directly from the Voronoi- and Delaunay complexes of a fi-
nite set of points in R

3 . In this section we summarize the
definitions of Voronoi- and Delaunay complexes and give the
definition of an α-complex and an α-shape associated with
a finite set of points. The definition of an α-complex is very
similar to the definition of the Delaunay complex. This is
not the case for the flow complex. Thus we introduce the
flow complex in a separate section.

Voronoi complex. Let P be a finite set of points in R
3 .

The Voronoi cell of p ∈ P is given as

Vp = {x ∈ R3 : ∀q ∈ P − {p}, ‖x− p‖ ≤ ‖x− q‖)}.
The sets Vp are convex polyhedra or empty since the set of
points that have the same distance from two points in P
forms a hyperplane. Closed facets shared by two Voronoi
cells are called Voronoi facets, closed edges shared by three
or more Voronoi cells are called Voronoi edges and the points
shared by four or more Voronoi cells are called Voronoi ver-
tices. The term Voronoi object denotes either a Voronoi cell,
facet, edge or vertex. The Voronoi complex V (P ) of P is the
collection of all Voronoi objects. It defines a cell decompo-
sition of R3 .

Delaunay complex. The Delaunay complex of a set of
points P is dual to the Voronoi complex of P . The con-
vex hull of four or more points in P defines a Delaunay
cell if the intersection of the corresponding Voronoi cells is
not empty and there exists no superset of points in P with
the same property. Analogously, the convex hull of three
or two points defines a Delaunay face or Delaunay edge, re-
spectively, if the intersection of their corresponding Voronoi
cells is not empty. Every point in P is called Delaunay ver-
tex. The term Delaunay object denote either a Delaunay cell,
face, edge or vertex. The Delaunay complex D(P ) defines
a decomposition of the convex hull of all points in P . This
decomposition is a triangulation if the points are in general
position.

We always refer to the interior and to the boundary of
Voronoi-/Delaunay objects with respect to their dimension,
e.g. the interior of a Delaunay edge contains all points in this
edge besides the endpoints and the interior of a vertex and
its boundary are the vertex itself. Furthermore, we always
assume general position unless stated differently.

Union of balls. Let P be a finite set of points in R3 . The
union of balls centered at the points in P with radius

√
α

for α ≥ 0 is denoted by Bα(P ), i.e.

Bα(P ) = {x ∈ R3 : ∃ p ∈ P such that ‖p− x‖2 ≤ α}.

α-complex. Given a finite set of points P ∈ R
3 and α ≥

0, the α-complex of P is the dual complex of the Voronoi
diagram of P restricted to the union of balls Bα(P ). The
restricted Voronoi cell of p ∈ P is given as

V α
p = Vp ∩Bα(P ).

The restricted Voronoi cells are used to define the α-complex
Kα(P ) analogously to the Delaunay complex. The convex
hull of four or more points in P defines a face in the α-
complex if the intersection of the corresponding restricted
Voronoi cells is not empty and there exists no superset of
points in P with the same property. Similarly, the convex
hull of k, 1 ≤ k ≤ 3 defines a facet in the α-complex if the
intersection of the corresponding restricted Voronoi cells is
not empty.
By construction the α-complex is a sub-complex of the De-
launay complex for every α ≥ 0. With increasing αmore and
more cells of the Delaunay complex appear in the α-complex,

i.e. Kα(P ) ⊆ Kα′
(P ) for α ≤ α′. In fact, we can get a fil-

tration of the Delaunay complex from the α-complexes, i.e.
a sequence Kα1(P ), . . . , Kαn(P ) of α-complexes such that

P = Kα1=0(P ) ⊂ Kα2(P ) ⊂ . . . ⊂ Kαn(P ) = D(P ).

The αi, i > 1 are typically chosen to be the critical α-levels.
For convenience we extend the definition of α-complexes to
negative values of α by setting Kα(P ) = K0(P ) = P for all
α < 0.

