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Abstract

Issues concerning the design, implementation, and utility of 3-d velocity-tuned filters are
discussed. The filters are linear, shift-invariant, tuned to narrow ranges of scale, orientation
and normal speed, and they use only local support in space-time. This report concentrates
on the design and implementation of an entire family of such filters that collectively yield a
complete and efficient image representation for the initial stages of visual processing. The
implementation nows serves as a starting point for research in early motion analysis and

understanding.



Zusammenfassung

Wir diskutieren Design und Implementation von 3-dimensionalen geschwindigkeitsselek-
tiven Filtern. Die Filter sind linear und ortsinvariant. Sie sind jeweils eingestellt auf einen
bestimmten Auflosungsbereich, eine bestimmte Orientierung und eine bestimmte Normalge-
schwindigkeit. Wir beschreiben Design und Implementation einer gesamten Filterfamilie,
welche eine vollstandige und effiziente Scenenreprasentation auf einer frithen Verarbeitungs-
ebene liefert. Die Implementation wird angesehen als ein Startpunkt fiir weitergehende Un-

tersuchungen im Bereich Bewegungsanalyse und Bildverstehen.
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1 Introduction

A definition of image velocity in the frequency domain, and the use of linear shift-invariant
filters tuned to specific ranges of speed and orientation (often accompanied by energy extrac-
tion) have appeared in several recent publications [Adelson and Bergen, 1985, 1986; Fleet and
Jepson, 1984, 1985, 1988; Heeger, 1987; Watson and Ahumada, 1985; also see van Santen
and Sperling, 1985|. Although the initial results appear favourable the approach is somewhat
novel to both the machine and biological vision communities and therefore several questions
remain unanswered. For instance, how should such filters be designed, and implemented?
More importantly, how should their output be interpreted? The goal here is not to answer
these questions definitively, but to provide some perspective, and facilitate further research.
This technical note is aimed in two directions, the goal of which is the construction of a
family of spatiotemporal filters that yield a rich representation of time-varying image intensity.
Section 2 provides a short discussion of the relevant theoretical issues surrounding the design
of such a representation, and briefly touches on the utility of this approach with respect to
subsequent stages of processing. (Much of Section 2 follows from [Fleet and Jepson, 1988].)
Section 3 then concentrates on the implementation of one exemplary family of velocity-tuned
filters. This covers the non-trivial aspects of the implementation issues, as well as a variety of
tools which might allow extensions of the current framework. In general I view the system as
the beginnings of a test-bed for research on such filters and subsequent stages of interpretation.
This report provides only a brief review of the underlying filter theory. For a good intu-
itive introduction to the one-dimensional case see |[Adelson and Bergen, 1985]. A more detailed
mathematical account, including the two-dimensional case, can be found in [Watson and Ahu-
mada, 1985] and [Fleet and Jepson, 1984|. [Heeger, 1987] is also worth reading. Below, I
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include portions of the appropriate mathematical detailsthat are specific to the implementa-
tion, or that are not documented well in other references. The implementation was done on
a Symbolics Lisp machine using IMAGE-CALC? and Zetalisp.® 1 assume the reader has a
basic knowledge of Lisp, and of IMAGE-CALC.

2 Theoretical Issues

2.1 Image Velocity

Following Horn (1986), let the motion field be the perspective projection of object (or world)
velocity onto an image plane, perpendicular to the optical axis of an ideal pin-hole camera. The
image velocity field, sometimes referred to as the optic flow field, may be defined qualitatively
as the apparent velocity of intensity structure in the image sequence.? One research objective
in early vision is to develop a definition of image velocity that allows inference about its
associated motion field, and yiclds an efficient and robust measurement technique from the
image. Aspects of the motion field that are then inferred from the measured image flow
can then, in principle, be used to facilitate the determination of object surface structure and
egomotion. Unfortunately, but not surprisingly, such a definition of image velocity has been
elusive.

Recently, several rescarchers have suggested that the frequency domain yields a useful defi-
nition of image velocity. This is premised on the observation that linear structures in the image
correspond to linear subspaces in the frequency domain, which, in the cases of orientation and
velocity, are lines and planes containing the origin. Orientation in space corresponds to a line
in the frequency domain in that all the power (non-zero Fourier components) associated with
an oriented pattern of image intensity must lie on a line through the origin. The orientation
of the line varies continuously with the orientation of the structure in the image.

In practice we are only concerned with intensity structures which are oriented in small
neighbourhoods (windows) of the image. When viewed through such local windows, however,
the non-zero power associated with the oriented structure will not lie strictly along a line,
but will be distributed throughout the neighbourhood about such a line. More precisely,
viewing a straight-edged intensity profile through a local image region near 2, amounts to a

multiplicative window operation,
1,(£;20) = W(Z; 20)I (). (1)

This operation amounts to the convolution of the Fourier transform of the image with the
Fourier transform of the window. The window acts as a low-pass filter in the frequency domain,
blurring the amplitude spectrum of the image. This is useful in discussing interactions between

localization and directional tuning as seen below.

?IMAGE-CALC is a trade-mark of SRI International.

3Zetalisp is a trade-mark of Symbolics.

1Of course, pixel intensities do not actually move. Rather we perceive motion in their patterns of change over
time.



In space-time the situation is very similar. Consider a 2-d intensity pattern /(&) translating
in the image plane with velocity v, that is,

I(#,1) = Iy(& - ), (2)

where = (z,y) and v = (v,,v,). Its Fourier transform is given by

A - —

I(kyw) = Iy(k) 6w + v-k), (3)

where Iq(k) is the Fourier transform of lo(%), and k = (kz,ky) and w denote spatial and
temporal frequencies. Analogous to the case with orientation information, this means that all
the non-zero power associated with a translating 2-d pattern will lie on a plane containing
the origin in the frequency domain since §(w + v - }:) is non-zero only when w = —v - k.
The speed, ||, determines the angle between the two planes w = —v-k and w = 0. The
direction of v determines the orientation of the velocity plane about the w-axis. Finally, there
is a one-to-one correspondence between finite 2-d image velocities, ¥, and planes intersecting
the origin in frequency space which do not contain the entire w-axis.

The utility of this definition is, however, somewhat limited in that 2-d translation (2) will
only be a good approximation to image motion locally. Because of perspective projection in
the image-forming process and non-rigidity, 3-d object motion will often produce significant
deviations from 2-d image translation. Thereflore any measurements based on image transla-
tion should be restricted to narrow spatiotemporal windows. Furthermore, within such local
windows spatial intensity changes will often appear straight-edged; that is, we only expect to
find small edge fragments. In this case we can only ezpect to measure velocities normal to
local orientation information. This is commonly referred to as the aperture problem (e.g., see
[Horn, 1986]).

Let ¥ denote a 2-d image velocily, and let 7 denote the unit normal to some local oriented
spatial intensity structure, then the normal velocity vy, is given by

G, = (i-9) 7. (4)

Moreover, all non-zero Fourier components (k,w) of an oriented pattern with normal velocity

v, satisfy

(k-:‘-”) - ¢ (Un, _Jﬁnliz) ) c e R. (5)

This line is contained in the velocity plane associated with the 2-d image velocity v, and it
intersects the origin. It’s slope (relative to the plane w = 0) corresponds to speed, and the
direction of motion determines it’s orientation about the w-axis. Finally, there is a one-to-one
mapping between lines intersecting the origin in frequency space and 2-d normal velocities, v,,.
The aperture problem may be simply interpreted in terms of the infinite number of velocity
planes that contain a single normal velocity line [Fleet and Jepson, 1984,1985a; Watson and
Ahumada, 1985|. In fact, as noted above, for windows large enough to capture two distinct
normal velocities and thereby a unique 2-d image velocity, 2-d image translation may no longer

be a useful basis for our measurement primitives.



