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Abstract. The Meta Principle, as it is considered in this paper, re-
lays on the observation that some knowledge engineering problems
can be solved by introducing several layers of descriptions. In this pa-
per, a knowledge-based implementation of such layers is presented,
where on each layer a knowledge-based system consisting, as usual,
of a knowledge model and separated inference methods is used for
reasoning about the layer below it. Each layer represents and infers
about knowledge located on a layer below it.

1 Introduction

Typically, knowledge engineering has the goal to create a model of
knowledge of a certain domain like car periphery supervision [33],
drive systems [29], or scene interpretation [16]. For knowledge-based
tasks, like constructing or diagnosing a specific car periphery sys-
tem, a strict separation is made into domain model which covers
the knowledge of a certain domain and a system model which cov-
ers the knowledge of a concrete system or product of the domain.
The domain model and the system models are represented with a
knowledge-modeling language which again is interpreted, because
of a defined semantic, through a knowledge-based system. Examples
are a terminology box (TBox) as a domain model representing e.g.
knowledge about an animal domain; and an assertional box (ABox)
as a system model representing e.g. a specific animal. The TBox and
ABox are represented with a certain Description Logic [5] which is
again interpreted through a Description Logic reasoner like PELLET
or RACER. In this paper, we use configuration systems (configura-
tors) as knowledge-based systems. In such systems, a domain model
(also called configuration model) is used for constructing a system
model (also called configuration). Configurators typically combine
a broad range of inference mechanisms like constraint solving, rule-
based inference, taxonomical reasoning, and search mechanisms.

The domain model and the system model constitute two layers:
In the domain model all knowledge about possible systems is ex-
pressed, in the system model all knowledge about one real system
is expressed. Often, these two layers are sufficient for expressing the
knowledge needed for a certain knowledge-based task. However, in
some domains more layers may be needed for adequately represent-
ing the domain knowledge.

We take the biological classification as an example for multiple
layers. In [32], a detailed discussion of alternative modeling for bi-
ological classification is supplied. Figure 1 presents an extract of
the traditional biological classification of organisms established by
Carolus Linnaeus. Each biological rank joins organisms according to
shared physical and genetic characteristics. We conceive of a rank as
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knowledge about the next layer. The main ranks are kingdom, phy-
lum, class, order, genus, species, and breed, which again are divided
into categories. Each category unifies organisms with certain char-
acteristics. For instance, the Mammal class includes organisms with
glands only, thus a downward specialisation from Mammal to its sub-
categories is depicted in Figure 1. For clarity reasons, only extracts of
ranks and categories are given, for example the rank of kingdom con-
tains more than the category animal, among others plants, bacteria,
and fungi. The ranks are representing an additional layer (BioC1™)
above the domain model of the biological classification. The cat-
egories of the ranks form the domain model layer (BioC1”) and
each of them is an instance of the correspondent rank. The system
model layer (BioC1®) is covering specific individuals (also called
domain objects), e.g. Tux the penguin. By the given classification, the
need for multiple layers becomes directly evident: It is understand-
able that a King Penguin is an instance of Breed. But it would
be improper to denote Tux as a Breed, which would hold if King
Penguin would be a specialization of Breed.
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Figure 1. Biological Classification represented with several layers. Figure
inspired by [4].

Because each layer specifies knowledge about knowledge in the
layer below it, we also speak of a metalayer approach or of meta-
knowledge because as [28] pointed out: “Metaknowledge is knowl-
edge about knowledge, rather than knowledge from a specific domain
such as mathematics, medicine or geology.” From a knowledge engi-
neering viewpoint, metaknowledge is being created at the same time




as knowledge [27]. For supporting metaknowledge, representation
facilities are needed that allow the adequate representation of these
types of knowledge, in here called metaknowledge models. A strict
separation of these knowledge types from each other and the encap-
sulation of metalayer facilities are further requirements for a meta-
layer approach [6]. Furthermore, for facilitating the use and mainte-
nance of the layers, if possible, each layer should be realized with the
same modeling facilities. For being able to reason about the models
on a metalayer and not only to specify them, a declarative language
with a logic-based semantic should be used for implementing each
layer. For allowing domain specific models on the layers, each layer
should be extensible.

In this paper, we propose a Reasoning-Driven Architecture, RDA
(rooted at the Model-Driven Architecture, MDA, see [23] and Sec-
tion 2). The RDA consists of an arbitrary number of layers. Each
layer consists of a model and a knowledge-based system. Both rep-
resent the facilities used for reason about the next lower layer.