Critical α-level. Let P be a finite point set in R3 . A value
α ∈ (0,∞) is called a critical α-level if Kα−ε(P ) �= Kα(P )
for all ε > 0.

It is important to note that the homotopy type of the α-
shape changes only at critical α-levels, but it is easy to see
that there are critical α-levels where the homotopy type of
the corresponding α-shape does not change, see Figure 1 for
an example.

The following theorem is due to Edelsbrunner [5]. It can be
proven using the nerve theorem, but Edelsbrunner also gave
a deformation retraction from Bα(P ) to the corresponding
α-shape.

Theorem 1. Given a finite set of points P ⊂ R
3 . For

every α ≥ 0 the union of balls Bα(P ) and the α-shape cor-
responding to Kα(P ) are homotopy equivalent.

In the subsequent sections we are going to associate with
every value α ∈ [0,∞) for a given point set P another cell
complex Fα(P ), namely the flow complex at level α. The
main theorem of this paper then states that the underly-
ing topological spaces of Kα(P ) and Fα(P ) are homotopy
equivalent for every α ∈ [0,∞).

3. INDUCED FLOW
The flow that we are going to study is the flow along the
gradient vector field of the distance function induced by a
finite set of sample points. Extra care has to be taken since
this distance function is not smooth everywhere, i.e. the gra-
dient is not defined everywhere.
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Figure 1: From the left to the right are shown α-complexes for growing values of α. Note that the α-complexes
shown as second from the left and in the middle have the same homotopy type though they are different
complexes. The same holds for the two rightmost complexes.

Distance function. Let P be a finite set of points in R
3 .

The distance function induced by P is given as

h(x) = min{‖x− p‖2 : p ∈ P}.
The graph of the distance function h is the lower envelope
of a set of paraboloids centered at the points in P . Thus the
function h is continuous. It is smooth everywhere besides
at points which have the same distance from two or more
points, i.e. at points that lie on the boundary of a Voronoi
cell.

Figure 2: A one dimensional example that shows the
graph (solid line) of the distance function induced
by three points.

The definitions given in the critical point theory of distance
functions developed in Riemannian geometry [12] boils down
in our setting to the following:

Regular- and critical points. Let P be a finite set of
points such that Voronoi and their dual Delaunay objects
intersect in their interiors if they intersect at all. Then the
critical points of the distance function h are the intersection
points of Voronoi objects V and their dual Delaunay object
σ. The index of a critical point is the dimension of σ. Non
critical points are called regular.

Note that the intuition about critical points that they are
local extrema and saddle points is still valid in this more
general setting.

In the following we always assume that Voronoi and their
dual Delaunay objects intersect in their interiors if they in-

tersect at all. Other intersections are degenerate in the sense
that they are stable under small perturbations of the point
set.

Critical level. Let P be a finite set of points. A value
α ∈ [0,∞) is called a critical level of the distance function
h associated with P if h−1(α) contains a critical point of h.

Theorem 2. Let P be a finite set of points in R
3 and

let h be the corresponding distance function. If the inter-
val [α,α′] ⊂ [0,∞) does not contain any critical level then
h−1([0, α]) is homeomorphic to h−1([0, α′]) and h−1([0, α′])
deformation retracts to h−1([0, α]).

Proof. This theorem is the specialization of the main
theorem of the critical point theory of distance functions [12]
to the distance function h.

Note that the union of balls Bα(P ) is just the set h−1(α).
Thus we get from Theorem 2 that the homotopy type of the
union of balls Bα(P ) changes only at the critical levels of
the distance function h. Together with Theorem 1 this im-
plies that the homotopy type of the α-shapes only changes
at the critical levels of h. Hence the critical levels of h are
all critical α-levels. Note that the converse is not true, i.e.
not every critical α-level is a critical level of h, see Figure 1
for a counterexample.