2-D Normal Velocity Selectivity

Figure 1: The shaded region represents the tuning of a velocity-tuned filter in the frequency
domain. As discussed in the test, the amplitude spectrum for such a filter should fall mainly
within a cone, the opening angle of which determines directional tuning.




2.2 Basic Design Constraints

One principal virtue of these deflinitions of orientation and image velocity information, other
than their intuitive appeal, is the ease with which simple methods of extraction or measurement
can be derived based on linear shift-invariant filters of the form

gy = fjf:x(f 5.1 X&) 48 (6)

where /(Z) is the input image, and K (&) is the convolution kernel. But how should such filters
be designed, and implemented?

At present the basic design constraints come mainly from intuition. (In the future one
might hope for more well-founded criteria.) They are:

e Localization in Space-Time. The response R(#p) should depend mainly on the local
structure of the image /(z). To ensure this we assume that the magnitude of the
impulse response function |K (&) is small for large values of |]. In particular, let
K(z) = Ky(x) W(&) for some bounded function Ky(&), where IV(2) is a windowing
function. Then, (6) can be re-expressed as Ky(Z) applied to the windowed input, i.e.,

f oo oo
R(#y) = f | f CKo(& = £o) Ll &) di (7)
where I,(&; &) is defined above in (1).

e Orientation/Velocity Specificity. The filter should be tunable to a narrow range of orien-
tation or normal velocity, with its amplitude spectrum concentrated about a line through
the origin in frequency space. l'or example, for velocity specificity, the amplitude spec-
trum should fall mainly within a cone, C(v,, #), about a line with a relatively small

opening angle 8 (see Figure 1).

There are restrictions on the use and satisfaction of these two conditions. First, localization
is meaningful only in relation to the scale at which one-dimensional orientation and normal
velocity are reasonable approximations to local image structure; in eflect, for general utility, the
second condition requires the first. Consequently, the measurements should be scale specific,
with the scale related to the window size. Second, the well-known uncertainty relation imposes
finite theoretical limits below which the two criteria cannot be satisfied simultaneously [Slepian,
1981; Bracewell, 1978, p.]160]; these are discussed further below.

Several filter designs have been suggested in the literature (e.g., [Fleet and Jepson, 1984,
1988; Adelson and Bergen, 1985, 1986; Watson and Ahumada, 1985; Heeger, 1987]). A com-
mon, analytically convenient form is a Gaussian windowed sinusoid, called a Gabor function

|Gabor, 1946}, i.e.,

Gabor(z,t; E[,,uo,(fﬂ) = ik tw) Gl LG (8)
where
etilER + two) cus(z?-fl‘l; | twy) £ isin(:r:'-go { two) (9)



is a complex exponential, and (& denotes a 3-d Gaussian distribution with covariance matrix

C:;h i.(‘..,

"o y !Cﬂ!_]/? “L@En'eM E
(l(.}[f,l; (’zl): (2 )3/2 € s ' 3 (]O)
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where A’ denotes the matrix transpose of A. The Fourier transform of a Gabor function is
simply a Gaussian envelope in frequency space centred at (kg,w), i.e.,

Ga.bor(j;,w; A’:‘(],WU,C;H) = (;‘(L: - I;‘,O’w - Wy (’1::11) 3 (I l)

where G denotes the Fourier transform of a Gaussian, which is also a Gaussian but with
covariance matrix C,'. The Gaussian in (8) determines the profile of the amplitude spectrum,
and the sinusoidal modulation (the complex exponential in (8)) determines its placement in
the frequency domain. If the Gaussian has a diagonal covariance matrix then the resulting
amplitude spectrum is symmetric about lines that run parallel to the spatial or temporal
frequency axes. If C,, - ol then it is isotropic.

Although, most of the velocity-tuned filters suggested to date are constructed using sep-
arable first stages followed by linear combinations resulting in inseparable real kernels, their
shapes still basically correspond to the case in which C,, is diagonal. Fleet and Jepson (1985a,
1988) described filters with non-unit aspect ratios with radial tuning to velocity. In other
words, the amplitude spectra are elongated along lines through the origin that correspond
to the preferred normal velocities. For example, in 2-d the elongated Gabor function can be

written as

ok & -}

2 ; a'zzi:"R;DuRQ.’f (12)
O

k.

where D, = diag(l,a?), and I is a simple rotation matrix, i.c.,

N 10 B cosf sind
Uu:(ﬂ ag) : Rg*(-sinﬂ (1056)

Here, the orientation about which the filter is tuned is determined by the sinusoidal modulation;
it is arctan(—k;/k,). Also, a is the aspect ratio, 0% is the variance (or measure of extent) of the
spatial window along the preferred orientation, and 0?/a? is the variance in the perpendicular
direction. Accordingly, the rotation matrix serves to align the elongation of this envelope with
the orientation of the modulating sinusoid. Therefore 8 = arctan(- k. /k,).

Such elongation has been common in the orientation case (e.g., see [Sakitt and Barlow,
1982; Daugman, 1985]), but not in space-time. As a consequence, velocity tuning is typically

quite poor.

2.3 Family Design Issues

Our goal is not simply the design of single filters as might be infered from the discussion of
design constraints above. Rather, the goal of image measurement is the construction of a rich
description of image intensity structure. This section provides a review of the major issues



involved in designing an entire representation. (Because more research is still needed this
section is somewhat terse and incomplete. Also, some details are left until Section 3.)

The first basic constraint, as indicated already, is that the primitives of the representation
should be generic in that they capture properties that are often useful for subsequent process-
ing and are robustly available for measurement. Typically these aims are met by restricting
primitive measurements to those aspects of intensity structure that reflect, as much as pos-
sible, salient and independent properties of the scene. In particular, potentially independent
scene properties should not be unnecessarily confused (confounded) in single measurements.
It is in this sense that localization and directional tuning are basic constraints. Through lo-
calization an attempt is made to ensure that neighbouring yet disjoint scene properties are
not merged accidently into a single measurement thus confounding independent pieces of in-
formation. Through directional tuning an attempt is made to isolate manifestations of useful
scene properties, and to ensure that potentially independent orientations are not confounded
or ignored. Within any local window there is little reason to suspect any statistical dependence
over a wide range of orientations. Furthermore, it is reasonable to assume a priori that no
specific local window should be treated in some special way; i.e., shift-invariance in (6) is also
reasonable.

Further constraints on image measurement include image-independence, completeness, and
efliciency. As explained in Fleet and Jepson (1985b), it is preferable to avoid the need for
restrictive a priori assumptions as well as previous or concurrent interpretation during the
measurement process. The measurement primitives will of course be based on a model of
expected image structure, but the process should not fail or degrade considerably if the model
is inappropriate. Completeness ensures that all the relevant information is accessible, despite
the relevance of the model in certain situnations.

Efficiency is also a major issue |Sakitt and Barlow, 1981; Binford, 1983; Langer 1988).
Given the voluminous amount of potential information contained in the initial pixel-based
image description it is natural to attempt to capture as much structure as possible using only
a small number of primitives. In essence, this amounts to searching for a good model of
expected structure. If redundancy is at some point desirable, it should at least be controlled
during the design process.

Information theory is an appropriate perspective from which to view this problem [Shannon,
1919; Gallager, 1968; Gabor, 1946; Brillouin, 1962]. We may view an n x n image as a vector in
an n° dimensional vector-space; it has n* degrees of freedom. One can regard the pixel-based
spatial encoding as one in which the basis functions used to span image-space are ideally
localized in space-time yet their amplitude spectra span frequency space. Conversely, in a
Fourier decomposition the basis functions are ideally localized in the frequency domain yet
they span all of space-time as sinusoidal waveforms.

