
Error-Bounds on Curvature Estimation

Sven Utcke

Universität Hamburg, Fachbereich Informatik, Arbeitsbereich Kognitive Systeme,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

utcke@informatik.uni-hamburg.de

http://kogs-www.informatik.uni-hamburg.de/~utcke

Zusammenfassung. Die Berechnung der Krümmung einer digitalen
Kontur an jedem Punkt der Kontur ist eine Häufig benötigte Operation
in der Bildverarbeitung, sei es die Berechnung differentieller Invarianten
oder Curvature Scale Space. Es ist jedoch seit langem bekannt, dass die
Berechnung von Krümmung anfällig gegenüber Rauschen auf der Kontur
ist. Wir zeigen, wie und in welchem Maße Rauschen den relativen Feh-
ler der berechneten Kontur beeinflusst. Ein interessantes Resultat ist,
dass ganz entgegen der Intuition die Berechnung von Krümmung für nur
gering gekrümmte Kontur-Stücke aufgrund der beschränkten Bildgröße
unmöglich ist, während es für stärker gekrümmte Konturstücke möglich
ist, zu akzeptablen Lösungen zu kommen.

Error-Bounds on Curvature Estimation

Sven Utcke

Universität Hamburg, Fachbereich Informatik, Arbeitsbereich Kognitive Systeme,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

utcke@informatik.uni-hamburg.de

http://kogs-www.informatik.uni-hamburg.de/~utcke

Abstract. Estimation of a digital curve’s curvature at any given point
is needed for many tasks in computer vision, be it differential invariants
or curvature scale space. However, curvature estimation is known to be
very susceptible to noise on the contour. We shall show how noise on
the contour affects the relative accuracy of the curvature computation.
One interesting result is that, contrary to intuition, the calculation of
the curvature for low-curvature regions is in fact impossible for com-
mon image-sizes, while reasonable results may be obtained for higher-
curvature regions.

1 Introduction

In the early years of computer vision, the need to calculate a digital curve’s cur-
vature used to arise quite frequently. However, this did turn out to be a rather
harder task than one originally appreciated (see [1] who compares several differ-
ent approaches), and today the knowledge about the difficulty of the task has
become so ingrained in the computer vision community that curvature is hardly
used outside the scale space community, where much of the work is reduced to
locating the zero crossings of curvature [2].

We believe, however, that only very little attention has so far been given to
the question why the calculation of curvature is hard. Worring’s approach [1] is
only relevant for edgels on a pixel-grid; Kovalevsky [3] recently extended this to
edgels with sub-pixel accuracy, using his own edge-finder. However, both authors
basically follow the assumption that curvature for low-curvature regions can
be calculated more accurately than for high-curvature regions, simply because
for the former smoothing will be less invasive than for the latter, and as a
consequence concentrate on high-curvature regions with a radius of curvature
below 40 pxl.

This paper strives to demonstrate that for real images the curvature of low-
curvature regions is in fact just as difficult (if not impossible) to compute. This
is due to the limited extend of outlines in real images, and we shall see that
neither very low nor very high curvature can be estimated reliably under real
life conditions.

The remainder of this paper is organised as follows: Section 2 gives the ana-
lytic derivation of the expected relative error in the curvature-radius estimated

s

a

b

c

d

R

h

α

β

Fig. 1. Simple model for the calculation of curvature

for a very simple case, this serves to give a feeling for the mathematics involved.
Section 3 gives results for a more involved but more realistic case, but without
the analytic derivation. Based on these, Sec. 4 gives numeric examples of what
can be expected from locally operating approaches for the calculation of the
curvature, and Sec. 5 summarises our findings.

2 Analytic Derivation of a Simple Case

We will first analyse a very simple case. Given 3 points {a, b, c} on a circle, we
can calculate the circle’s midpoint as the intersection of the two perpendicular
bisectors of the 2 lines connecting point a with b and b with c; the circle’s radius
is then straightforwardly given as the distance from the circle’s midpoint to any
of the three points on the circle. Figure 1 gives an overview of the construction.

The main source of error using this setup is the uncertainty in the position of
the three points. For a digital contour given as edgels found by some implemen-
tation of an edge finder like the Canny algorithm [4], only the edgel’s uncertainty
perpendicular to the curve is of interest, while the exact location of the edgel
along the curve is of no significance.