The following definition turns out to be very helpful in the
subsequent discussion. It allows us to characterize the di-
rection of steepest ascent of the distance function h at every
point x ∈ R3 .

Driver. Let x ∈ R
3 be any point. Let V be the lowest di-

mensional Voronoi object in the Voronoi complex of P that
contains x and let σ be the dual Delaunay object of V . The
driver d(x) of x is the point on σ closest to x.

It can be shown at every regular point x ∈ R3 the direction
of steepest ascent of the distance function h is given by the
vector

v(x) =
x− d(x)

‖x− d(x)‖ .

We want to study how the points in R
3 move if they al-

ways follow the direction of steepest ascent. The curve that
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a point x ∈ R
3 follows in this motion is called the orbit

of x. For smooth distance functions the computation of a
single orbit results in the solution of an ordinary differen-
tial equation. Since the distance function h is not smooth
everywhere, we cannot apply the theory of ordinary differen-
tial equations here. Nevertheless individual orbits can also
be computed for h. They can be derived from the flow in-
duced by the point set P . The induced flow is a solution
φ : [0,∞) × R

3 → R
3 of the following equation:

lim
t ↓ t0

φ(t, x) − φ(t0, x)

t− t0 = v(φ(t0, x))

One can easily check that the following definition satisfies
the equation above. Note that the definition is inherently
algorithmic.

Figure 3: The critical points of the distance function
from Figure 2 and the direction of steepest ascent
of the distance function at one point. Note that in
one dimension the only critical points of the distance
function are local minima � and local maxima ⊕.

Induced flow. The flow φ induced by a finite point set
P is given as follows: For all critical points x of the height
function associated with P we set:

φ(t, x) = x , t ∈ [0,∞)

Otherwise let d(x) be the driver of x and R be the ray
originating at x and shooting in the direction v(x) = x −
d(x)/‖x− d(x)‖. Let z be the first point on R whose driver
is different from d(x). Note that such a z need not exist in
R

3 if x is contained in an unbounded Voronoi object. In this
case let z be the point at infinity in the direction of R. We
set:

φ(t, x) = x+ t · v(x) , t ∈ [0, ‖z − x‖)

For t ≥ ‖z − x‖ the flow is given as follows:

φ(t, x) = φ (t− ‖z − x‖ + ‖z − x‖, x)

= φ (t− ‖z − x‖, φ (‖z − x‖, x))

It is shown in [11] that the function φ is well defined.

Orbits and fixpoints. Given x ∈ R3 and an induced flow
φ, the curve

φx : [0,∞) → R
3 , t �→ φ(t, x)

is called the orbit of x. A point x ∈ R3 is called a fixpoint of
φ if φx(t) = x for all t ≥ 0.

Figure 4: An example that shows four orbits of a
flow induced by seven points in the plane. The plane
is clipped with a rectangle. The Voronoi complex of
the point set is also shown (dashed lines).

Observation 1. The fixpoints of φ are the critical points
of the distance function h.

Because of this observation we refer to a fixpoint of φ as a
minimum, saddle or maximum if the corresponding critical
point of the distance function is a minimum, saddle point or
maximum, respectively.

4. FLOW COMPLEX
We are going to group all points together that flow into the
same fixpoint of the flow. These inflow regions of critical
points are essentially the cells of the flow complex that we
are also going to define in this section.

Stable manifolds. Given an induced flow φ, the stable
manifold S(x) of a fixpoint x ∈ R

3 is the set of all points
that flow into x, i.e.

S(x) = {y ∈ R3 : lim
t→∞

φy(t) = x}.

Instead of directly working with stable manifolds of criti-
cal points we introduce a smoothed version which has nicer
properties. Smoothing means for all practical purposes tak-
ing the closure of the stable manifold. We will later comment
on why the following definition is more complicated.