Along these lines the set of linear shift-invariant filters are simply a new basis for the image
vector-space, and the convolutions represent a change of basis, that is, a linear transformation.
Each convolution result at a specific location (7) is the inner product (dot product) of the filter
kernel (support or impulse response function) centred at that location with the image. Thus,
the new basis functions are the support functions placed at certain locations in space-time,
and the coefficients of the resulting representation are the convolution outputs at those points.
Note that every filter in the eventual representation cannot yield an output at each pixel



location since with s different filters the total number of coefficients would be xn? instead of
n?. Instead the rale at which each filter output is sampled should be inversely proportional to
the extent of its amplitude spectrum.

For completeness the new basis set should contain at least n? basis functions, and for efli-
ciency it should contain no more than that.® In addition, for efficiency, the new basis functions
should measure statistically independent types of image structures so that the resulting coefl-
ficients (filter outputs) will contain no mutual redundancy. However, it is virtually impossible
to ensure the independence of different filter outputs and therefore we relax our demands and
ask only for uncorrelated coeflicients. One result of such a constraint is that the basis functions
should be mutually orthogonal. In terms of the filters discussed above which are localized in
space-time and the frequency domain, we take this to imply that they be non-overlapping both
in space-time and in the frequency domain.

Unfortunately, as noted in Section 2.2 there is a theoretical uncertainty relation for signals
that places a lower bound on the simultaneous localization of a signal and its amplitude
spectra. A middle ground, with good simultaneous localization in both domains is obtained
using Gabor kernels (8).% In effect this uncertainty relation tells us that there is a limited
amount of information that can be measured within windows of finite extent. This also makes
sense in terms of degrees of freedom; e.g., a 4 x 4 window only contains 16 degrees of freedom,
and as a consequence we can only expect to resolve 16 independent measurements.

This decrease in the information that may be measured as window size decreases also
follows from (1) and (7). Consider 1,(&; o) with & = 0 for convenience, and let the window
be an isotropic Gaussian with covariance matrix Cyy = oy,1. Then, the Fourier transform of
the windowed input (1) is

- A -

Lu(k; 0) = G(k; ou) * I(k) . (13)

For relatively smooth windows, the result is a low-pass smoothing of the image’s Fourier
transform. As the transform becomes more and more blurred the frequency spectrum may be
sampled less densely and information (or resolution) is lost.

Fleet and Jepson (1988) use this to illustrate the interaction between localization, scale and
directional tuning. They show that for a fixed window size the potential number of independent
orientation measurements for a small range of frequencies (for M| near some fy) within the
window increases nearly linearly with frequency. A simple way to impose the independence
of the channels is to arrange their amplitude spectra so that they do not overlap significantly
(see Figure 2). As a measure of the radius of the transform, take one standard deviation of
G, thatis R = 1/6,." The opening angle of the orientation cone, which just contains one

®Note however that with the goal of efficient coding the significant savings come [rom discarding those basis
functions with negligible expected power. The threshold of course should be a function of the tolerable acceptable
degradation and expected noise. This may also be desirable for computer vision although this is Leyond the scope
of this paper.

8Using variance as a measure of extent in space and frequency space a Gaussian is optimal [Slepian, 1982].

"Given a fixed number of degrees of freedom and the uncertainty relation it is easy to show that in order to
maintain the same coverage (or overlap) of windows in space and in the frequency domain one standard deviation
can be used as a measure of extent. If the corresponding convolution results are sampled more densely (thereby
taking spatial extent to be less than one standard deviation) then the number of different types of filters used to
tile frequency space must decrease yielding less overlap, and holes in frequency spectra.



standard deviation of G centred at (f0,0), can be approximated by
6 ~ 2arcsin(R/ fy) . (14)

It follows that the maximum number of orientation channels, centred at frequency f, and
separated by at least one standard deviation in frequency space, is N = |[m/8], where |z|
denotes the integer part of 2.® For example, consider a frequency f, such that the associated
period, 27/ fo, is equal to the spatial diameter of the window, 20, (i.e. approx. 1 octave). This
gives N = 4. For higher frequencies it is possible to resolve more orientations, and in fact the
number of possibly independent orientation channels grows nearly linearly with the frequency.
A similar argument shows that the number of independent normal velocity channels that can
be obtained through a given spatiotemporal window, grows quadratically with the frequency

fU - |(E:w)|

ki

Figure 2: To arrange a collection of directionally-tuned filters that measure independent in-
formation, we consider non-overlapping amplitude spectra. Given bandwidth and aspect ratio
(here 1.0), this gives a constraint on directional resolution and the appropriate number of
filters.

This analysis can easily be extended to the elongated kernels with non-unit aspect ratios
in (12). By equating the transform radius of the isotropic case (R in (14)) to the radius

8Note that we need only cover orientations ranging over 180 degrees.




along the line of maximal orientation tuning which is the major axis of elongation, we find
that the radius in the orthogonal direction which controls orientation tuning is simply, R/a
where a > 1 is the aspect ratio. In comparison to the isotropic Gabors above with similar
octave bandwidths (a function of R and f;) it is easy to show that the number of independent
resolvable orientations is about a factor of a larger,i.e. N = |am/6].

The above analysis shows that there are limits to the resolution with which information can
be measured in small windows. In part, this appears as a trade-off between window size and
the possible number of resolvable orientations. We now turn to consider ways in which entire
families of such filters may be designed, thereby covering the entire frequency spectrum with
directionally selective units. A useful perspective on this issue follows from the approach of
Gabor (1946) in viewing the set of new basis functions as a tiling (or paving) of space-time and
the frequency domain simultaneously (also see [Burt and Adelson, 1983; Geisler and Hamilton,
1986]). Towards this end we consider the collection of amplitude spectra along with the way
in which their respective support functions and used throughout space. For convenience I will
continue to consider Gabor functions as exemplary units. In doing so however note that this,
in itself, provides very few constraints; the nature of the fillers’ tuning to different scales (i.e.,
distance from the origin in frequency space), their directionality, and their aspect ratios have
yet to be considered in terms of the entire family.

One approach toward an entire encoding is to emphasize localization in the frequency
domain with a uniform coverage of isotropic amplitude spectra. In terms of Gabors this is a
uniform tiling of the frequency domain with Gaussian envelopes of constant variance. This
may provide excellent tuning to scale as well as directional information, especially for relatively
high frequencies (cf. Fig. 1). Furthermore, since all amplitude spectra have the same envelope,
so do the corresponding kernels, and therefore all of their respective convolution outputs can
be sampled at the same reduced rate (this rate is equivalent to that possible with a Gaussian
kernel with similar extent as explained in Sections 3.2 and 3.3). Although similar in Gaussian
envelope, the different kernels vary according to the orientation and scale to which they are
tuned. For high frequencies the kernel profiles will modulate quite rapidly. In effect, this
scheme is equivalent to first decomposing the image into a set of non-overlapping Gaussian
windowed image regions as in (1), and then taking the Fourier transform of each windowed
region. In other words, if each filter output is sampled on the same sampling lattice as the
window centres, then the filter outputs at each sample point will be identical to the Fourier
transform coeflicients of the corresponding windowed region.

One advantage of this particular tiling is the simplicity and efficiency of an implementation
that follows from the separability of the individual kernels as well as the entire collection into
horizontal and vertical components. A single horizontal 1-d stage of processing may serve as a
precursor to the entire set of kernels sharing the same horizontal tuning. On the other hand,
this representation violales our first basic constraint above because high frequency structure
is measured (integrated) over relatively large windows. This is most evident in the rapid
modulation of the kernel profile for kernels tuned to high frequencies. Above it was proposed
that scale should be matched to window size; i.e., image structure should be measured within
the smallest reasonable window sizes as a function of scale.

