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Abstract. The reliability and accuracy of point-based image registration strongly depends
on the selection of suitable landmarks and on the precision of localizing theses landmarks in
images. In this contribution, we consider the problem of landmark extraction for the purpose
of aerial image registration. We suggest to use a specific type of circular landmarks and
introduce a model-based approach for localizing these features with high subpixel precision.
The approach has been tested on synthetic as well as on real image data.

1 Introduction

Accurate registration of aerial images is essential to any kind of their photogrammetric exploita-
tion. Knowing the exact positions of control points on the ground and in the image enables to
reconstruct the imaging geometry. Often, ground control points are premarked to aid in their
detection and localization in the image (artificial landmarks). If the photo mission has not been
prepared this way, selecting suitable points in large-scale photographs (e.g. 1:5000) is difficult:
features like road-intersections in general cannot be used, since they do not bear a unique loca-
tion in highly resolved images; corners of buildings are usually not visible due to occlusion; roof
structures are displaced due to elevation and must be excluded when heights are unknown.

In this contribution, we suggest that manhole covers placed in the middle of streets are well
suited features which can serve as landmarks for registration of urban scenes. The advantages are
threefold: a great number of manhole covers can be found in urban environments; they are well
distributed and located at the ground plane; geographic data is available; and, as will be shown
below, they can be automatically detected and localized with high precision in aerial images.

Our work is based on a parametric model which explicitly decribes the systematic intensity
variations of depicted manhole covers. By fitting this model directly to the image intensities the
landmarks can be localized to high subpixel precision. Also, it is possible to verify the fitted
model, either on the basis of the estimated parameters or by exploiting the approximation error.
Moreover, the detection of the landmarks can greatly be supported by a prototype model which
in our case is determined using a simple learning scheme.

Previous work on the extraction of circular landmarks has been concentrated on indirect
approaches, e.g. fitting circles to grey-value edges. Other approaches do not exploit an explicit
model (e.g. [2]). Fitting approaches comparable to ours have been developed for extracting low-
level image features, namely edges [3] and corners [4]. However, the intensity models of these
approaches only describe parts of a depicted object, while our model represents the systematic
intensity variations of the entire object.

2 Analytic description of circular landmarks

We frequently find a specific type of manhole covers which consists of a bright disk surrounded
by a dark concentric ring (see Fig. 1, left). Since aerial images normally are recorded parallel to
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the ground plane, images of these objects are circular. The idealized image intensities of a cross-
section through a manhole cover of the considered type form a symmetric step function. Also
considering that the intensities are blurred because of the band-limiting effect of the camera gives
a rounded shape as sketched in Fig. 1. This profile can approximately be described by 3 shape
characteristics: hmax, hmin, and rmin, where hmax and hmin are the relative values of the function's
maximum and minimum with respect to the background-level h0; rmin denotes the distance of the
minimum from the center position.
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Figure 1: Ideal appearance of a manhole cover (left) and blurred cross-section intensities (right).

Figure 1 (right) suggests to use an analytic model whose general shape corresponds to the
second derivative of the 2D Gaussian. However, the shape of this function is controlled by only
two parameters (amplitude and variance), while we need three parameters for describing the
shape of the landmark. We therefore represent the model by an adapted version of the difference
of two Gaussians, which, on the one hand, well approximates the second derivative of a Gaussian,
and, on the other hand, has three shape parameters, namely a1, a2, and σ:
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While simply h0 � a0 and hmax � a1, the following relationships hold for hmin and rmin:
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Assuming hmin � 0 and hmin � hmax, (which is a weak restriction in our application) we can show
that these equations can efficiently be solved for a2 and σ [1]. Hence, we are able to specify
initial values of the model parameters from an estimate of the landmark characteristics.

3 A computational approach to landmark extraction

A general scheme for landmark extraction is sketched in Fig. 2. Its central component is a pa-
rameter optimization procedure which adapts the analytic model function to the intensities of a
given landmark candidate. The output of this procedure is twofold: a set of adapted parame-
ters and the approximation error. Both can be used in a subsequent verification step to check
whether the adapted model describes a valid landmark instance. The model fitting procedure
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has to be supplied with appropriate values for the initial parameter settings and the size of the
observation window. As we will see, it is useful to determine the initial parameter values from a
number of representative landmark examples. Positions of landmark candidates can be specified
interactively or can automatically be detected using a template matching approach.
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Figure 2: A general scheme for landmark extraction.