Smoothed stable manifolds. Let x be a fixpoint of in-
dex i of an induced flow. That is, the corresponding critical
point of the distance function h has index i. Let S be the
set of points in S(x) that have a neighborhood in S(x) that
is homeomorphic to an open subset of R3 , d = i+1, . . . , 3.
Let S′ be the boundary of S(x) − S in R

3 . The smoothed
stable manifold of x is the set S∗(x) = (S(x) − S) ∪ S′.

Flow complex. Given the flow φ induced by a finite point
set P ⊂ R

3 and α ≥ 0, the flow complex Fα(P ) is defined
as the collection of all stable manifolds of critical points x
with h(x) ≤ α. For convenience we also extend this defini-
tion to negative values of α be setting Fα(P ) = F 0(P ) = P
for α < 0. We refer to the underlying topological space of
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Fα(P ) as flow shape.

The definition of flow complexes corresponding to a finite
point set P ⊂ R

3 implies that

Fα(P ) ⊆ Fα′
(P ) for α ≤ α′.

By construction the values α ≥ 0 such that Fα−ε(P ) �=
Fα(P ) for all ε > 0 are exactly the critical levels of the
distance function h. Thus we have the following observation.

Observation 2. Let P ⊂ R
3 finite set of points. The

homotopy type of the flow shape changes only at the critical
levels of the distance function h induced by P .

In the following we will show that the flow complex is actu-
ally a cell complex for every α ∈ [0,∞). An induced flow in
R

3 has four different types of fixpoints, local minima, saddle
points of index 1, saddle points of index 2 and local maxima.
In the following we are going to characterize the smoothed
stable manifolds of the four different types of fixpoints.

Observation 3. The smoothed stable manifold of a local
minimum m contains just the point m itself since no other
point flows into m.

It turns out that the stable manifold of an index 1 saddle
point is always a Gabriel edge and vice versa.

Gabriel graph. The Gabriel graph of a finite set of points
P in R

3 is given as follows: Its vertices are the points in
P and its edges are given by Delaunay edges that intersect
their dual Voronoi facet. The edges of the Gabriel graph are
called Gabriel edges. The Gabriel graph is always connected,
because it contains the Euclidean minimum spanning tree of
P .

Lemma 1. Let s be an index 1 saddle of φ. The smoothed
stable manifold S∗(s) of s is a Gabriel edge and every Gabriel
edge is the smoothed stable manifold of some index 1 sad-
dle.

The smoothed stable manifolds of index 2 saddle points have
a more complicated structure. Note that, in general, they
are not composed of Delaunay triangles.

Lemma 2. Let s be an index 2 saddle of φ. If the sta-
ble manifold S(s) of s does not contain a Voronoi vertex
then S∗(s) is a piecewise linear surface with boundary. The
boundary of the surface is made up of Gabriel edges.

Proof. A constructive proof can be found in [11]. Later
we need some ideas from the constructions in this proof to
prove the main result of this paper, i.e. the homotopy equiv-
alence of α-shapes and flow shapes.

Note that we do not claim that the surface is homeomor-
phic to a disk. In fact, the surface need not be simply con-
nected, i.e. it can have holes. Furthermore, the lemma does
no longer hold if the stable manifold S(s) contains a Voronoi
vertex. In that case S(s) can have three dimensional com-
ponents which forced us to give the quite complicated def-
inition of smoothed stable manifolds. This definition takes
care of the three dimensional parts. But in the following we

want to assume that none of the stable manifolds of index 2
saddle points contains a Voronoi vertex.

Saddle complex. Given a finite set of points in R3 , we call
the simplicial complex built by the smoothed stable man-
ifolds of all saddle points, i.e. the Gabriel edges and the
surfaces from Lemma 2 the saddle complex of the point set.

It remains to characterize the stable manifolds of the max-
ima. The proof of the following theorem appeared in [11].

Theorem 3. The smoothed stable manifolds of the max-
ima of φ are exactly the closures of the bounded regions of
the saddle complex provided no stable manifold of an index
2 saddle contains a Voronoi vertex.