For this task, we consider the Component Description Language
(CDL) as a knowledge-modeling language which was developed for
representing configuration knowledge [15]. CDL combines ontology
reasoning similar to the Web Ontology Language (OWL) [2] with
constraint reasoning [30], and rules [13] (see Section 3). Because
knowledge-based configuration can be seen as model construction
[8, 16, 15], these technology provides a natural starting point for
implementing the modeling layers of RDA. Typically, a configura-
tion model (located at the domain model layer) generically represents
concrete configurations which themselves are located on the system
model layer. The crucial point of RDA is to provide each layer with
a model that represents knowledge about the next lower layer (see
Section 4) and uses a knowledge-based configuration system to infer
about this layer (see Section 5). By introducing a configuration sys-
tem on each layer of the RDA, we enable reasoning tasks like con-
sistency check, model construction and enhancement on each layer,
i.e. also on metalayers.

An application of such an RDA is naturally to support the knowl-
edge acquisition process needed for knowledge-based systems. In
a first phase of a knowledge acquisition process, the typically tacit
knowledge about a domain is extracted by applying knowledge elic-
itation methods and high interaction between a knowledge engineer
and the domain expert (knowledge elicitation phase). A model sketch
is the result, which in turn is formalized during the domain repre-
sentation phase. During this phase a domain model is created. The
domain model has to be expressed with the facilities of a knowledge-
modeling language. The RDA can e.g. be used to check such knowl-
edge models for being consistent with the knowledge-modeling lan-

guage.

2 Reasoning-Driven Architecture

For defining the Reasoning-Driven Architecture (RDA), we borrow
the notion of layers from the Model-Driven Architecture [24, 22, 12,
25]. In MDA, the main task is to specify modeling facilities that
can be used for defining models (metamodeling), see for example
[25]: “A metamodel is a model that defines the language for express-
ing a model”. Or compiled to terms used here: “A metaknowledge
model (called Meta-CDL-KB, see below and Section 3) is a knowl-
edge model that defines CDL, which in turn is used for expressing a
domain model”. MDA provides four layers for modeling (see Figure
2, MDA view): M 2 is the language layer represented by a metamodel,
which is realized by (or is a (linguistic, s.b.) instance-of) a metameta-
model located on the M3 layer. The language is used for creating a

model of a specific system on the M1 layer. The system model rep-
resents a system which is located in the reality (M0 layer; not shown
in the figure for brevity) [9]. Please note, that each layer contains el-
ements which are instances of classes of the layer above. Typically a
specific implementation in a tool ensures that a system model on M1
conforms to a metamodel on /2 and a metamodel on M 2 conforms
to a metametamodel on M 3.

For clarifying our approach, we will use R1, R2, R3 for RDA
which roughly correspond to M1, M2, M3 in MDA, respectively.
Ri stands for “Reasoning Layer i”. We separate R1 in several reason-
ing layers, because for knowledge-based systems one single model
on this layer is not sufficient. This is due to the above mentioned sep-
aration of domain model and system model. R1 consists of a domain
model specified with concepts and constraints of CDL (denoted by
R1¢) and knowledge instances (denoted R17) representing the sys-
tem model. Furthermore, corresponding reasoning facilities of CDL
allow to reason about entities on layer R1 (see Figure 2, CDL view).

The RDA itself consists of multiple copies of the CDL view for
representing and reason about distinct types of metaknowledge on
different layers. These layers are denoted with R1M? (z > 0), R1P s
R15 for an arbitrary number of metamodel layers, one domain model
layer, and one system model layer, respectively. Because each of
these layers are realized with same knowledge-based facilities, i.e.
CDL concepts and instances, we do not extend CDL with the notion
of a metaclass, which has instances that act as classes and can again
have instances (e.g. like OWL Full [2] or like MDA/UML imple-
mentations with stereotypes [4]). Thus, the layers of R1 are not in
one system but are clearly separated into several systems, here called
Knowledge Reflection Servers. Each server is realized with the typi-
cal concept/instance scheme. Hence, each server can be realized with
a typical knowledge-based system like Description Logic systems,
rule-based systems, or as in our case a configuration system based
on CDL. Through a mapping between those servers, concepts on one
layer are identified with instances of the next higher layer. This map-
ping is a one-to-one mapping and based on a metaknowledge model
(see Figure 2, RDA view and Section 4).