In our very simple first model we will analyse the relative accuracy of the
radius as a function of the arc-length s between the edgels used for its calculation
(compare Fig. 1). We will assume that the position of the middle edgel varies
with standard deviation σ along the vertical-direction, and that the two other
edgels vary with standard deviation σ orthogonal to the line-segments ab and
bc (so that d is constant — this only introduces a small error, which will later
be ignored anyway). In addition, we will introduce a further simplification by
assuming symmetry between the two sides of the construction. This allows us to

fix the position of one of the points and instead assume that the height h of the
triangle varies with

σh =

√

1 + sin2(α) σ (1)

(projecting the edgels’ uncertainty onto the vertical axis).
The entire model is of course an oversimplification: we only use 3 out of

N points, the end-edgels’ covariance should be taken in radial direction (i. e.
orthogonal to the contour), we assume that the distributions of the two endpoints
(edgels) are not independent of each other (which they are). We also assume that
curvature is constant over the entire curve-section under consideration (which
most likely it isn’t). However, we do feel that the above model is well suited to
give an initial idea of the behaviour of curvature calculation.

The theorem on intersecting lines gives us the radius as

R =
d2

2h
. (2)

Its derivative with respect to h is

∂R

∂h
= − d2

2h2
, (3)

and we can use this to calculate the standard deviation of the radius using simple
linear error propagation as

σR = σh
d2

2h2
. (4)

As stated above, we are interested in σR as a function of the arc-length s between
the two outer edgels; it is

α =
π

2
− β

4
, (5)

β =
s

R
(6)

h = d cos(α) (7)

and substituting (1) as well as (5), (6), and (7) in (4) leads to

σR =
σh

2

√

1 + sin2(α)

cos2(α)
=

σ

2

√

1 + cos2
(

s
4R

)

sin2
(

s
4R

) . (8)

In order for a result R to be usable we would require its relative error to
remain sufficiently small, i. e.

σR

R

!
< ρ ≪ 1 . (9)

Note that, as we only analyse the relative error ρ it does of course not make any
difference whether we calculate the radius R or the curvature κ = 1/R.

We will now calculate the minimum arc-length s necessary to satisfy (9),
and from there, assuming a known average distance from edgel to edgel (set to
1 pxl in the following for simplicity), the number of pixels necessary to achieve
a desired relative accuracy ρ = σR/R. As

0 ≤ cos2
(s

4R

)

≤ 1 (10)

we get from (8)

4R arcsin

(
√

σ

2Rρ

)

≤ s ≤ 4R arcsin

(
√

σ√
2Rρ

)

(11)

and for σ ≪ Rρ, which is almost always the case

4√
2

√

σ

ρ
R ≤ s ≤ 4

21/4

√

σ

ρ
R . (12)

Note that the left and right side of (12) differ only by a factor of 21/4 ≈ 1.19; in
both cases the minimum required arc-length s for a required relative accuracy
ρ = σR/R is proportional to the same term and approximately

s ≈ 3

(

σ

ρ
R

)0.5

. (13)

The approach outlined above is actually rather wasteful. An obvious improve-
ment would be to use all N edgels instead of just three, and the next section
will indeed have a closer look at an approach which does just that.

3 Using N Edgels

When looking for a description of a curve-segment, instead of trying to calculate
this description directly from the edgels it is not uncommon to fit an algebraic
curve to the edgels and use the parameters of the curve with the smallest error
of fit to calculate the description. These curves are often polynomials in x and
y, and in our particular application, where we are trying to find the radius of
curvature of a given curve, it is a natural choice to fit part of a circle to the
edgels1.

Different methods exist to calculate the error of fit between a curve and N
edgels. Probably the most intuitive method is to minimise the sum of ortho-
graphic, squared distances, which for a circle with midpoint (x0, y0) and radius
R would be

C =
1

N

N
∑

i=1

(

√

(xi − x0)
2 + (yi − y0)

2 − R

)2

. (14)

1 This is especially the case as we assume a curve with constant curvature — in general
more complicated models will yield better results, although one should be wary of
too complex models [5].

However, in general no closed form solution exists for (14), and it has therefore
become customary to use the so called algebraic distance

C =
1

N

N
∑

i=1

(

(xi − x0)
2 + (yi − y0)

2 − R2
)2

, (15)

for which a closed form solution exists [6]. It is worth noting that minimising
either (14) or (15) in their above form will introduce an additional bias into the
solution, which we will ignore in the following.