Especially, this theorem states that the boundary of the
smoothed stable manifold of a maximum is made up of the
smoothed stable manifolds of index 2 saddle points. That is,
under our non-degeneracy assumptions the smoothed stable
manifolds of critical points of different index have a nice re-
cursive structure. The boundary of a smoothed stable man-
ifold of an index d critical point, 1 ≤ d ≤ 3, is made up of
the smoothed stable manifolds of index d− 1 critical points.

Index 1
Saddle

Maximum

Minimum

Index 2
Saddle

Figure 5: This figure illustrates the recursive struc-
ture of the smoothed stable manifolds of critical
points of different indices. The shaded region shows
the interior of a smoothed stable manifold of a max-
imum ⊕ whose boundary is made up of smoothed
stable manifolds of index 2 saddle points. One such
index 2 saddle point � is shown along with the inte-
rior of its smoothed stable manifold. Also an index
1 saddle point � in the boundary of the latter stable
manifold is shown. The boundary of the smoothed
stable manifold of this saddle points consists of two
minima �.

Observation 4. Let h be the distance function associated
with a finite set of points P ⊂ R

3 . For every critical point
y of h in the boundary of the smoothed stable manifold of a
critical point x it is h(y) < h(x). Thus every cell in the flow
complex appears only at larger values of α than the cells in
its boundary.
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5. HOMOTOPY EQUIVALENCE
In this section we are going to show that the underlying
topological spaces ofKα(P ) and Fα(P ) are homotopy equiv-
alent for every finite point set P ⊂ R

3 and every α ≥ 0.

Theorem 4. Given a finite set of points P ⊂ R
3 . For

every α ≥ 0 the topological spaces underlying Kα(P ) and
Fα(P ) are homotopy equivalent.

Proof. From Theorem 1 we know that Bα(P ) andKα(P )
are homotopy equivalent for every α ≥ 0. Thus it is enough
to show that Bα(P ) and Fα(P ) are homotopy equivalent for
every α ≥ 0. We are going to prove this by induction over
the critical levels of the distance function h corresponding
to P . For α = 0 we have

B0(P ) = F 0(P ) = P.

Hence we have the stronger statement that for α = 0 the
underlying topological space of F 0(P ) is not only homotopy
equivalent to B0(P ) but the two spaces coincide. In the fol-
lowing we will use for convenience the notation Fα(P ) for
the complex as well as for its underlying topological space.
From Theorem 2 and Observation 2 we know that the ho-
motopy type of Bα(P ) and Fα(P ) can only change at the
critical levels of the distance function h. That is, we have to
show that when α passes through a critical level the homo-
topy types of Bα(P ) and Fα(P ) change in the same way.

Let 0 < α1, . . . , αn be the critical levels of the distance func-
tion h. We now assume that Bα(P ) and Fα(P ) are homo-
topy equivalent for all α ≤ αi−1 + ε, where ε > 0 is chosen
such that the interval [αi−1−ε, αi−1 +ε] contains no critical
level besides αi−1 and the interval [αi−ε, αi +ε] contains no
critical level besides αi. We want to show inductively that
Bα(P ) and Fα(P ) also have to be homotopy equivalent for
all 0 ≤ α ≤ αi + ε.

Let x ∈ h−1(αi) be a critical point of h. We can assume
without loss of generality that x is the only critical point
in h−1(αi), because all operations that we are going to per-
form in the following can be localized around each critical
point in h−1(αi) by using a suited partition of unity. Since
αi > 0 the point x cannot be a minimum, i.e. it is either
a saddle point or a local maximum. We distinguish three
cases. Either x is an index 1 saddle point, an index 2 saddle
point or a maximum.