Following [4], we distinguish between a linguistic and an ontolog-
ical instance-of relation. However, we explicitly name the internal
implementation instance-of relation as such, which is a simple UML
type-instance relation in [4]. The implementation instance-of relation
is provided through the instantiation protocol of the underlying im-
plementation language Common Lisp and its Common Lisp Object
System (CLOS) [20, 21] (see Figure 2, classes are instances of the
predefined metaclass standard-class). The linguistic instance-of
relation is originated in the notion of classes and objects known from
programming languages. In case of CDL, this relation is realized
with the macroexpansion facilities of Common Lisp. Beside oth-
ers, Figure 2 depicts concept definitions (define-concept) of CDL
and their linguistic instance-of expansion to defclass of CLOS.
The ontological instance-of relation represents relationships between
knowledge elements, in CDL between concepts and instances (see
above).

As we will see in Section 3, the main feature of CDL is given by
the use of its inference techniques like constraint propagation. By
representing the knowledge of a domain with modeling facilities of
CDL these inference techniques can be applied for model construc-
tion. This representation is basically a generic description of domain
objects of a domain at hand, i.e. CDL is used for specifying a do-
main model. For the representation of concrete domain objects, this
description is instantiated and a system model is constructed. The
created instances are related to each other through relations. Further-
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Comparing MDA, CDL, and RDA. The MDA view is refined when applying CDL with its domain and system model on R1 (R1¢c, R1y). The

Figure 2.

CDL view is three times copied for using RDA for the biological classification domain.

, the configuration model is

the language specification. As a result

more, instances can be checked for concept membership.

conform to the configuration language. However, the creation of

A configuration system supports mainly three tasks (see Figure 2,

CDL view):

the configuration model is done manually during knowledge ac-

quisition.
2. On the basis of the configuration model, the configuration system

1. It enables the expression of a configuration model that is con-

supports the creation of configurations (system models) that are

sistent with the configuration language, which the system imple-
ments. For this task, the configuration system performs consis-

consistent with the configuration model. For this task, the system

interprets the logical expressions of the configuration model and

tency checks of given configuration models (or parts of it) with



creates configurations according to these definitions. As a result,
the configurations are conform to the configuration model.

3. The configuration model can be defined in textual form or sup-
ported by a graphical user interface that enables the creation of
concepts and constraints. Thus, the configuration system supplies
a user interface for expressing the configuration model and for
guiding the configuration process.

Thus, a configuration system supplies means for supporting the
step from a domain model (R1Z2) to a system model (R17) (see Fig-
ure 2, CDL view) and it can check configuration models represented
with the configuration language of the system for being compliant
with the language. However, the development of the configuration
model is not supported with general inference techniques but is sys-
tem dependent.

In RDA, this instantiation facility is used for supporting the step
from the configuration language to the domain model. By apply-
ing the configuration system to a domain model that contains every
model of a language, i.e. by applying it to a metaknowledge model
(the Meta-CDL-KB), the configuration of a domain model for any
specific domain is supported (Figure 2, RDA view, R1Y). This is
achieved because of the general applicability of the language con-
structs of CDL, which are based on logic (see Section 3). Further-
more, other advantages of configuration systems, like a declarative
representation of the configuration model, or the use of inference
techniques can be applied to the Meta-CDL-KB. Thus, the construc-
tion of metamodel-compliant domain models is supported with this
approach. However, the question arises: How can CDL be repre-
sented with CDL? (see Section 4.1).

3 Comprehensive Knowledge Representation

This section is organized as follows. First a brief overview of the
knowledge representation language CDL (Component Description
Language) [15] will be given in Section 3.1. Section 3.2 presents
parts of the metamodel of CDL which have to be modeled on R1*.
CDL will be used in the following sections to realize the envisioned
metalevels through knowledge-based implementations.

3.1 A Sketch of CDL

The CDL mainly consists of two modeling facilities: a concept hier-
archy and constraints. Models consisting of concepts and constraints
belong to R17, for the biological classification domain this layer is
named BioClP (see Figure 1).

The Concept Hierarchy contains concepts, which represent do-
main objects, a specialization hierarchy (based on the is-a relation),
and structural relations. Concepts gather all properties, a certain set
of domain objects has, under a unique name. A specialization rela-
tion relates a super-concept to a sub-concept, where the later inherits
the properties of the first. The structural relation is given between a
concept c and several other concepts 7, which are called relative con-
cepts. With structural relations a compositional hierarchy based on
the has—parts relation can be modeled as well as other structural re-
lationships. For example, the structural relation has-differences
connects a species with its differentiating characteristics which is not
a decomposition, to be precise. Parameters specify the attributes of
a domain object with value intervals, values sets (enumerations), or
constant values. Parameters and structural relations of a concept are
also referred to as properties of the concept. Instances are instan-
tiations of concepts and represent concrete domain objects. When

