Spectral Surface Reconstruction

Nils Erik Flick

January 13, 2009

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Reconstruction of Surfaces

EigenCrust outline

Spectral Theory & Practice

Practical (Partial) Diagonalization

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

Outline

Reconstruction of Surfaces

Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

EigenCrust outline

Spectral Theory & Practice

Practical (Partial) Diagonalization

Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

Motivation: Reconstruction

- Surface \rightarrow cloud of sample points \rightarrow watertight approximation
- ▶ Robust? Noise, outliers (laser scanner!), holes.
- Geom, top.

Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

The EigenCrust Algorithm

- Geometric heuristics
- Transcends local problems by taking a global view
- ► No holes even in the presence of noise and unsampled patches

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

What is a Surface?

- Codimension 1 submanifold of ambient space
- No intersections, no boundary, manifold
- Surface = boundary of a *volume*.
- ▶ Search for manifold → automatically watertight!

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

Voronoi / Delaunay (1)

- Voronoi cell
- Starting point: Spatial closeness

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

Voronoi / Delaunay (2)

Delaunay duals Voronoi.

イロン イヨン イヨン イヨン

3

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

Starting Point: Delaunay Contains Surface

► Triangulation contains surface approximation → good starting point

Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

Starting Point: Space partitioning

- Triangulation partitions space
- \blacktriangleright Label the tetrahedra \rightarrow inside and outside
- Surface = boundary i*nside*|outside.

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

- Medial axis \approx skeleton
- Deforms to surface's ambient complement
- (homotopy & homeomorphism!)

イロン イヨン イヨン イヨン

э

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

Voronoi Poles

- Denser sampling \rightarrow elongated cells
- Pole p^+ = furthest vertex of cell
- Pole p^- : only if $angle > \frac{\pi}{2}$
- Convergence to Medial Axis in 2D
- ▶ In 3D, "Surface" tetrahedra occur

EigenCrust outline Spectral Theory & Practice Practical (Partial) Diagonalization References Motivation Surfaces Voronoi / Delaunay The Medial Axis Voronoi Poles

$\mathsf{Poles} \leftrightarrow \mathsf{Skeleton}$

Nils Erik Flick

Spectral Surface Reconstruction

Э

The Combinatorial Approach EigenCrust (1) EigenCrust (2) EigenCrust (3)

Reconstruction of Surfaces

EigenCrust outline The Combinatorial Approach EigenCrust (1) EigenCrust (2) EigenCrust (3)

Spectral Theory & Practice

Practical (Partial) Diagonalization

(ロ) (部) (E) (E)

The Combinatorial Approach EigenCrust (1) EigenCrust (2) EigenCrust (3)

- Delaunay triangulation is a combinatorial object (graph)
- So is its dual
- Good for algorithms!

The Combinatorial Approach EigenCrust (1) EigenCrust (2) EigenCrust (3)

EigenCrust proper

- Augment point cloud with bounding box
- Form pole graph (V, E, w):
- Poles belonging to a single vertex
- Poles of delaunay-neighboring vertices
- Edge weights: Geometrical Heuristic (sorry).
- Partition the pole graph
- Unlabel suspicious tetrahedra and re-partition.

(ロ) (部) (E) (E)

The Combinatorial Approach EigenCrust (1) EigenCrust (2) EigenCrust (3)

EigenCrust (2)

- True MAT goes off into infinity \rightarrow bounding box
- Authors use negative weights to great effect
- Weight: $-e^{4+4\cos\phi} e^{4-4\cos\phi}$
- (unproven) justification: "Angle between circumspheres"

・ロン ・回と ・ヨン ・ヨン

The Combinatorial Approach EigenCrust (1) EigenCrust (2) EigenCrust (3)

EigenCrust $(2\frac{1}{2})$

イロン イヨン イヨン イヨン

Э

The Combinatorial Approach EigenCrust (1) EigenCrust (2) EigenCrust (3)

- ► A priori OUTSIDE / INSIDE supernodes.
- Second step for non-poles / ambiguous.
- Next: a comparison, made by the authors

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Reconstruction of Surfaces

EigenCrust outline

Spectral Theory & Practice

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Practical (Partial) Diagonalization

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Before we proceed ...

We are going to need some seemingly unrelated stuff. Please bear with me.

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Finite-Dimensional Vector Spaces

- Recall the vector space axioms
- Linear transformation
- Basis
- Matrix
- Square matrix

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

We are talking ... Hilbert Spaces!

Inner product: distances, angles

•
$$f \cdot g = \int_0^1 f(x)g(x)dx$$

- Importance of linear operators
- Importance of hermitean operators

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

- Laplacian on \mathbb{R}^n as second derivative vector
- It frequently appears in physics
- It is a linear operator.
- You already know its eigenvectors!

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

- Eigenfunctions of the Laplacian = Harmonics
- Harmonic Analysis is often a good idea
- Depends on domain
- Demo!