To accommodate this constraint, we consider a second scheme in which the windows de-
crease in size as the frequencies being measured increase. In the frequency domain this corre-
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sponds to an increase in transform extent with frequency. This suggests an octave bandwidth
invariance; in other words, that all amplitude spectra have the same extent when measured on
a logarithmic scale. Such an approach has been adopted in other studies for a variety of rea-
sons (e.g., see [Sakitt and Barlow, 1981; Watson, 1983; Crowley and Parker, 198; Koenderink,
1984; Langer, 1988; Field, 1987|). Also note the trade-off between sampling in space-time and
in the frequency domain with respect to this approach. As the window sizes decrease, the
convolution output must be sampled at a higher rate. This can also be attributed to the
larger amplitude spectra, as noted above. Certainly with fewer filters we must sample more
frequently to maintain the correct number of coefficients. In terms of the orientation-specific
channels, constant octave bandwidth means a fixed relationship between amplitude spectrum
extent and scale. According to the arguments above this means that the number of resolvable
orientation channels is also fixed at all scales. Therefore, in this scheme, orientation and scale
specificity do not increase with scale, but space-time localization does.

As a third alternative consider a representation whose basic filters have non-unit aspect
ratios (12). This situation can be viewed as a combination of the two schemes above, one
of which emphasizes localization in the frequency domain, and the second which emphasizes
localization in space-time. In comparison to the second scheme the extents of the amplitude
spectra increase similarly with higher frequencies but only radially along the orientations or
normal velocities to which the filter is tuned. This increase in extent with frequency allows
better localization in space-time in the direction normal to the orientation (and speed) to
which the filter is tuned. Conversely, we now have better localization in the frequency domain
in angular terms giving finer orientation tuning like the first scheme above. As a result of
this increased directional tuning, however, spatial localization along the prefered orientation
is much poorer. Lissentially we have traded scale specificity for spatial localization normal to
local "edge” segments, and localization along such edges has been sacrificed for finer orientation
tuning.

Due to the inseparability of these units an implementation is not as readily straight-forward
as with isotropic kernel envelopes. However, a hierarchical approach is feasible in which a first
level of processing consists of a set of band-pass filters yielding a scale-specific decomposition.
This may be done using simple separable filters in 2-d as well as 3-d [Burt and Adelson, 1983;
Fleet and Jepson, 1985a, 1988|. The second stage then decomposes each scale-specific band
into directionally tuned channels using simple 1-d inseparable convolutions [Fleet and Jepson,
1988].

Thus it 1s clear that several alternative representational approaches exist. A choice among
them depends on several factors which are not clear at present. One principal factor involves
the probability distribution over the image ensemble of interest, in that filter properties should
be well matched to average correlation lengths and 3rd order statistics [Langer, 1988]. In
particular, the kernel envelopes should be matched to the spatiotemporal extent over which
constant image velocity (or orientation) is a good approximation to expected image structure
(on average). From this we may derive the appropriate number of orientation and speed specific
channels, and their tunings. Also of interest is the stationarity of the ensemble with respect
to scale and directional information. If reasonably stationary, a homogeneous tiling scheme is
appropriate, where for example, we might have the same number of orientation channels at all
scales, or scale-specific bands all with the same bandwidth.
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A second principal factor affecting these design decisions comes from the ways in which
the representation is to be used, as our goal is certainly to facilitate subsequent stages of
processing. At present, however, we have few constraints other than some of the intuitions
offered here. We now turn to consider the possible nature of subsequent processing in more
detail.

2.4 Interpretation Issues

As discussed above, we view the goal of early measurement to be a rich encoding of image
structure in terms of generic properties from which more complex structures are more easily
detected and analysed. Such measurement processes should be image-independent and require
no previous or concurrent interpretation. In these terms it is useful to contrast spatiotemporal
fillering with other approaches to the extraction of image motion [Fleet and Jepson, 1985b].

For example, token-matching techniques (e.g., [Barnard and Thompson, 1980; Dreschler
and Nagel, 1982]) consist of the two distinct stages: 1) the extraction of tokens in isolated
frames; and ii) the temporal matching (or correspondence) of similar tokens in successive
frames. The first stage alone involves a significant amount of spatial scene interpretation in
order to identify tokens, while removing noise and other irrelevant features. In particular,
token-based techniques, although not extremely well defined, are typically associated with a
matching process applied to a sparse set of monocular features. One principle issue is whether
or notl the tokens are (in practice) sufliciently rich to capture the image structure so that some
important motion does not go undetected.

Current gradient-based approaches in which spatial and temporal gradients are used to
solve for translational image motion (e.g., [Horn and Schunck, 1981; Nagel, 1983]) are also
problematic. Velocity estimates are often restricted to specific spatial contours since unique
spatial and temporal gradients are required locally (usually only those with large amplitude,
high degrees of curvature, or consistency over several spatial scales). Moreover, the particular
form of the velocity constraint equation used depends on various assumptions about the local
flow. The standard assumptions are either i) unique local 2-d translation , or ii) conservation
of image features [Schunck, 1985].

The use of spatiotemporal filters to extract motion information does not depend on the
recognition of particular types of spatial structure, such as contours, peaks, or more elaborate
features, in isolated image frames. This is extremely important, especially in noisy domains
where spatial features are difficult to obtain reliably. As well, the use of these filters is not
premised necessarily on a restricted class of motion. Rather, they make explicit the distri-
bution of local image motion in a form that will facilitate early levels of interpretation such
as preliminary segmentation and the determination of a wide class of 3-d motions. Adelson
and Bergen (1986) showed that energy extracted from Gabor filters can be used to solve for
translational image motion in a way equivalent to gradient-based approaches. This is not
surprising since, the Fourier transform of the basic motion constraint equation is

Fllove + L, + 1] = v, (ik, )T + v (ik) + (i) . (15)

Then, setting the motion constraint equation to zero, and rearranging the transform (which
then also equals zero), we obtain the equation for a plane in frequency space as in (3), i.c.

12



k-v+w=0. Heeger (1987) solved for translational image motion using a least squares fit of
local spatiotemporal energy to a plane through the origin in frequency space.

These approaches therefore showed that with the use of such filter outputs we can solve
for translational motion as is done in gradient approaches. They also show further promise.
For example, based on the conditioning and residual error in a least squares approach, one
could determine whether or not i) the local information is largely one dimensional in which
case there is not sufficient information to determine 2-D velocity robustly, or ii) there is too
much information suggesting that the local motion is too complex to be accounted for simply
by 2-d image plane translation. 1t is of interest to study other types of motion. For example,
local spatiotemporal energy has been used to determine properties of turbulent motion [Heeger
and Pentland, 1986]. It would also be of interest to consider i) semi-transparent surfaces since
more than one velocity can be detected at a single location, ii) the use of phase information
which is discarded in energy-based schemes, and #ii) an analysis of occlusion.

3 Implementation

This section differs markedly from Section 2 in that attention is shifted primarily to the
implementation of families of spatial and spatiotemporal filters. The first sections (3.1 to
3.4) describe functions for the application of Gaussian and Gabor filters, as well as entire
families of isotropic Gabor filters. The topics of interest covered include: the generation of the
convolution masks with the appropriate bandwidths, frequencies, elc.; the reduced sampling
rates and the expected aliasing error caused by sub-sampling; the separability of isotropic
Gabors for efficient computation; the use of phase symmetries in families of Gabors yielding a
more efficient implementation; and the automatic derivation of channel properties within the
families based on bandwidth.