instantiated, the properties of an instance are initialized by the values
or value ranges specified in the concept. Figure 3 gives examples for
concept definitions. The structural relation has-differences is de-
fined, which relates one biological class with several characteristics
and one characteristic with several classes. The concept for a biolog-
ical class (Mammal) is defined with such a relation including number
restricted structural relations. The right side of the operator :> con-
sists of the super-concept of all relative concepts and the minimal
and maximal number of those concepts. The left side restricts the to-
tal number of instances in the relation. The characteristics Hair and
Fur are optional and only one of them can be used for describing a
mammal, because exactly 6 characteristics are needed for specifying
a mammal. Except of the metaconcept specification typical ontolog-
ical definitions are given.

Constraints summarize conceptual constraints, constraint rela-
tions, and constraint instances. Conceptual constraints consists of
a condition and an action part. The condition part specifies a struc-
tural situation of instantiated concepts. If this structural situation is
fulfilled by some instances (i.e. the instances match the structural sit-
uation), the constraint relations that are formulated in the action part
are instantiated to constraint instances.

Constraint relations can represent restrictions between properties
like all-different-p or ensure-relation. The constraint re-
lation ensure-relation establishes a relation of a given name
between two instances. It is used for constructing structural rela-
tions and thus provides main facilities for creating resulting con-
structions. Before establishing a relation between given instances,
ensure-relation checks whether the relation already exists. The
constraint relation all-different-p ensures that all objects in a
given set are of a different type. Please note, that such kind of con-
straints extend typical constraint technology, which is based on prim-
itive datatypes like numbers or strings [19].

Constraints are multi-directional, i.e. they are propagated regard-
less of the order in which constraint variables are instantiated or
changed. At any given time, the remaining possible values of a con-
straint variable are given as structural relations, intervals, value sets
or constant values.

Constraint relations are used in the action part of conceptual con-
straints. Figure 6(c) gives also an example of such a conceptual con-
straint in CDL, however, already on a metalayer. It shows, how in-
stances, which are selected through the structural situation, can be
checked for being of a different type. When this check is fulfilled
this constraint would be consistent otherwise inconsistent.

A configuration system performs knowledge processing on the ba-
sis of logical mappings like they are given in [31] for a predeces-
sor of CDL. Thus, the configuration system applies inference tech-
niques such as taxonomical reasoning, value-related computations
like interval arithmetic [18], establishing structural relations, and
constraint propagation. The structural relation is the main mecha-
nism that causes instantiations and thus leads to an extended config-
uration: If such a relation is given between a concept ¢ and several
relative concepts r, depending on what exists first as instances in the
configuration (c or one or more of the relative concepts ), instances
for the other part of the relation may be created and the configuration
increases. This capability together with the fact that descriptions, i.e.
models, of systems are constructed lead to the use of configuration
systems for constructing models. For a detailed description of CDL
and its use in a configuration system, we refer to [15].



(define-relation :name has-differences a)
sinverse differentiate
:domain Class-m
:range Characteristics
mapping m-n)

(define-concept :name Animal
:specialization-of domain-root
-metaconcept Kingdom-m)

(define-concept :name Chordate
:specialization-of Animal
-metaconcept Phylum-m)

(define-concept :name Mammal
:specialization-of Chordate
-has-differences

((:type Characteristic :min 6 :max 6)
>
(:type Glands :min 1 :max 1)
(:type Hair :min 0 :max 1)
(:type Fur :min 0 :max 1)
(-type MiddleEarBones :min 3 :max 3)
(:type WarmBlooded :min 1 :max 1))
:metaconcept Class-m)

(define-concept :name Characteristic b)
:specialization-of domain-root
:metaconcept Characteristic-m)

(define-concept :name Glands
:specialization-of Characteristic
:metaconcept Characteristic-m)

(define-concept :name Hair
:specialization-of Characteristic
:metaconcept Characteristic-m)

(define-concept :name Fur
:specialization-of Characteristic
:metaconcept Characteristic-m)

(define-concept :name MiddleEarBones
:specialization-of Characteristic
:metaconcept Characteristic-m)

(define-concept :name WarmBlooded
:specialization-of Characteristic
:metaconcept Characteristic-m)

Figure 3. Example of CDL concept definitions from the domain of biological classification.