イロト イヨト イヨト イヨト

э

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Natural Modes of Vibration

- Consider some solid object
- Tap it, it sounds
- You are hearing its spectrum!
- ▶ Normal Mode \leftrightarrow Eigenvalue \leftrightarrow Frequency \leftrightarrow Energy (Why?)
- Can even be made visible
- Degeneracies

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Harmonics & Eigenmodes

- Vibrations: Boundary value problem; but also ...
- finite model
- Resonances

Nils Erik Flick

Spectral Surface Reconstruction

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

\mathbb{R}^n doesn't fit in my computer!

- Basic finite difference approximation
- Square grid
- Convergence
- generalizes to arbitrary grids & graphs

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Self-Adjointness or Why the Spectrum is Real

- A desirable property: $\langle Ax, y \rangle = \langle x, Ay \rangle$
- Corresponds to symmetric matrix
- Real spectrum and orthogonal set of eigenvectors.
- Find $A = U\Lambda U^*$ (U rotation). Often miraculous!

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Introducing Normalized Cuts

- Flexible formalism
- Segmentation by graph cuts
- Good, globally consistent solution
- Graph Theory \leftrightarrow Linear Algebra
- ► Combinatorics ↔ Numeric Methods
- Weighted, undirected graphs.

(ロ) (部) (E) (E)

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

ヘロア 人間 アイボア 人間 ア

Combinatorial Laplacian / Graph Matrices

- Combinatorial Laplacian
- Degree matrix <u>D</u>, diagonal D_{ii} = degree of vertex i
- Graph Laplacian $\underline{L} = \underline{D} \underline{A}$
- Degree-normalized: <u>W</u> = <u>D</u>^{-¹/₂}<u>LD</u>^{-¹/₂} (transform vectors as needed)
- <u>W</u> remains sparse.

Laplacians Eigenmodes: Hearing + Seeing = Believing Discretization Graph Vectorspaces for Space Partitioning

Outline of the NCuts Algorithm

- Construct a graph with weighted edges.
- Connectivity and Weights = adapt to model
- Partition along nodal sets
- Corresponding to λ₂
- (lowest is trivial)
- Object splits naturally tightly connected parts vibrate together

Lanczos Iteration The Wider Perspective Open Questions

Outline

Reconstruction of Surfaces

EigenCrust outline

Spectral Theory & Practice

Practical (Partial) Diagonalization

Lanczos Iteration The Wider Perspective: Other Interesting Uses of Related Techniques Open Questions

Lanczos Iteration The Wider Perspective Open Questions

Sparsely connected graphs \rightarrow sparse matrices

- Small eigenvalue problems can be solved by direct methods (matrix factorizations)
- Prohibitive for large problems.
- Sparse matrices are made of zeroes ... mainly
- Matrix-Vector multiplication tends to be inexpensive
- Iterative methods very welcome.

Lanczos Iteration The Wider Perspective Open Questions

Selective calculation of eigenvectors

- Calculating eigenpairs in O(n) time per iteration
- Typical number of iterations $O(\sqrt{n})$
- But varies according to eigenstructure
- Positive definite; $\frac{x^T A x}{x^T x}$
- Get lowest first

Lanczos Iteration The Wider Perspective Open Questions

More Applications

- Simulation (physics)
- Data Clustering: importance-weighted criterion
- / Text Mining
- Transductive Learning (global view)

► ...

Lanczos Iteration The Wider Perspective Open Questions

Questions for you

- Proof of properties (reconstruction quality)?
- Incremental computations?
- Sharp corners \rightarrow hybrid

...

References I

- Amenta, N., Choi, S., Dey, T. K., & Leekha, N. (2000). A simple algorithm for homeomorphic surface reconstruction. In *International journal of computational geometry and applications* (pp. 213–222).
- Amenta, N., Choi, S., & Kolluri, R. K. (2001). The power crust, unions of balls, and the medial axis transform. *Computational Geometry: Theory and Applications*, 19, 127–153.
- Choi, H. I., Choi, S. W., & Moon, H. P. (1997). Mathematical theory of medial axis transform. *Pacific Journal of Mathematics*, *181*, 57–88.

References II

- Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral grouping using the nyström method. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26, 214–225.
- Kac, M. (1966). Can you hear the shape of a drum. *Amer. Math. Monthly*, 73(1).
- Rahimi, A., & Recht, B. (2004). Clustering with normalized cuts is clustering with a hyperplane. *Statistical Learning in Computer Vision*.
- Shi, J., Belongie, S., Leung, T. K., & Malik, J. (1998). Image and video segmentation: The normalized cut framework. In *Icip* (1) (p. 943-947).
- CGAL, Computational Geometry Algorithms Library. (n.d.). (http://www.cgal.org)

References III

IETL, the Iterative Eigensolver Template Library. (n.d.). (http://www.comp-phys.org/software/ietl/)
Wardetzky, M., Mathur, S., Kalberer, F., & Grinspun, E. (2007). Discrete laplace operators: no free lunch.
Zhou, D., & Scholkopf, B. (2005). Regularization on Discrete Spaces. LECTURE NOTES IN COMPUTER SCIENCE,

3663, 361.

Ravikrishna Kolluri, Jonathan Richard Shewchuk, and James F. O'Brien, Spectral Surface Reconstruction from Noisy Point Clouds, Symposium on Geometry Processing 2004 (Nice, France), pages 11-21,Eurographics Association, July 2004.