Section 3 is organized as a reference manual with the following issues discussed as they
become relevant. Functions for the generation of convolution masks are discussed in Section
3.1. Section 3.2 describes functions that perform Gaussian smoothing in 2-d and 3-d. Section
3.3 deals with 2-d and 3-d Gabor filters as well as several auxiliary functions related to Gabors.
Finally, Section 3.4 describes functions that apply entire collections of Gabor filters Lo an image
or image-sequence in order to represent one scale-specific band of the frequency domain. These
functions are efficiently implemented and can be applied to provide a complete image encoding.

Details specific to the implementation, but not to filter properties or families, are contained
in the Appendix. There | describe the basic convolution software that is used extensively by
the functions disucssed in Section 3, and a variety of general utility functions. Furthermore,
as described briefly, many of the significant functions can be accessed through a menu when
in the top level of the IMAGE-CALC listener.

3.1 Generation of Kernels

This section describes the generation of Gaussian and Gabor convolution kernels (or masks).
The masks can be generated for 1-d, 2-d and 3-d convolutions, and are derived in a general

fashion.
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make-1d-gauss st-dev &key (trunc-pt 2.0) mask-radius

This function returns an array containing the coefficients of a discrete approximation to

a Gaussian kernel, i.e.,

1
G(z;0) = g2 (16)
V2mo
The coeflicients are scaled so that they sum to one. Therefore, their amplitude spectra
have a maximum value of 1.0.

The effective kernel width is, by default, specified in terms of the Gaussian’s standard
deviation o, given in pixels. T'he mask coefficients are then obtained by sampling the ap-
propriate Gaussian at regular intervals, although integrating the area under the Gaussian
between sampling intervals might be more appropriate.

The width of the sampling function w with respect to the Gaussian (i.e., how much of the
Gaussian envelope gets sampled) is given in terms of ¢ by the key-parameter trunc-pt,
which denotes truncation point. This determines the radius of the mask, p = [ow]. The
mask size (the number of coeflicients) is then simply 2p + 1. The default value for the
truncation point w is 2.0 (in standard deviations, o). This represents more than 95% of
the area under the Gaussian.

In addition, note that the mask-radius (in pixels) may be entered directly with a key-
parameter thus over-riding the use of the truncation-point altogether.

make-1d-gabor-parts wavelength &key stdev mask-radius frequency (trunc-pt 2.0) (band-
width 1.0) (extent-measure 1.0)

This function generates sine and cosine Gabor masks with peak sensitivity at the wave-
length A specified in pixels, i.e.,

sin(koz )G (z;0) cos(koz)G(z;0) . (17)

Let 3 be the bandwidth specified in octaves, and let the peak radian frequency be
ko = 2m/X. In order to take bandwidth into account we need a measure of extent in
the frequency domain, that is of amplitude spectra. Therefore, let g be the extent of
the amplitude spectrum measured in terms of oy = 1/0, the standard deviation of the
Gaussian in (radian) frequency space. This value may be specified through the key-
parameter extent-measure. The default value for p is 1.0 thereby measuring Gaussian
extent at one standard deviation. In order to measure the spectrum at halfl height
instead, g could be set to (/In(4) = 1.177.

Given g, ko, and p, make-1d-gabor-parts can determine the appropriate standard de-
viation o for the Gaussian envelope of the kernel. More precisely, the standard deviation
of the frequency domain Gaussian, o, = 1/, should satisfy the following equality to
achieve the desired bandwidtih:

e ko + poy

== 18
ke—.twk ( )
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where b = 2P is the relative bandwidth. Rearranging these terms gives

B pA(b +1)

2r(b - 1) (19)

With these parameters a check is done to ensure that the main region of amplitude
sensitivity falls below the Nyquist rate, i.e., ko + pox < 7. This indicates whether or not
the desired fundamental frequency is too high for the desired bandwidth, and if it is a
warning message is issued. In general, the wavelength should satisfy A < 4b/(b + 1).
Then, with truncation-point, the kernel radius p can be derived as described above.

Finally, given o and p the appropriate Gaussian is generated (normalized to one), and
is multiplied by both a sine and a cosine function of frequency k¢ thus yielding the two
desired Gabor masks. They are returned using a lisp values form.

Note that the standard deviation and the mask radius may also be prespecified as key-
parameters. Similarly, although it is most common to specify the fundamental frequency
implicitly using the wavelength, it is also possible to use nil for the wavelength parameter
and to specify a frequency using the appropriate key-parameter. T'his allows the specifi-
cation of zero frequency, or the use of frequency when wavelength is only implicit. In any
case if the frequency is zero (zero wavelength is also interpreted as zero frequency) then
o must be supplied as a key-parameter. In such cases a Gaussian with the given stan-
dard deviation is returned as the cosine part, and nil is returned as the sine part. These
options are useful when make-1d-gabor-parts is used by its 2-d and 3-d counterparts.

make-2d-gabor-parts wavelength orientation &key key-parameters
The two-dimensional case is very similar to the one-dimensional case above. The cosine
and sine Gabor kernels are given by
sin(ky - )G (250) , cos(ko - )G (25 0) (20)
where G(&;0) is a 2-d isotropic Gaussian as in (10) but with C,, = ¢l. The parameters
of interest are the spatial frequency kg, the orientation 8 (specified in degrees), and the

standard deviation o.
Convolution with such masks can be performed in 1-d separable stages by exploiting the
following identities:
sin(k - &) = sin(kpz) cos(kyy) + cos(kzz)sin(kyy), (21)
cos(k - &) = cos(k,z) cos(k,y) — sin(k,z) sin(k,y).
Given this separation, in conjunction with the separability of the Gaussian, the con-
volution can be performed by first applying 1-d sine and cosine Gabor filters with the
appropriate frequency and standard deviation in the x-dimension, followed by the com-

plementary sine and cosine Gabor filters in the y-dimension. Therefore, we generate the
1-d Gabor parts which, when combined, produce the 2-d Gabors.

The required inputs to the function are an orientation 8, and a fundamental wavelength
A. Here, ky = 7 27 /X where 1 = (—sin #,cos #) is normal to the orientation. That is
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to say, scaling the wavelength by sine and cosine of the orientation gives the individual
wavelengths along the x and y axes,

—A A

~ sin(8) ’ Av = cos(6) (28)
These projected wavelengths can be used as input to make-1d-gabor-parts. Note
however that the appropriate standard deviation for these calls to make-1d-gabor-
parts must be supplied by the 2-d function based on the 2-d fundamental wavelength
A, not the projected wavelengths. Therefore, using A, o is determined as in the 1-d
case (19). (To allow similar flexibility the key-parameters bandwidth, extent-measure,
trunc-pt, stdev, and mask-radius can all be specified with the same defaults as in the
1-d case.) A frequency of zero, corresponding to 2-d Gaussian blurring, is prohibited.

Note that if 8 is aligned with either of the x or y axes (i.e. an integer multiple of 90
degrees), one of the new projected frequencies will be zero. For that dimension make-
1d-gabor-parts will return a Gaussian (of the appropriate standard deviation) for the
cosine part, and nil is returned for the sine part. The four Gabor parts are returned
using a values expression with the sine and cosine parts along the x-axis followed by those
along the y-axis. The computed standard deviation is returned as the fifth entry in the
values form so that calling routines may determine an appropriate reduced sampling rate
for efficient coding (described further in Section 3.2 and 3.3 below).

make-3d-gabor-parts spatial-wavelength orientation speed & key key-parameters

The three-dimensional case is only slightly more complicated than the two-dimensional
case. As above, the main parameters are the spatial orientation 8 and the desired spatial-
wavelength A, to which the filter should be maximally tuned. In addition the desired
speed v is also specified. Both the temporal wavelength A, and the 3-d fundamental
wavelength A are, however, left implicit. The fundamental wavelength is necessary to
compute the appropriate standard deviation (as described above), and the temporal
wavelength is necessary to compute the 1-d temporal Gabor masks.
Temporal frequency, spatial frequency, and 1-d velocity satisfy v = —wg/k,. Conse-
quently, temporal wavelength is related to the spatial wavelength and velocity as
= (23)

()

with temporal frequency wo = 2w /A,. The L, magnitude of (wo, k,) gives the fundamental
(radian) frequency which then yields a fundamental wavelength (in pixels), i.e.,

A= 2t (24)

Consequently, given the fundamental wavelength (and the same key-parameters and de-
faults as in the 1-d and 2-d cases) the appropriate standard deviation ¢ can be computed.
This is then used, with the temporal wavelength to get the temporal 1-d Gabor compo-
nents of the mask (using make-1d-gabor-parts). The spatial Gabor parts are obtained
by calling make-2d-gabor-parts again with o, plus 8 and A,.
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The 6 Gabor components are returned through a wvaelues statement with the sine and
cosine temporal parts first, followed by the spatial parts as returned by the 2-d function.
Like the 2-d case the standard deviation of the Gaussian envelope is also returned as the

last argument.

