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Voronoi diagram

* Voronoi objects:
— Voronoi vertex
— Voronoi edge
— Voronoi face
— Voronoi cell



Delaunay diagram

 Delaunay objects:
— Delaunay vertex
— Delaunay edge
— Delaunay face
— Delaunay cell



Gabriel graph

Vertices are the pointsin P

Edges are given by Delauney edges that intersect their dual
Voronoi facet

Always connected (contains the Euclidean minimum spanning
tree)

Facets and edges: their smallest circumscribing ball is empty
of sample points



Gabriel graph (2)




Distance function

Assigns to every point in R3 its least distance to any of the
sample points

h(x) = min{|x-p|*:pEP}, PcR3

Funtion h is continiuous

Smooth everywhere besides at point which have the same
distance from two or more points



Distance function (2)




Critical points

* The critical points of the distance function h are the
intersection points of Voronoi objects V and their dual

Delaunay object 0. The index of a critical point is the
dimension of o.

* Points where a unique direction of steepest ascent of the
distance function does not exist



Critical points (2)




Critical points (3)

Index-0
— the sample points themselves
— local minima of the distance function h.
Index-1
— intersection of Delaunay edges and their dual Voronoi facets
— only Gabriel edges intersect their dual Voronoi facet
Index-2
— intersection of Delaunay facets and their dual Voronoi edges
— not all Delaunay facets contain an index-2 saddle point
Index-3
— intersection of Delaunay cells and their dual Voronoi vertices.
— local maxima for h.



Critical points (4)




Driver

* Given x € R3. Let V be the lowest dimensional Voronoi object
in the Voronoi diagram of P that contains x and let o be the
dual Delauney objekt of V. The driver d(x) of x is the point on
o closest to x.

* Direction of the steepest ascent of the distance function h:




Induced flow ¢

For all critical points x we set:

d(t, x)=x, t € [0,o0)

Otherwise:

— R is the ray originating at x and shooting in the direction of the steepest ascent
v(x)
— 2z be the first point on R whose driver is different from d(x)

* such az need not exist in R?if x is contained in an unbounded Voronoi object
* inthis case z be the point at infinity in the direction of R

— We set:

d(t, x)=x+t-v(x),t€[0, |z-x])

— For t=>|z- x| the flow is given as follows:

&(t, x) = p(t —|z-x| + [z -x], x)
=¢(t—|Z—X|,¢(|Z—X|,X))



Orbit ¢,
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Stable manifolds

 The stable manifold S(x) of a
fixpoint x € R3 is the set of all
points that flow into x:

S(x) ={y € R*:lim;.. &,(t) = x}




Flow complex

F*(P) is the collection of all stable manifolds of critical points x
with h(x) < a

F*(P)=P fora<0

Flow shape is the underlying topological space of F* (P)



Sources

* Joachim Giesen, Matthias John : The flow complex: A data
structure for geometric modeling (2003)

 Tamal K. Dey, Joachim Giesen, Matthias John: Alpha-Shapes
and Flow Shapes are Homotopy Equivalent (2003)

e Balint Miklés: Geometric Modelling with the Flow Complex
(2005)
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Sample points
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Voronoi diagram
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Voronoi diagram + Delaunay diagram
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Voronoi diagram + Gabriel graph
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Voronoi diagram + Gabriel graph (2)
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Minima + maxima of h(x)




All critical points




Maxima of h(x)




Driver of x




Orbit of x




Stable manifold
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Flow complex
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