3.2 Parts of the Metamodel of CDL

Languages are typically defined by describing their abstract syntax,
their concrete syntax, and consistency rules. For describing CDL’s
abstract syntax, we introduce three metalevel facilities: a knowledge
element, a taxonomical relation between knowledge elements, and a
compositional relation between knowledge elements. These facilities
are not to be mixed up with the above mentioned CDL facilities: con-
cepts, specialization relations, and structural relations. The abstract
syntax for concepts and conceptual constraints of CDL is given in
Figure 5. A concrete syntax for CDL is given in Figure 3 for exam-
ple.

A CDL concept is represented with a knowledge element of name
concept (see Figure 4 (a)), and a CDL structural relation is repre-
sented with the knowledge element relation-descriptor. The fact
that CDL concepts can have several structural relations is represented
with a compositional relation with name has-relations. Parameters
are represented similarly.

Structural relations are defined in a further part of the metamodel
(see Figure 4(b)). The fact that a concept is related by a structural re-
lation of other concepts (the relative concepts) is represented with
three knowledge elements and three compositional relations in a
cyclic manner.

Figure 4(c) provides the metamodel for a conceptual constraint
with its structural situation and action part. A structural situation con-
sists of a concept expression which in turn consists of a variable and
a conditioned concept. The action part consists of a number of con-
straint relations that should hold if the structural situation is fulfilled.

Several consistency rules define the meaning of the syntactic con-
structs. For example, one rule for the structural relation defines that
the types of the relative concepts of a structural relation have to
be sub-concepts of the concept on the left side of the operator :>
(rule-5). Additionally, consistency rules are given that check CDL
instances, e.g. one rule defines when instances match a conceptual
constraint (rule-6). All rules are given in [15].

4 Metamodels

In this section, the metamodels needed for R1™ and R1M™ (Sec-
tion 4.1 and [14]) and their extensions for modeling the biological
classification domain (Section 4.2) are presented.

4.1 CDL in CDL

As discussed in Section 2, R1M and R1™M™ will be realized with
CDL. Thus, the goal is to define the metamodel of CDL (as sketched
in Section 3.2) using CDL itself. In fact, CDL provides all knowl-
edge representation facilities needed for this purpose. The result of
this is a metaconfiguration model called Meta-CDL knowledge base
(Meta-CDL-KB). In Section 3.2, parts of the metamodel of CDL are
defined using three modeling facilities, namely knowledge elements,
taxonomical relation, and compositional relation. These modeling
facilities are mapped to the CDL constructs concept, specialization
relation, and structural relation respectively. Figure 5 shows how
the knowledge elements shown in Figure 4 (a) can be represented
with the meta-concepts concept-m, relations-descriptor-m, and
parameter-m. The consistency rules of CDL have to be represented
also. This is achieved by defining appropriate constraints. In Figure
5, a conceptual constraint is represented, which checks the types of a
structural relation.

Furthermore, instances can be represented on the metalevel by in-
cluding the metaconcept instance-m. Having instances available,
conceptual constraints and their matching instances can be repre-
sented (see Figure 5). The fact that instances fulfill a certain con-
ceptual constraint is represented through establishing appropriate re-
lations using the constraint relation ensure-relation. Please note
that self references can be described also, e.g. a concept-m is related
to itself via the has-superconcept-m relation (compare the loop in
Figure 4 with Figure 5).

Other approaches also use metalevels for defining their language,
e.g. UML [34, 24, 26, 25]. In contrast to these approaches, we use

2 For a complete mapping of the CDL consistency rules to conceptual con-
straints see [15].



language construct

a)

relation descriptor o —

Legend:

b) thas-relations

relation descriptor
name

e ——
'
'
'

has-concept !

structural specificator
minimum

;
operator thas-spec ! maximum

conceptual constraint
name

| structural situation |A>| concept expression |

. 1.n .
| action part |—>| constraint call

knowledge element 1.1

compositional relation with
name and defaults

1.1
>

taxonomical relation

| structural variable | | conditioned concept |

Figure 4. Metamodel for a) a concept, b) a structural relation, and c) a conceptual constraint.