First case. Assume that x is an index 1 saddle point.
Our characterization of critical points states that x has to
be contained in a Delaunay edge E that intersects its dual
Voronoi facet, i.e. x is contained in a Gabriel edge. For ε > 0
sufficiently small the Gabriel edge E is completely covered
by the union of balls Bαi−ε(P ) besides a small open line
segment contained in E that contains x. Let E′ be the
closure of this line segment and let v and w be the two
endpoints of E′.
We have Bαi−ε(P ) ∩ e′ = {v, w}. Thus the map

ϕ : boundary(e′) = {v, w} → Bαi−ε(P )

that maps v and w to itself can be used to glue E′ into
Bαi−ε(P ). The topological space that results from this glu-
ing operation is denoted by Bαi−ε(P )∪ϕE

′. Siersma proves
in [14] thatBαi+ε(P ) is homotopy equivalent to Bαi−ε(P )∪ϕ

x

E E’

v w

Figure 6: Shown in two dimensions is the Gabriel
edge E that contains the index 1 saddle point x. Also
shown are two balls of the union of balls Bαi−ε(P )
(dark shaded) and Bαi+ε(P ) (light shaded) and the
line segment E′ ⊂ E with its endpoints v and w.

E′ by giving an explicit deformation retraction of Bαi+ε(P )
to Bαi−ε(P ) ∪ϕ E

′. Actually, Siersma provides a prove
only for the two dimensional case but its generalization to
three dimensions is straightforward. From Theorem 2 we
know that Bαi−ε(P ) = h−1([0, αi − ε]) is homotopy equiv-
alent to Bαi−1+ε(P ) = h−1([0, αi−1 + ε]). The latter union
of balls is by our inductive assumption homotopy equiva-
lent to Fαi−1+ε(P ) which in turn is the same as Fαi−1(P )
since αi−1 is the only critical level contained in the in-
terval [αi−1, αi−1 + ε]. By the definition of E′ we have
E′ ⊂ Fαi . That is, we can look at Fαi(P ) as the topo-
logical space we get by gluing E′ into closure(Fαi(P )−E′).
The gluing is done by mapping v and w in E′ to v and w in
Fαi−ε(P ). There is a straightforward deformation retrac-
tion of closure(Fαi(P ) − E′) to Fαi−1 by just pulling back
the endpoints v and w of E′ to the corresponding endpoints
of the Gabriel edge E. Thus we find that Fαi(P ) − E′ and
Fαi−1(P ) are homotopy equivalent.This provides us with
the following sequence of homotopy equivalences:

Fαi(P ) −E′ � Fαi−1(P )

= Fαi−1+ε(P )

� Bαi−1+ε(P )

= h−1([0, αi−1 + ε])

� h−1([0, αi − ε])
= Bαi−ε(P )

By gluing the same segment E′ at the same points v and w
into the two homotopy equivalent spaces Fαi(P ) − E′ and
Bαi−ε(P ) we get a homotopy equivalence,

Fαi(P ) � Bαi−ε(P ) ∪ϕ E
′.

That is, altogether we have the following sequence of homo-
topy equivalences:

Bαi+ε(P ) � Bαi−ε(P ) ∪ϕ E
′

� Fαi(P )

= Fαi+ε(P )

Hence the the union of balls Bαi+ε(P ) and the flow shape
Fαi+ε(P ) have the same homotopy type at level αi + ε.
Since we know that the flow shape and the union of balls
can change their homotopy type in the interval [αi−ε, αi+ε]
only at the critical level αi we have that Bα(P ) and Fα(P )
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are homotopy equivalent for all 0 ≤ α ≤ αi + ε.

We want to use the same idea of proof also for the case that
the critical point x is either an index 2 saddle point or a
local maximum. It turns out that the proof can be copied
almost line by line for the remaining two cases besides the
part that establishes the homotopy equivalence

Fαi(P ) − E′ � Fαi−1(P ),

where E′ is replaced either by a small surface patch if x
is an index 2 saddle or by a small volume element if x is
a local maximum. The proof of this homotopy equivalence
was trivial for the case that x is an index 1 saddle point. It
turns out that we have to work harder to prove the analo-
gous statements in the remaining cases.