3.1 The fitting procedure

We minimize the squared error between the image intensities and the parametrized model. This
results in the best-fit parameters, telling us shape, size, and subpixel location of the landmark. As
we are dealing with a non-linear model, we use the iterative Levenberg-Marquardt method for
minimizing the error function. The error is measured within a square window which is centered
around the initial location estimate of the landmark. The width of the window is adjusted to the
initial estimates of the model parameters in such a way that the absolute value of M (relative to
h0) falls below a certain fraction ( 1

100 ) of its largest value outside the window.

3.2 Learning initial parameters from examples

In order to obtain fast convergence and robust results, good initial parameter values are important.
The initial landmark location is given by the position of the candidate, while initial values for
the other model parameters are obtained from estimates of the landmark characteristics h0, hmax,
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hmin, and rmin. The landmark characteristics itself are estimated on the basis of simple image
measurements within a small subwindow around the landmark. The estimated landmark charac-
teristics are transformed into values for the model parameters (using the relationships presented
above) which are used to initialize the minimization procedure.

Although one could try to obtain initial parameters from image measurements for all given
landmark candidates, we suggest not to do so. Since the landmarks are imaged with low reso-
lution, we cannot expect simple image processing techniques to robustly estimate the landmark
characteristics of each—possibly distorted—instance. We therefore prefer to apply this technique
only to some well-structured, representative examples. This is done in a learning phase which
precedes the actual landmark extraction process (cf. Fig. 2). The set of parameters resulting
from taking the mean parameter vector of the learning examples is then used in the subsequent
extraction phase for initialization of the minimization procedure.

3.3 Automatic candidate detection

For an efficient algorithm it is important to exclude false candidates as far as possible. This can
be achieved by applying a number of selection criteria before the model fit is done. First, we can
define the set of possible landmark positions by the set of local intensity maxima: each landmark
will have a local intensity maximum within its bright center region and, thus, near its real center
position. The second selection mechanism is based on template matching and proofed to be very
effective. By using the learned landmark characteristics we can generate a prototype landmark
template. This template can be used to filter the image and to reduce the set of candidates to those
maximum positions which give high response in the filter output. To further reduce the number of
candidates we finally exploit the initial fitting error. Each landmark candidate is tested against the
initial landmark model (resulting from the learned parameters) without adapting any parameters.
A candidate's initial fitting error has to be less than a certain threshold. Then, the model fitting
procedure is applied to the candidates which passed all the three tests.

3.4 Final verification

The results obtained by minimization are submitted to a final verification applying five criteria:

1. The fitting error has to be less than a certain threshold.

2. h0 has to lie within the intensity range.

3. hmin as well as hmin�hmax have to be negative. Their absolute values have to lie within the
intensity range and have to be higher than a specified minimum contrast.

4. rmin has to lie within�2�5σrmin around the mean of rmin observed for the learning examples.

5. The position may deviate from the inital candidate position by at most one pixel.

4 Experimental results

We fully implemented the landmark extraction scheme described above. In our experiments, we
first investigated the localization precision obtained by applying our model fitting approach to
simulated landmark images which have been generated with known parameters. The landmark
size was assumed to be 80 cm; we further assumed typical acquisition parameters (see below)
leading to a pixel resolution of 15 cm on the ground, i.e., a landmark is typically represented by
6 by 6 pixels (unblurred). Using our simulation technique we are able to statistically evaluate the
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localization precision with respect to variations in image blur, sampling effects, noise, perspec-
tive projection, and some regular shape distortions. In a large number of random experiments
we found that the localization error is well below a hundredth of a pixel (less than 1 mm on the
ground) for noise-free images and less than a tenth of a pixel (about 1 cm on the ground) for
images having a realistic amount of noise.

In the following we describe experimental results which demonstrate the overall performance
of our landmark extraction scheme. These experiments are done on real aerial images typical for
photogrammetric applications. We used (vertical) photographs with an image scale of about
1:5000. The photographs have been scanned at a resolution of 30 µm, so that one pixel approx-
imately corresponds to a ground area of 15 by 15 cm. The results were obtained for the 600 by
600 pixel subscene shown in Fig. 3. Ten manhole covers are visible (see Fig. 3). One of these
does not agree with our model (landmark `a'): its homogeneous background is darker than the
landmark's ring, which cannot be represented by our model function.

Results on the test scene

The scene covers 360000 pixels and yields 41294 local maxima using a 3 by 3 neighborhood.
The subsequent extraction results depend on the choice of the learning examples. All the nine
landmarks have been tested on their suitability for the learning scheme. The scheme worked very
well except for landmark 6 which required several trials to select a suitable subimage around the
landmark. To illustrate the landmark extraction process we present in Fig. 5 the results obtained
during the sequence of extraction steps when applied to a subpart of the test scene. For land-
mark 7 Fig. 4 shows the original intensity structure in comparison to the fitted model.