(define-concept :name concept-m
:specialization-of named-domain-object-m
:concept-of-dom-m (:type domain-m)
:superconcept-of-m

(:type concept-m :min O :max inf)

cin-some-m (:type structural-spec-m
:min 0 zmax inf)

-has-superconcept-m

(:type concept-m :min O mmax 1)

thas-relations-m

(:type relation-descriptor-m min O :max inf)

-has-parameters-m

(:type parameter-m :min 0 :max inf)

-has-instances-m

(:type instance-m :min 0 :max inf))

(define-concept :name relation-descriptor-m
:specialization-of named-domain-object-m
:relation-of-m (:type concept-m)
thas-left-side-m (:type structural-spec-m

:min l:max 1)
thas-right-side-m (:type structural-spec-m
min O:max inf)

(:type relation-definition-m :min 1:max 1))

(define-concept :name structural-spec-m
:specialization-of domain-object-descriptor-m
:parameters ( (lower-bound [0 inf])

(upper-bound [0 inf]))
cin-relation-left-m
(:type relation-descriptor-m)
sin-relation-right-m
(:type relation-descriptor-m)
:some-of (:type concept-m))

(define-concept :name instance-m
:specialization-of named-domain-object-m
sinstance-of-dom-m (:type domain-m)
sinstance-of-m (:type concept-m)
:matching-instance-of-m

(:type conceptual-constraint-m)
thas-relations-m

(:type relation-descriptor-m tmin 0 max inf)
shas-parameters-m

(:type parameter-m :mmin 0 :max inf))

(define-concept :name conceptual-constraint-m
:specialization-of named-domain-object-m
:structural-situation

(:type concept-expression-m :min 1 :max inf)
sconstraint-calls

(:type constraint-call-m :min 1 :max inf)
:matching-instances

(:type instance-m :min 0 :max inf))

(define-conceptual-constraint :name consistency-rule-5
:structural-situation
((?c :type concept-m)
rd stype relation-descriptor-m
:relation-of-m ?c)
(?svt :-type structural-spec-m
cin-relation-left-m ?rd)
Il :type structural-spec-m
sin-relation-right-m ?rd))
:constraint-calls
((all-isp ?stdi ?svt)))

(?stdi

(define-conceptual-constraint

:name instance-consistency-rule-6
:structural-situation

((?cc :type conceptual-constraint-m)

(?i :type instance-m

:self (:condition
(instance-matches-cc-p *it* ?cc))))

:constraint-calls

((ensure-relation ?i matching-instance-of ?cc)

(ensure-relation ?cc matching-instances ?i)))

Figure 5. Formalizing the knowledge elements shown in Figure 4(a) and some consistency rules with CDL concepts.




a knowledge representation language with a logic-based semantic on
the metalevel, i.e. CDL instead of UML derivates like EMOF [24].
Doing so, inference techniques provided by the knowledge represen-
tation language can be used, e.g. constraint propagation. This enables
the realisation of the Knowledge Reflection Server as introduced in
the next section.

4.2 Extension of Meta-CDL-KB for Biological
Classification

Because the metalayers are also realized with a knowledge-modeling
language (here CDL) they can be extended by simply adding concept
and constraint definitions to the metaknowledge base. Thus, the mod-
eling facilities provided by such languages can not only be used for
specifying the languages itself (see Section 4.1) but also for domain-
specific extensions on the metalayers. In Figure 6 the extensions of
R1MM (3) and R1™ (b and c) for the biological classification do-
main are sketched, yielding to BioC1™* and BioCl* respectively.
BioCIMM consists simply of one concept which specifies a biolog-
ical rank (Figure 6 (a)). On BioClM , beside the concept definitions
that define the metaconcepts used in BioCl” (see Figure 3 and 1),
the conceptual constraint Specific-Characteristics is de-
fined on the metalayer. This conceptual constraint checks every com-
bination of biological classes for having specific characteristics by
comparing their differences models on BioCIP . Thus, with this con-
ceptual constraint on BioCI™ it is specified that a biological class
should have a unique combination of characteristics. With the con-
straint, also classes of different phylums are tested (e.g. chordate and
echinoderms). On BioC1P, these kinds of constraints are hard to
define because they are typlically not related to one specific con-
cept but to several. Furthermore, such constraints are usually part
of some modeling guidelines, e.g. for biological classification such
documents state that the definitions of biological classes should be
unique. Thus, by the approach presented here a modeling of model-
ing guidelines on the metalayer is achieved.

5 Knowledge Reflection Servers

Each layer described in Section 2 is realized through a Knowledge
Reflection Server (KRS). Every server monitors the layer below it
and consists of the appropriate model and a configuration system
which interprets the model. This has the advantage of using declar-
ative models at each metalayer as well as the possibility to apply
inference techniques like e.g. constraint programming at the met-
alayer. Each server supplies knowledge-based services that can be
called by a server below it for obtaining a judgement of its own used
models. For example, a KRS monitors the activities during the con-
struction of the domain model BioC1”, i.e. during the domain rep-
resentation phase. If e.g. a concept c of the domain is defined with
define-concept on R1P the KRS on R1Y is informed (see Fig-
ure 7) for checking its consistency. Furthermore, a KRS