Second case. Now assume that x is an index 2 saddle
point. Our characterization of critical points states that x
has to be contained in a Delaunay facet F that is intersected
by its dual Voronoi edge. For ε > 0 sufficiently small the
Delaunay facet F is completely covered by the union of balls
Bαi−ε besides a small open subset contained in the interior
of F that contains x. Let F ′ be the closure of this subset in
F .

F’
F

x

Figure 7: Shown in two dimensions is the Delaunay
triangle F that contains the index 2 saddle point
x. Also shown are three balls of the union of balls
Bαi−ε(P ) (dark shaded) and Bαi+ε(P ) (light shaded)
and the surface patch F ′ ⊂ F (also light shaded).

The proof of Lemma 2, see [11] tells us that we have F ′ ⊂
Fαi (P ) if we choose ε sufficiently small. The boundary of
F ′ is by definition contained in closure(Fαi (P ) − F ′) but
it is also contained in Bαi−ε(P ). That is we can glue F ′

along its boundary into both spaces. Using again an explicit
deformation retraction similar to one described in [14] we
can establish the homotopy equivalence

Bαi+ε(P ) � Bαi−ε(P ) ∪ϕ F
′,

where ϕ maps the boundary of F ′ onto its copy contained
in Bαi−ε(P ). If we show that

Fαi(P ) − F ′ � Fαi−1(P ),

then we are done, because we can apply a similar proof as
in the first case. Note that the homotopy equivalence is
not obvious since the smoothed stable manifold S∗(x) of x

need not be a topological disc. We are now going to prove
the homotopy equivalence by giving an explicit deformation
retraction. This deformation retraction will be a little bit
more complicated than necessary here. The benefit of com-
plicating things is that we can apply the strategy used here
also in the case that x is a local maximum.
To construct a deformation retraction of Fαi(P ) − F ′ to
Fαi−1(P ) we shortly recall how the smoothed stable man-
ifold S∗(x) of the index 2 saddle x can be computed. The
details can be found in the proof of Lemma 2, see [11]. We
first want to identify all points in S∗(x) that flow into x
on straight line segments - more specific we are interested
in all these line segments and denote the set of all these
line segments as L. For every Voronoi cell incident to x the
line segment connecting the dual Delaunay vertex of this
Voronoi cell with x is a line segment in L. The remaining
line segments in L pass through the Voronoi facets incident
to x. For every of these Voronoi facets we get exactly one
line segment in L by first connecting the unique driver d of
the facet with x and then determining the second intersec-
tion point besides x of this line segment with the boundary
of the Voronoi facet. In the proof of Lemma 2, see [11], this
intersection point is denoted as s′. For every line segment in
l ∈ L we consider a small cone with apex y around l. Here
y denotes the second endpoint of the line segment besides
x. The cones are chosen small enough such that they do
not intersect each other. Every point in the interior of the
intersection of such a cone with S∗(x) can be pulled back to
y on a straight line. This gives us a deformation retraction
of Fαi (P )−F ′ to Fαi (P )−F ′ with the interior of the inter-
section the cones with S∗(x) removed. We denote the latter
set as F1. Figure 8 illustrates the deformation retraction of
Fαi(P ) − F ′ to F1.

Figure 8: A schematic illustration of the deforma-
tion retraction of Fαi (P ) − F ′ to F1. The red points
denote Delaunay vertices and the green points de-
note points s′. We show Fαi(P ) − F ′ on the left and
F1 on the right.