Note that the sine and cosine Gabor kernels can be treated together as a linear FIR
filter with complex coefficients (as in (8)), or individually as FIR filters with real coefficients.
Individually, their Fourier transforms consist of two Gaussians centred at (-i-Eg,+wg) and
(—I;"o, ~wo). For example the Fourier transform of the cosine Gabor is given by

.T[COS(SE'EQ + twe) G(Z,1:Cx)] = (25)
iy L
é[(;(k‘ A kU:w + Wo, C:l:t) + (;(k == k()';w — Wy, le)’ . (26)

For sine Gabors these two Gaussians are 180 degrees out of phase, and for cosine Gabors
they are in phase. Because of this phase dependence the sine Gabor is strictly band-pass; the
frequency domain Gaussians cancel at the origin. For the cosine Gabors however, they sum at
the origin yielding some non-zero response to the mean intensity level (or DC component).
To compute this DC sensitivity one must take into account the octave bandwidth and the
measure of amplitude spectrum extent. More precisely, the amplitude spectrum at the origin

is given by
AR =0) = 70GH) (27)

For example, for a one octave filter with extent measured at one standard deviation o (in
frequency space), the origin is three standard deviations from the Gaussian centres, and A(0) =
e *® =~ 0.011. Typically this is negligible. If not, it may be subtracted from the coefficient
values obtained above giving
- A(0 .
lcos(ko - T+ wyt) — —‘(2-2 | G(&,t;0) . (28)

The result will be band-pass. This was not implemented but could easily be if desired.

3.2 Gaussian Smoothing

The following two functions perform 2-d and 3-d Gaussian blurring. In both, the convolution
masks are assumed to be separable. Therefore, the covariance matrix is diagonal. The basic
paramelers are: an image; and the standard deviations corresponding to the x, y spatial
dimensions and time.

Note that the Gaussian is a low-pass filter and therefore, depending on the amount of
smoothing, much of the high frequency content of the signal may be significantly attenuated,
in which case the resulting signal may be sampled at a coarser rate with minimal amounts of
aliasing. Information theory (e.g., |Gabor, 1946/, or see Section 2) suggests that for Gaussian
windows the sampling interval should be 20 so that windows just touch at one standard devi-
ation. In frequency space, therefore, the sampling frequency is /o and the highest frequency
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that can be uniquely represented is 7/20. The amount of energy aliased in 1-d (assuming flat
spectral input) will then be

2 /2 2

- / e Fdk ~ 0.02. (29)
V2 Jo

The aliasing is close to 0.04 in 2-d and about 0.06 in 3-d. Therefore results of such re-sampling

with respect to aliasing are not very significant.

The key-parameters in both functions allow for automatic reduction of the spatial sam-
pling rate of the convolution output. With automatic reduction the mask is only applied on
the new sampling lattice. These functions were written mainly for use with the menu hierar-
chy. Parameters governing fixnum calculations, precision, and possible sample-spacing are not
available at present, but could be.

gaussian-2d imagc stdev-x stdev-y &key (reduct-x t) (reduct-y t) into-image

gaussian-3d image-sequence frame-num stdev-x stdev-y stdev-t &key (reduct-x t) (reduct-y
t) into-image
In fact this routine does not output an entire convolution result, rather it outputs the
result computed only at one frame. In other words, it computes a weighted lincar
combination of frames about the frame number specified (0 is the first frame). In order
to get a time-varying convolution output this function could be applied repeatedly.

3.3 Gabor Filters

The goal here is to exploit the Gabor masks generated by the functions in Section 3.1 to obtain
outputs from Gabor convolutions.

The amplitude spectra associated with the sine and cosine Gabor kernels individually are
pairs of Gaussian envelopes centred at frequencies determined by the sinusoidal component
(25). In linear combination, the amplitude spectra become a single Gaussian for positive
frequencies, or a single Gaussian for negative frequencies (cf. Sections 2 and 3.1). In such
cases sinusoidal modulation can be used to move the Gaussian back to the origin so that its
output may be sampled more coarsely (at the same rate as the output of a Gaussian low-pass
filter of the same standard deviation). More precisely,

GilE R+ tw) |Gabor(z,t; ko,wo,a) * I1(,1)] (0)

has the same effective transfer function as a Gaussian smoothing function, since, using the
convolution theorem, the Fourier transform of (29) is given by

b(k ~ k‘o,w ~ wy) * [Ga?)or(fé‘,w; Eo,wg,cr) ](k,w)] : (31)
Using (11) this is equivalent to
G(E,w;a) I(E+ I;O,w—l—wu) 4 (32)

In other words, rather than modulate the Gaussian envelope to create the Gabor kernel, we
could modulate the image and then smooth the result with the Gaussian, the output of which
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may be sampled at a lower rate. In practice, the modulation with a complex exponential in
(29) need not be applied, and both the cosine and sine parts should be re-sampled at the same
rate. In such cases the amount of expected error is bounded by (28) (the energy aliased in
the Gaussian case). The modulation must be taken into account, however, if reconstruction is
considered.

In order to introduce the same overlap of the tiling in frequency space (of amplitude
spectra) as with the windows in space (the kernel widths) the Gaussians should just touch at
one standard deviation (see Section 2). This accounts for the choice of reduced sampling rates
with the reduction factor computed as max(1, |20]).

gabor-sin-cos-2d image wavelength orientation &key stdev mask-radius (bandwidth 1.0)
Just-cos just-sin (auto-reduction t) cos-output sin-output
As noted above, Gabor kernels with isotropic Gaussian components are separable into
horizontal and vertical convolutions. Each sine or cosine Gabor output can be computed
as the linear combinations to two 2-d separable convolutions (sece Eq. (21)). This requires
four 1-d convolutions for each, that is, eight in total. It is more efficient, however, to
consider the computation of the sine and cosine outputs as a single operation. In this
case they may share the same first 1-d stage of processing. The sine and cosine 1-
d convolutions in the horizontal direction are common to both and may be followed
by four vertical 1-d convolutions; the vertical sine and cosine 1-d Gabors are cascaded
with each of the horizontal outputs. Finally, the two Gabor outputs are simply linear
combinations of the four outputs of the second stage, and only six 1-d convolutions are

necessary.

The basic function gabor-sin-cos-2d first uses make-2d-gabor-parts to generate the
necessary 1-d masks. It then calls gabor-2d-guts to coordinate the application of the
fillers to the image in an efficient manner. A check is done to find cases in which the
specified orientation is either vertical or horizontal (i.c., an integer multiple of 90 degrees).
In such cases only three 1-d convolutions are necessary since in Eqgs. (20) either k, or k,
will be zero. As mentioned in conjunction with make-2d-gabor-parts, one of the 1-d
sine Gabor parts will be nil, and the corresponding cosine part is a Gaussian.