e supplies services like check-knowledge-base, add-conceptual-
constraint,

e creates appropriate instances of metaconcepts of the Meta-CDL-
KB, e.g. concept-m or conceptual-constraint-m,

e uses constraint propagation for checking the consistency rules,

e applies the typical model configuration process for completing the
configuration, e.g. adds mandatory parts,

e checks consistency of created domain specific concepts, e.g. of
BioCl”,

e can supply new concepts for the layer below, which may be com-
puted by machine learning methods,

e monitors the reasoning process, e.g. for evaluating reasoning per-
formance, and thus, makes reasoning explicit,

e can create and use explanations,

e may solve conflicts that occur during the domain representation
phase,

e may apply domain-specific metaknowledge, e.g. “ensuring spe-
cific differentiating characteristics of biological classes” with
metacontraints as shown in Figure 6.

We implemented parts of the KRS services based on the configu-
ration system KONWERK [10], but have not yet finished the exten-
sive evaluation. The Meta-CDL-KB and its extensions were used for
checking versions of knowledge bases for the biological classifica-
tion domain. Thereby, a mapping of concept definitions of BioCl”
to instance descriptions of BioCl™ was realized, i.e. concept defi-
nitions on one layer are instance definitions on the next upper layer.
Furthermore, the concrete syntax for defining concepts in BioCl”
was extended, thus, metaproperties can be specified in BioCl”.
Both implementation issues as well as interfaces for the server func-
tionality could be realized straight forward because of the flexibility
of the underlying implementation language Common Lisp. However,
the reasoning facilities provided by KONWERK could directly be
used for scrutinizing the layers.

The validation of this approach was shown with the help of the
following three scenarios, which also illustrate the use of the KRS:

o First, metaknowledge modeling can be adequately enabled, to this
no workarounds with specialisations, like in [32] are needed.

e Checking domain dependent constraints: In the event of the intro-
duction of a new biological class in BioCl”, the KRS advises
according to the specific characteristics of the constraint (e.g. see
Figure 6 (c)) on BioCI™ whether it is a biological class or not.

e Checking domain independent consistency rules: Nonrelevant to
the kind of domain the domain independent rules, like the num-
ber restrictions (see Figure 5) will be checked at all times. For
example, when a new kind of mammal will be introduced the de-
fined restrictions, like the number of middle ear bones has to be
conform.

6 Discussion and Related Work

Main properties of the Reasoning-Driven Architecture realized with
the Knowledge Reflection Servers (KRS) as described in the previous
sections are:

o the introduction of a model on one layer that represents the knowl-
edge facilities used on the layer below it (i.e. metaknowledge
models).

e the use of existing knowledge-based systems with their reason-
ing facilities on each layer, especially on metalayers. This enables
reflection about knowledge.

e the mapping of concepts of one layer to instances of the next
higher layer. This approach has the potential of using more
tractable instance related inference methods instead of concept
reasoning.

e the support of declarative knowledge modeling on several meta-
layers. This enables the modeling of knowledge and metaknowl-
edge at the same time. Metaknolwledge is typically specified in
modeling guidelines. Thus, the described approach enables the
modeling of modeling guidelines.



(define-concept :name Kingdom-m
:specialization-of concept-m
:metaconcept Biological-Rank-mm)

(define-concept :name Phylum-m
:specialization-of Kingdom-m
:metaconcept Biological-Rank-mm)

(define-concept :name Class-m
:specialization-of Phylum-m
thas-relations-m
(:type Difference-descriptor-m :min 1 :max 1)
:metaconcept Biological-Rank-mm)

(define-concept :name Difference-descriptor-m b)
:specialization-of relation-descriptor-m
:relation-of-m (:type Class-m)
shas-left-side-m

(:type Characteristic-some-m :min l:max 1)
shas-right-side-m
(:type Characteristic-some-m :min O:max inf))

(define-concept :name Characteristic-some-m
:specialization-of some-m
sin-relation-left-m

(:type Difference-descriptor-m)
sin-relation-right-m

(:type Difference-descriptor-m)
:some-of (:type Characteristic-m))

(define-concept :name Characteristic-m
:specialization-of concept-m
shas-relations-m
(:type Difference-descriptor-m :min 1 :max 1)
:metaconcept Biological-Rank-mm)

(define-conceptual-constraint ©)
:name Specific-Characteristics
:structural-situation
((?cl :name Class-m)

