Flow Shapes

Lecture by Torben Bundt Seminar "Surface Reconstruction" 19.11.2008

Contents

- Voronoi diagram
- Delaunay diagram
- Gabriel graph
- Distance function
- Critical points
- Driver
- Induced flow
- Orbits
- Stable manifolds
- Flow complex

Voronoi diagram

- Voronoi objects:
 - Voronoi vertex
 - Voronoi edge
 - Voronoi face
 - Voronoi cell

Delaunay diagram

- Delaunay objects:
 - Delaunay vertex
 - Delaunay edge
 - Delaunay face
 - Delaunay cell

Gabriel graph

- Vertices are the points in P
- Edges are given by Delauney edges that intersect their dual Voronoi facet
- Always connected (contains the Euclidean minimum spanning tree)
- Facets and edges: their smallest circumscribing ball is empty of sample points

Gabriel graph (2)

Distance function

 Assigns to every point in R³ its least distance to any of the sample points

$$h(x) = \min\{|x - p|^2 : p \in P\}, P \subset \mathbb{R}^3$$

- Funtion *h* is continiuous
- Smooth everywhere besides at point which have the same distance from two or more points

Distance function (2)

Critical points

- The critical points of the distance function h are the intersection points of Voronoi objects V and their dual Delaunay object σ. The index of a critical point is the dimension of σ.
- Points where a unique direction of steepest ascent of the distance function does not exist

Critical points (2)

Critical points (3)

- Index-0
 - the sample points themselves
 - local minima of the distance function *h*.
- Index-1
 - intersection of Delaunay edges and their dual Voronoi facets
 - only Gabriel edges intersect their dual Voronoi facet
- Index-2
 - intersection of Delaunay facets and their dual Voronoi edges
 - not all Delaunay facets contain an index-2 saddle point
- Index-3
 - intersection of Delaunay cells and their dual Voronoi vertices.
 - local maxima for h.

Critical points (4)

Driver

 Given x ∈ R³. Let V be the lowest dimensional Voronoi object in the Voronoi diagram of P that contains x and let σ be the dual Delauney objekt of V. The driver d(x) of x is the point on σ closest to x.

• Direction of the steepest ascent of the distance function *h*:

$$v(x) = \frac{x - d(x)}{|x - d(x)|}$$

Induced flow φ

• For all critical points *x* we set:

$$\phi(t, x) = x$$
, $t \in [0, \infty)$

- Otherwise:
 - R is the ray originating at x and shooting in the direction of the steepest ascent v(x)
 - z be the first point on R whose driver is different from d(x)
 - such a z need not exist in R³ if x is contained in an unbounded Voronoi object
 - in this case z be the point at infinity in the direction of R
 - We set:

$$\phi(t, x) = x + t \cdot v(x) , t \in [0, |z - x|)$$

- For $t \ge |z - x|$ the flow is given as follows:

$$\Phi(t, x) = \Phi(t - |z - x| + |z - x|, x) = \Phi(t - |z - x|, \phi(|z - x|, x))$$

$\text{Orbit} \ \varphi_x$

- Orbit of x: $\phi_x : [0,\infty) \to \mathbb{R}^3$, $t \to \phi(t, x)$
- Fixpoint of φ:
 - A point x if $\phi_x(t) = x$ for all $t \ge 0$
 - Fixpoints of ϕ are the critical points of h(x)

Stable manifolds

The stable manifold S(x) of a fixpoint x ∈ R³ is the set of all points that flow into x:

$$S(x) = \{y \in \mathbb{R}^3 : \lim_{t \to \infty} \phi_y(t) = x\}$$

Flow complex

- $F^{\alpha}(P)$ is the collection of all stable manifolds of critical points x with $h(x) \leq \alpha$
- $F^{\alpha}(P) = P$ for $\alpha \leq 0$
- Flow shape is the underlying topological space of $F^{\alpha}(P)$

Sources

- Joachim Giesen, Matthias John : The flow complex: A data structure for geometric modeling (2003)
- Tamal K. Dey, Joachim Giesen, Matthias John: Alpha-Shapes and Flow Shapes are Homotopy Equivalent (2003)
- Bálint Miklós: Geometric Modelling with the Flow Complex (2005)

Sample points

Voronoi diagram

Voronoi diagram + Delaunay diagram

Voronoi diagram + Gabriel graph

Voronoi diagram + Gabriel graph (2)

Minima + maxima of h(x)

All critical points

Maxima of h(x)

Driver of x

Orbit of x

Stable manifold

Flow complex