In addition to the cascaded structure with shared intermediate results, I have included
some control to allow for cases where the user wants only the sine or cosine output. These
options can be specified by setling the appropriate key-parameter, just-cos or just-sin,
to true. The function returns the sine and cosine Gabor outputs through a values form.

gabor-sin-cos-3d image-seq frame-num spat-wavelength orientation speed &key key-para-
meters

This function is very similar to its 2-d counterpart. The differences are much like those
between the functions make-2d-gabor-parts and make-3d-gabor-parts.

Given the six 1-d Gabor components, the sine and cosine Gabor outputs each require 12
1-d convolutions in the simplest implementation suggested by the separability (e.g., see
[Heeger, 1987]), i.c.,

sin(k -2 | wit) = sin(wt) cos(kya) cos(kyy) — sin(wt) sin(k,z) sin(k,y)
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+ cos(wt) sin(k.z) cos(kyy) + cos(wt) cos(k.z) sin(kyy).

(33)
cos(k - 7 + wt) = cos(wt) cos( k2 ) cos(k,y) — cos(wt) sin(k.2)sin(k,y)
— sin(wt) sin(k,x) cos(kyy) — sin(wt) cos(k,z) sin(k,y).

Given this separation, in conjunction with the separability of the Gaussian, the convolu-
tion can be performed by first applying 1-d sine and cosine Gabor filters (with the appro-
priate frequency and standard deviation) in time, followed by those in the x-dimension,
followed by those in the y-direction.

Applying the sine and cosine filters together, making use of shared intermediate results,
requires only 14 1-d convolutions in total. Thus, only two temporal 1-d convolutions
are required. These are computed first as they are the most expensive. Then the two
x-direction masks are applied to each of the temporal outputs, and finally, the sine
and cosine Gabors masks for the y-direction are applied to each of the four x-direction
outputs. The actual 3-d sine and cosine Gabor outputs are formed by simple linear
combinations of these 8 separable outputs (32).

Note that, as discussed in terms of the temporal convolution function, gabor-sin-cos-3d
computes a result only at one frame in the sequence. To obtain a time-varying output

use the function gabor-sequence as described below.

gabor-power sin-part cos-part & key into-image

Given the cosine and sine Gabors output, this function computes a local estimation of
power. It simply calls the utility function complex-image-power. There is also a
utility function to compute local amplitude called complex-image-amplitude.

gabor-phase sin-part cos-part &key into-image

Given the cosine and sine Gabor outputs G. and G, this function computes local phase
as arctan(G,/G.) using the utility function complex-image-phase. The output phase
values fall between —m and 7. In manipulating phase spectra further, a utility function
is provided to take an image modulo 27 so that its phase values also fall between -7

and 7.

gabor-sequence image-seq nframes start-frame spat-wavelen orientation speed & key (band-

width 1.0) (auto-reduction t)

This function simply applies a 3-d Gabor filter (sine and cosine parts with the parameters
specified as described above) to the frames specified. The results are returned in an array
of length (2 nframes), with sine and cosine Gabor outputs for frame i { nframes returned
as array[2i] and array[2i+ 1].

gabor-power-sequence image-seq nframes start-frame spat-wavelen orientation speed &key

(bandwidth 1.0) (auto-reduction t)

Like gabor-sequence this function applies a gabor filter to an image-sequence. However,
it returns an array of length nframes containing not the sine and cosine results, but rather
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the power computed using gabor-power. (In fact, before returning the power output,
each result frame is placed through a display function to scale the results to 8 bits. So
this is mainly for viewing results or for demonstration.)

3.4 Gabor Families

As described in Section 2 we are ultimately interested in families of filters providing rich image
decompositions. Using the Gabor functions described above we now consider the construction
of an entire family. Of special interest is the tremendous efficiency obtained by exploiting
phase relationships between filters within the family and intermediate results (a hierarchical
approach). The implementation of the family can be much more efficient per filter than that
outlined in Section 3.3.

For each of the families considered here frequency space is divided into a set of scale-
specific (isotropic) rings, each of which is divided into a set of orientation or velocity tuned
channels. All the functions described below do not compute a complete representation across
all scales. Instead, given a fundamental wavelength of interest, they compute the outputs of
the set of filters that decompose the annular region of frequency space about the desired scale
(a spheroid in 3-d). Given the desired bandwidth the function determines the appropriate
number of orientation channels and their tuning (from Section 2). It then creates the filter
masks and applies them to the Image.

The application of filters comprising different scales, either with constant bandwidth or
constant spatial support (varying bandwidth), can be handled by another function. Irom
the discussion above (or the program diagnostic output) one can determine the high and low
frequency cut-off for a given ring, and thereby decide on the placement of neighbouring rings.

spatial-gabor-ring image wavelength &key (auto-reduction t) (bandwidth 1.0)

Given the bandwidth 3, we can determine the appropriate number of orientation chan-
nels. This is given by (see Figure 1 in Section 2.3)

, R
N = |n/6], where 6 = 2 arcsin(*) : (34)

0
Here, R is the radius of the amplitude spectrum (R = poy from Section 3.1), and [, is
the peak frequency (f, = 27/) from Section 3.1). 1 use the ceiling instead of the floor

as in Section 2 because it may be more important to stress completeness than efficiency
at this stage. By approximating 8 by 2R/ f, we get

o m(1 + 2P) .
N = [#—“ == m?- (35)

Thus the preferred orientation of the n'* channel is simply 8,, = nw/N. This then yields
the parameters necessary for the generation of the masks.

Towards an efficient implementation of the convolutions we may take advantage of certain
phase relationships. In particular, note that for n # 0 or 90 degrees, 6, = 180 — 6y _,,.
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Consequently, the wavelengths in the x and y dimensions will have the same magnitudes
for both channels but will differ in sign; i.e.,

/\;r,n = )‘:c,an 3 )\y,n = _Ay.N— n - (36)

Consequently, the intermediate 1-d separable results necessary to compute the nt* ori-
entation are identical (modulo sign change) to those for the (N - n)”1 orientation. More

precisely,

sin(k,, - ¥) = sin(kz, nz) cos(kyny) + cos(kz nz) sin(kyny), (37)
cos(ky, - T) = cos(kg nz) cos(kyny) — sin(ks ) sin(kyny).

sin(ky _,, - &) = sin(k, ,z) cos(k, ,y) — cos(k; nx)sin(ky ,y), (38)
cus(l—c.Nhn S T T ) cos(kyny) + sin(kz nz)sin(kyny).

Therefore, we need only the masks for 8, up to and including 90 degrees, and the 6
1-d separable convolutions described in Section 3.3 for gabor-sin-cos-2d can be used
to compute not 2, but 4 Gabor outputs at orientations 6, and On .. This yields a
considerable increase in efficiency. Furthermore, since all filters have the same Gaussian
envelope, they should all have the same reduced sampling rates.

The function returns an array containing the convolution outputs. The sine and cosine
Gabor outpus for orientation 6, are found in array[2n] and array/2n+ 1]. The size of the
array depends on the number of orientations which depends on the bandwidth.

space-time-gabor-ring image-seq frame-num wavelen orientation speed &key (auto-reduc-
tion t)
The decomposition of the spatiotemporal scale-specific [requency space region is more in-
volved than the 2-d case. Rather than consider the general tiling problem of a spheroidal
ring, consider the tiling in terms of a set of toroidal rings parallel to the spatial frequency
axis, with the radius of the ring decreasing with higher temporal frequencies. Thus each
ring represents a region of narrow speed tuning, but no orientation specificity. We can
then use the scheme above to determine how many orientation should be in each ring.
The middle ring, which contains the plane at w = 0, will contain the grealest number
of orientation channels, each with a preferred speed tuning of v, = 0. Above and be-
low come rings with somewhat fewer orientation channels that are sensitive to non-zero
yet small velocities. Note that for rings with tuning to higher temporal frequencies,
the principal spatial frequency tuning decreases. and Yet for all rings the bandwidth
remains constant. Finally, decomposition should end nicely with one filter sensitive to

high speeds and flicker.