The results obtained by the extraction scheme for the complete test scene are summarized
in Table 1. We find for each tested set of learning examples the number of candidates resulting
from template matching (TM), the number of candidates remaining after exploiting the initial
fitting error (IE), the number of hits, false negatives, and false positives, and the result of the final
verification for each individual landmark. Obviously, there are two landmarks (1 and 6) which
are very unstable to detect. The other seven landmarks are successfully detected independent
from the choice of the learning set. However, for learning sets having a low standard deviation
of rmin some of the landmarks failed during verification due to the rmin-criterion which is not
surprising. In order to extract a wider range of differently sized landmarks the learning set has
to represent this desired variability. By choosing a representative set of learning examples (e.g.,
5, 7, 9) we are able to extract 8 of the 9 landmarks with only a few false positives. The majority
of false candidates is refused by the final verification procedure (Sect. 3.4). In most cases (90%)
more than two verification criteria became effective. This indicates robustness of the verification
procedure and lessens the need for critical tuning the thresholds.

We have also analyzed the variance of the adapted position with respect to the learning set
(see Table 2). We can see that the landmark position (x0, y0) estimated by the model fit is very
stable (presuming that the learning set allows for the detection of a given landmark). The standard
deviation of the x- and y-coordinates measured over all learning sets is well below a tenth of a
pixel—in most cases it is better than a hundredth of a pixel. Another important aspect is the
question of how landmark localization depends on the initial position estimate. Therefore, we
compared the model fitting results for the stable landmarks while varying the initial position in a
3 by 3 pixel neighborhood around the actual candidate position (using landmarks 5, 7, and 9 as
learning set). Only two landmarks result in detection failures for specific offsets. The standard
deviation of the adapted locations is again well below a tenth of a pixel.
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Figure 3: Scene used in the experiments. Ten landmarks are visible (markings 1 � � �9 and `a').

Figure 4: Intensities of landmark 7 (left, center) and of the fitted model function (right).
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Figure 5: Results on a 170 by 170 pixels subimage using landmarks 5, 7, and 9 for learning:
2202 local maxima (top, left); 75 candidates remaining after template matching (top, right); 30
candidates with low initial error (bottom, left); 5 accepted landmarks (bottom, right).

5 Summary

We introduced a model fitting approach for detection and high-precision localization of circular
landmarks which can serve for the registration of aerial images. By combining an effective can-
didate detection mechanism with our model fitting procedure we are able to robustly detect most
of the landmarks visible in a complex scene automatically, yielding only few false responses.
Both, the prototype template used for candidate detection as well as the initial model parameters
used for the least-squares fit are determined from a few landmark examples by applying a sim-
ple learning scheme. Our approach has been shown to be efficient and robust. The localization
precision was found to be well below a tenth of a pixel irrespective of typical variations in image
blur, sampling, noise, or perspective distortions.
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Table 1: Results of the landmark extraction scheme applied to the test image. `TM' stands for
template matching; `IE' stands for initial error exploitation; + denotes success, - denotes failure,
and r denotes failure only due to deviation of rmin.

landmark # candidates # hits # false # false verification results
examples after TM after IE neg. pos. 1 2 3 4 5 6 7 8 9

4,5 1227 78 4 5 2 - + + + + - r r r
4,7 1296 98 8 1 1 - + + + + + + + +
4,8 1083 50 7 2 0 - + + + + - + + +
4,9 1332 74 8 1 1 - + + + + + + + +
5,7 1826 201 6 3 2 - + + r + r + + +
5,8 1596 128 8 1 2 - + + + + + + + +
5,9 1827 154 8 1 3 - + + + + + + + +
7,8 1817 164 5 4 1 + r + r r - + + +
7,9 2183 209 4 5 2 + r r r r - + + +
8,9 1864 139 2 7 0 r r r r r - r + +

5,7,9 1548 108 8 1 2 + + + + + - + + +
4,5,7,8,9 1651 141 8 1 3 - + + + + + + + +

Table 2: Mean parameters of three of the stable landmarks when varying the set of learning
examples (all pairs out of landmarks 4, 5, 7, 8, 9, plus combination 5, 7, 9, and the complete set).

landmark h0 hmax hmin rmin error x0 y0

5 µ 194.62 20.80 -68.77 2.52 19.11 268.295 362.787
σ 3.81 5.78 3.67 0.03 0.04 0.012 0.001

7 µ 186.55 50.44 -23.47 2.15 5.78 337.577 411.579
σ 0.25 0.48 0.28 0.00 0.06 0.001 0.002

9 µ 213.70 42.39 -32.26 1.92 12.23 272.832 462.215
σ 0.50 0.87 0.54 0.01 0.26 0.001 0.004
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