(?c2 :name Class-m
:self #"(not-eq *it* ?cl))
(?r1l :name Difference-descriptor-m
:relation-of-m ?cl)
(?r2 :name Difference-descriptor-m
:relation-of-m ?c2)
(?d1 :all :name Characteristic-some-m
sin-relation-right-m ?rl)
(?d2 :all :name Characteristic-some-m
sin-relation-right-m ?r2)
taction-part
((all-different 2d1 ?d2)))

(define-concept :name Biological-Rank-mm a)
:specialization-of concept-m)

Figure 6. Extending Meta-CDL-KB with concepts and conceptual constraints for the domain of biological classification, i.e. parts of BioClM .
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Figure 7. Monitoring the construction of metamodels and domain models through Knowledge Reflection Servers realized with configuration systems. A

server using BioClM scrutinizes BioClP and a server using BioC

The use of reasoning methods in RDA is achieved by replacing the
Meta Object Facility (MOF) of MDA [23], which is based on UML,
with CDL. Other knowledge-representation languages like the Web
Ontology Language (OWL) [2] could also be considered for being
used on the layers. However, CDL is quite expressive, e.g. also con-
straints can be expressed on each layer. For realizing the KRS, even

MM serutinizes BioClM .

more important for us was the possibility to add server technologies
to the knowledge-representation language CDL. However, by replac-
ing the Meta-CDL-KB with a metamodel for OWL (e.g. the Ontol-
ogy Definition Metamodel (ODM) [26]) one could use RDA for scru-
tinizing the construction of domain models written in OWL. How-
ever, with the Meta-CDL-KB a knowledge-based implementation of



a metamodel is provided and was used from a knowledge-based sys-
tem (here a configurator). [3] and [11] present also approaches that
include semantics on the metalayer, similar as the Meta-CDL-KB
metamodel does. However, these approaches do not emphasise the
use of reasoning methods on each layer as well as the capability to
define domain-specific extensions on the metalayer. Furthermore, the
RDA presented in this paper allows for an arbitrary number of met-
alayers. By introducing a configurator which allows the definition of
procedural knowledge for controling the used reasoning techniques,
in our approach the realization of metastrategies on the metalayers
can be considered (see also [17]). (See Section 2 for further compar-
ison to MDA and OWL.)

The creation of a metamodel for CDL with the aid of CDL has its
tradition in self-referencing approaches like Lisp-in-Lisp [7] or the
metaobject protocol, which implements CLOS (the Common Lisp
Object System) with CLOS [21]. Such approaches demonstrated
the use of the respective language and provide reflection mecha-
nisms. With our approach such reflection mechanisms are extended
from object-oriented reflection (e.g. about introspection of methods)
to knowledge-based reflection (e.g. about used concepts and con-
straints for modeling a domain). Thus, our approach provides reflec-
tion about knowledge and a way to self-awareness of agents.

A Knowledge Reflection Server is basically an implementation of
a configuration tool on the basis of the Meta-CDL-KB, i.e. of a con-
figuration model. A typical configuration tool is implemented with
a programming language and an object model implemented with it.
During this implementation one has to ensure correct behavior of
model construction and the inference techniques. By using CDL,
this behavior (e.g. the consistency rules) is declaratively modeled,
not procedurally implemented. The bases for this declarative real-
ization are of course the procedural implementation of the inference
techniques, so to speak, as a bootstrapping process. However, our ap-
proach gives indications how to open up the implementation of con-
figuration systems or other knowledge-based systems for allowing
domain-specific extensions and extensions to the inference methods
and the used knowledge-modeling language.

The approach of the Metacognitive Loop presented in [1] con-
siders the use of metalevels for improving learning capabilities and
human-computer dialogs. Similar to our approach, it points out the
need for enhancing agents with capabilities to reason about their cog-
nitive capabilities for gaining self-awareness and a basis for decisions
about what, when, and how to learn. However, our approach stems
more from the ontology and technical use point of view and supports
the idea of using metalevels from that side.

7 Conclusion

This paper presents a technology for using knowledge-based sys-
tems on diverse metalayers. Main ingredients for this task are mod-
els about knowledge (metamodels). Through the use of knowledge-
based systems as they are, a Reasoning-Driven Architecture is pro-
vided. It enables reasoning facilities on each metalayer, opposed
to the Model-Driven Architecture which focusses on transforma-
tions. The Reasoning-Driven Architecture is realized through a hier-
archy of Knowledge Reflection Servers based on configuration sys-
tems. Future work will include meta strategies for conducting rea-
soning methods on the metalayers, a complete implementation of the
servers, and industrial experiments in the field of knowledge engi-
neering.
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