For every line segment in L whose second endpoint y is not
a Delaunay vertex we consider two triangles xyz and xyz′.
Here z and z′ are the two Delaunay vertices such that all
interior points of the line segments that connect y with z
and z′, respectively, flow into y. The intersections of F1 the
triangles xyz and xyz′ can be retracted to the line segments
yz and yz′ in a straightforward manner. We denote the set
that we get after retracting all such triangles as F2. Figure 9
(on the left) illustrates such a set F2.
We continue the construction of the deformation retraction
of Fαi (P )−F ′ to Fαi−1(P ) iteratively at every apex of the
cones that is not a critical point. If such an apex is a critical
point then it is already contained in the boundary of S∗(x).
Around every apex y that is not critical we place a small
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Figure 9: A schematic illustration of F2 on the left
and F3 on the right.

ball and retract the intersection of F2 with this ball to the
intersection of F2 the boundary of this ball. We denote the
set that we get from this deformation retraction as F3. See
Figure 9 (on the right) for an illustration of this straight
forward deformation retraction of F2 to F3. We can now
proceed iteratively by processing y until there is no further
point to process. Figure 10 shows two more steps in such an
iteration.

Figure 10: Two further steps in the deformation
retraction of Fαi(P ) − F ′ to Fαi−1(P ) starting at F3.

From this procedure we get a sequence of sets

Fαi(P ) − F ′ = F0, F1, . . . , Fm = Fαi−1(P )

where each Fi+1 ⊂ Fi is a deformation retract of Fi. Thus
the whole sequence provides with us with the homotopy
equivalence of Fαi (P ) − F ′ and Fαi−1(P ). That finishes
the case that x is an index 2 saddle point.

Third case. Finally assume that x is a local maxi-
mum. Our characterization of critical points states that x is
a Voronoi vertex contained in its dual Delaunay cell T . For
ε > 0 sufficiently small the Delaunay cell T is completely
covered by the union of balls Bαi−ε besides a small open
subset contained in the interior of T that contains x. Let T ′

be the closure of this subset in T . We have T ′ ⊂ Fαi(P ) if
we choose ε sufficiently small. Thus the boundary of T ′ is
by construction contained in closure(Fαi(P ) − T ′) but it is
also contained in Bαi−ε(P ). That is, we can glue T ′ along
its boundary into both spaces. Using once more an explicit
deformation retraction as described in [14] one can establish
the homotopy equivalence

Bαi+ε(P ) � Bαi−ε(P ) ∪ϕ T
′,

where ϕ maps the boundary of T ′ onto its copy contained
in Bαi−ε(P ). Again we are done if we show that

Fαi(P ) − T ′ � Fαi−1(P ),

This can be done by generalizing the technique that we used

for the case that x is an index 2 saddle point. We leave this
generalization for the full version of this paper.

6. CONCLUSION
The result in this paper establishes a topological similarity
between two apparently different shape constructors from
a set of points. In Figure 11 we demonstrate that these
shape constructors can be geometrically quite different even
though they are topologically similar. The pictures for Fig-
ure 11 were produced with our implementations of efficient
algorithms to compute the α-shape and the flow shape, re-
spectively. Also this figure shows the union of balls at the
corresponding levels. Notice that this union looks almost
like a big ball at large levels. The level here is so large that
we had to zoom out in order to fit the union of balls on the
screen.
For biological applications, namely macromolecule structure
exploration, topological multi scale modeling on weighted
points via α-shapes seems to be an interesting tool [9]. The
weighted points represent the positions of the atoms in the
macromolecule weighted with their radii. The flow shape
hierarchy can also be defined and computed efficiently for
weighted points and the homotopy equivalence still holds
for the weighted hierarchies. The exposition in the weighted
case gets more complicated without adding anything sub-
stantial new. Thus we have decided to restrict ourselves
here only to the unweighted case.
Another generalization would be to establish the results also
in higher dimensions than three. This seems to be possible,
but since the combinatorial complexity of both α-shapes and
flow shapes grows exponentially with the dimension, these
hierarchies seem not to be interesting for applications in high
dimensional space. But the case for four-dimensional space
may turn out to be useful in future.
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Figure 11: The union of balls (left), the α-shape (middle) and the flow shape (right) for increasing values of
α (top to bottom). The second row shows a zoom of the pictures in the first row. Note that the shapes in
each row are homotopy equivalent.
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