It is now interesting to see how many edgels N , or alternatively how long
a segment s, will be needed to achieve a given relative error ρ = σR/R when
calculating a circle which minimises one of (14) or (15). The tool to do so is the
implicit function theorem, which allow us to calculate the Jacobian Jg of the un-
known function c = g(e) with c = (x0, y0, R)T and e = (x1, . . . , xN , y1, . . . , yN)T

whose solution minimises either (14) or (15) (in the latter case g could actually
be calculated explicitly), it is

Jg = −
(

∂2C

∂c2

)

−1 (

∂2C

∂c∂e

)T
∣

∣

∣

∣

∣

c0

(16)

provided that the Hessian ∂2C
∂c2 is indeed invertible at the point of the solution

c0. If we assume that all edgels (xi, yi)
T share the same covariance σI2, where

I2 is the 2 × 2 identity matrix — this is a reasonable model for variance σ
perpendicular to the curve — we can calculate the covariance matrix of the
vector c = (x0, y0, R)T as

σJgJT
g

= σ

(

∂2C

∂c2

)

−1(
∂2C

∂c∂e

)T (

∂2C

∂c∂e

) (

∂2C

∂c2

)

−1T
∣

∣

∣

∣

∣

∣

c0

. (17)

Evaluating (17) analytically, a purely mechanical process, leads to rather lengthy
(although for (15) still quite manageable) equations outside the scope of this
paper. A numerical evaluation is, however, perfectly possible, and we can then fit
a function to the numerical results; using the squared orthographic distance (14)
the output of these calculations is well approximated by a function

N ≈ 2

(

σ

ρ
R

)0.4

, (18)

while for the algebraic distance (15) a good approximation is

N ≈ 3.7

(

σ

ρ
R

)0.4

. (19)

This is very similar in structure to (13), but with an exponent of 0.4 rather than
0.5. We will see in Sec. 4 what this means for practical applications.

4 Numeric Examples

In Sec. 2 and 3 we have calculated the minimum number of edgels required in
order to compute a radius of curvature R with given relative accuracy σR/R,
compare (13), (18), and (19). It is now instructive to see what actual values for
s or N are required when dealing with real images. For this it is important to
realise that for any N > 3 and a curve with non-constant curvature, what we
really calculate is not the curvature at the particular point under consideration,
but some sort of average curvature. Assuming noise-free data, and as long as the
real curvature in the interval under consideration is a monotonic function of the
arc-length, we can at least guarantee that the curvature thus calculated would
be correct for some point inside the interval — although almost certainly not
for the point under consideration. This is called localisation uncertainty in [3].
However, as soon as the curvature over arc-length ceases to be a monotonic
function, arbitrary results are possible even in the case of noise-free data.

From the above it is immediately clear that the region of N points from which
curvature is calculated should not cross extrema of curvature (whose position we
only know after the fact); to keep the localisation error small it is also desirable
to keep N small enough so that curvature inside this interval doesn’t vary too
much. As a rule of thumb most authors would limit the arc under consideration
to somewhere between π/4 ≤ β ≤ π/2. This automatically defines a lower limit
on the curvature-radius which can be calculated, and this lower limit seems to
be what most authors are most interested in [1,3].

But there is also an upper limit on N dictated by the fact that the entire
object, usually containing several extrema of curvature, has to fit into a usually
PAL-sized (768 pxl×576 pxl) image, limiting the maximum usable section to well
below 100pxl— [3] cites values around 4 pxl–20pxl. This upper limit has in our
opinion been mostly ignored, and it is the aim of this paper to demonstrate that
very low curvature is at least as difficult to calculate as very high curvature.

For a numerical evaluation it is important to know with what subpixel-
precision we can expect to locate edges in real images. As cited in [7] a basic
implementation of the Canny algorithm [4] will typically produce edgels with a
standard derivation perpendicular to the edge from somewhere about σ ≈ 0.1 pxl
to σ ≈ 0.3 pxl depending on the actual CCD (3-chip RGB versus BW versus
Bayer RGB) and lens used as well as the contrast between regions. As most
affordable colour cameras use only one CCD with a Bayer-filter and often rather
cheap lenses, σ = 0.3 pxl is usually all we can hope for. Together with NTSC or,
at best, PAL sized images as they are still predominant in computer vision, we
are therefore hampered both by low image quality and small images.

Figure 2 shows how many edgels N(R) are needed to compute the curvature
(radius) with a relative accuracy of both ρ = σR/R = 3 % and ρ = 33 %,
using (18). It is worth remembering that the latter corresponds to a worst-case
error of about 3ρ ≈ 100 %, which means that not even the sign of curvature can
be calculated reliably! But even accepting such an error we see from Fig. 2 that
only for radii between 5 pxl ≤ R ≤ 400 pxl can we calculate the curvature if we
limit the arc to β < π/4 and N < 20 pxl. The much more realistic (though still

20

50

10

100

10 100 1000 10000

3% rel. Err.
33% rel. Err.

N=pi/4 R
N=pi/2 R

R [pxl]

N(R) [pxl]

Fig. 2. Number of edgels N(R, ρ, σ = 0.3 pxl) needed to calculate the radius of curva-
ture R with a relative error of less than ρ = 33% (dashed line) or ρ = 3% (solid line).
Inside the grayed out regions R can not even be determined with this accuracy if we
assume a maximum arc β = π/4 (π/2) and a maximum number of edgels N = 20 pxl
(50 pxl, 100 pxl)

big) relative error of ρ = 3 % can, with the same assumptions, only be reached
for 20 pxl ≤ R ≤ 30 pxl, which is essentially useless. But even allowing for arcs
up to β ≤ π/2 and N ≤ 100 pxl, we can still only calculate radii between approx.
8 pxl ≤ R ≤ 2000 pxl. And it is worth remembering that in an image with PAL
resolution of 768 pxl×576 pxl an arc of N = 100 pxl will almost certainly contain
an extremum of curvature even for only moderately complex objects, rendering
the result thus computed essentially worthless.

We can actually increase the location accuracy (i. e. the likelihood that the
curvature estimated belongs to a point near the one for which we estimated
it) by fitting a sufficiently complicated model to the curve; even just fitting a
general conic cross-section rather than a circle would improve localisation. It
should however be clear that the curves in Fig. 2 already constitute a best-case
estimate — curvature calculated from real, non-circular data will always be less
correct unless an exact model of the curve is known.

So what can be done to increase the relative accuracy of the radius of cur-
vature calculated, at least to such an extent that radii of the correct order of
magnitude can be calculated? Equations (13), (18), and (19) show us the way:
we can either decrease σ, or increase the resolution of the image, thus increasing
the number of points N on any given curve-segment, which would increase the
maximum radius of curvature.

Decreasing σ, i. e. increasing the accuracy with which edgels can be located,
unfortunately only offers limited room for improvements. Canny’s algorithm is

already quite good at this, and even algorithms which were specifically tuned
to improved location accuracy[8] promise little better than σ = 0.1 pxl. This
basically leaves higher resolution as the only way out, and thankfully modern
digital cameras offer just that. Using a 6 Mega-pixel camera (i. e. increasing the
resolution by a factor of approx. 3.7) means that only about 3.7−0.6 ≈ 45 % of
the same curve still needs to be visible when compared to PAL, as the number
of edgels on any given piece of curve increases, while at the same time their
variance decreases.

Finally, please note that since we used linear error propagation throughout
this paper, we can rely on the exact numerical values only for sufficiently small
g, while for larger values only qualitative statements are possible.

5 Conclusion

In this paper, we have shown that using locally operating methods the curvature
of both high-curvature as well as low-curvature regions can not be calculated
reliably from standard PAL-sized images even under optimal conditions and
extending the meaning of “locally operating” to rather large regions; only for
a possibly quite small range of medium-small curvatures is it at all possible to
calculate a meaningful result. Increasing the resolution of the image by a factor u
(linearly) will increase the maximum radius of curvature which can be calculated
reliably (by u0.6), but this does not eliminate the underlying problem.

As did [1,3], this paper only considered local algorithms for the calculation of
curvature. It is possible that more global methods (gray-level-based, spline-fit,
or scale-space based methods) could provide additional accuracy. However, this
has not been analysed.

References

1. Worring, M., Smeulders, A.W.M.: Digital curvature estimation. Comput Vision,
Graphics & Image Processing: Image Understand 58 (1993) 366–382

2. Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape
representation for planar curves. IEEE Trans Pattern Anal Mach Intell 14 (1992)
789–805

3. Kovalevsky, V.: Curvature in digital 2d images. International Journal of Pattern
Recognition and Artificial Intelligence 15 (2001) 1183–1200

4. Canny, J.F.: A computational approach to edge detection. IEEE Trans Pattern
Anal Mach Intell 8 (1986) 679–698

5. Kanatani, K.: Geometric information criterion for model selection. Int J Comput
Vision 26 (1998) 171–189

6. Pratt, V.: Direct least-squares fitting of algebraic surfaces. Computer Graphics 21

(1987) 145–152
7. Utcke, S.: Grouping based on projective geometry constraints and uncertainty. In:

Proc Int Conf Comput Vision, Bombay, IEEE CS, Narosa Publishing House, New
Delhi (1998) 739–746

8. Overington, I.: Computer Vision: A unified, biologically-inspired approach. Elsevier,
Amsterdam (1992)