The number of these speed-rings depends on the bandwidth; remember that all the filters
have 3-d isotropic amplitude spectra. Thus, the difference in preferred orientation tuning
between adjacent spectra for the middle band (zero speed case) A determines the speed
preferences for other rings. More precisely, the preferred speeds for the two rings of
distance n from the middle ring are + tan(nAf). Ideally the bandwidth should be set so
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that for Ay there is some n satisfying nA# = 90 degrees. In this way the flicker channel
is obtained in the final ring.

One appropriate bandwidth is 0.8 octaves, which is what space-time-gabor-ring uses.
In this case there are effectively 6 toroidal rings. One tuned to zero speeds with 6 different
orientations, two tuned to speeds of +1/+/3 (in pixels/frame) each with 5 orientations,
two tuned to speeds of +1/3 each with 3 orientations, and the flicker channel. For a
given orientation the directions that correspond to positive and negative speeds can be
thought of as follows: Imagine a range of orientations to which a filter is tuned, say from
30 to 60 degrees, that lie on the perimeter of a circle. Positive speeds correspond to the

direction out from the centre of the circle, while negative speeds point inwards.

Like the orientation case above phase symmetries are exploited. This applies not only
within each speed-ring but for rings which differ only in the sign of the speed tuning.
Every two such rings share the same intermediate results, and can be combined in differ-
ent linear combinations. In this case the 46 sine and cosine Gabor outputs are computed
with only 75 1-d convolutions. This is over 7 times more efficient than if each had been
computed independently. This is in addition to the efficiency already gained by 3-d
separability.

It is useful to note that several intermediate functions were written that coordinate most of
the shared intermediate results, the phase relationships, and the order in which convolutions are
applied. These are full-family-guts, part-family-guts, full-reflected-gabors, and part-
reflected-gabors. The former two operate in 2-d space exploiting spatial phase symmetries.
Of these the second handles cases where the orientation of interest is an integer multiple of 90
degrees, in which case there are no phase-symmetries of interest and only 3 1-d convolutions
are necessary. These two functions are used explicitly by spatial-gabor-ring for example.
The latter two functions work in space-time. As above, the second function deals only with
cases in which the preferred orientation is an integer multiple of 90 degrees.

4 Comments and Extensions

As noted at the end of Section 2.4 there remain many issues still to be resolved. With respect
to immediate goals | sece two topics for future work. The first is an extension of the current
implementation to include filters with non-unit aspect ratios. This may follow the hierarchical
approach outlined in [Fleet and Jepson, 1988] which should be as efficient as the functions
in Section 3.4. (The necessary functions for this would be 1-d inseparable convolution, which
should not be difficult.) This representational scheme should have several advantages in terms
of localization, directional tuning and efficient encoding.

The second immediate topic for future research is the accurate measurement of orientation
and normal velocity when given the filter outputs. The filters described above are linear and
therefore yield a modulated output. It is of interest to consider how estimates of velocity
and orientation may be derived from the filter outputs, that are 1) monotonic with increasing
speed and orientation, and 2) more accurate than the tuning of the original filters. This stage
of processing will be non-linear (e.g., see [Heeger, 1987]).
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6 Appendix: Implementation Details

For the current implementation (unlike IMAGE-CALC) I assume that images, by default, con-
sist of 32-bit 2’s complement fixed-point numbers. Mask (or kernel) coefficients are generally
assumed to be floating-point numbers between minus one and one. This need not always be
the case as discussed below. Like IMAGE-CALC, one convention often used with the func-
tions described below is the specification of a particular image into which the output should
be placed (often through the key-parameter into-image). If such key-parameters are not used
then a new image is created to hold the result, which by default has 32-bit fixnum pixels that
are initialized to 0. Different pixel types (e.g. floating-point or 8-bit fixnum), and different
initial values may be specified in general by providing such "result” images directly using
key-parameters.

Most image manipulation functions return an image as a result (independent of whether
the user specifies an image into which the result should be placed). Often, however, functions
return several results. This is true of mask generation functions as well as image operators.
In doing so, the lisp values form is often used to return the function outputs. Therefore, such
functions should be called within a multiple-value or a multiple-value-bind expression.

6.1 Convolution Functions
6.1.1 Basic Convolution Functions

The following functions form the basis of the more sophisticated convolution routines. They
are written assuming that they will be called primarily by other routines, and not used directly
at the top level. Therefore, most of their parameters must be specified directly, rather than
being left as optional or key-parameters.

In all but convolve-image-sequence there is an optional parameter which, if specified
should be an image into which the output is placed. In convolve-image-sequence this is
done through the key parameter into-image. (Perhaps, for consistency, they should all be key
parameters.)

convolve-1d-rows image mask fc pr ss rf &optional into-image

This is the basis for most the convolution software; it was adapted from a similar,
undocumented function found in the IMAGE-CALC file ’gauss-image.lisp’. The principal
inputs are an image and a kernel (mask). The kernel is applied to the image in the
horizontal directiori (along the rows parallel to the x-axis). The result is transposed,
ready for another horizontal convolution to complete a 2-d separable operation.

The convolution is performed most efficiently one row at a time. Therefore, the rows
are first extracted from the image, after-which, each is extended by placing a border of
pixels at each end. This ensures that the mask may be applied up to the actual border
of the original image. (The intensities of the border pixels are the same as those along
the boundary of the original image to ensure that abrupt intensity changes are not found
at image boundaries.) The mask is then applied along the row yielding a 1-d array of
output that is then placed into the columns of the result image; this implicitly performs
the transposition.



The computation may be done using fixed-point arithmetic with fixed-point output,
or floating-point arithmetic with either fixed- or floating-point output. If fixed-point
arithmetic is specified (via the boolean parameter fc denoting fixnum-calculation), then
the number of significant digits for the mask coefficients must be specified (via the
parameter pr denoting precision).

Also, there is a reduction factor (rf) that indicates the placement interval at which the
mask is applied to the image, so that a result is not computed at every pixel. This
1s equivalent to specifying a sampling function that is applied (multiplicatively) to the
convolution output. for example, if the reduction factor is 2, the output image (in the
horizontal dimension) is half the size. Given the reduction of the effective fold-over
rate accompanied by low-pass filtering, this permits a combination of convolution and
subsampling for more efficient computation and coding in one step.

Finally, a sample spacing parameter (ss) is specified, which, if other than 1, specifies
that the filter coeflicients are not paired with adjoining pixels, but with pixels spaced
by ss. Naturally this is normally 1. In a multiple-cascade approach, like that of Burt
and Adelson (1983), Crowley and Stern (1984), or Fleet and Jepson (1988), this is often
useful.

convolve-1d-rows-symm-mask image mask fc pr ss rf &optional into-image

This is largely identical to convolve-1d-rows above although it exploits assumed sym-
metlry in the kernel.

convolve-1d-rows-antisymm-mask image mask fc pr ss rf &optional into-image

This is largely identical to convolve-1d-rows above although it exploits assumed odd-

symmetry in the kernel.

convolve-image-sequence image-seq frame-num mask fc pr ss &key zero-past into-image

This takes 3 primary inputs: an image-sequence (which is assumed to be an array of
images), a frame number, and a mask. The function returns a weighted sum of images
from the image-sequence with the weights given by the mask, centred at the frame
specified. It amounts to the temporal convolution output computed only at the specified
frame. (Therefore, it should probably be called a linear summation routine instead
of convolution, where convolution would be a subsequent routine calling this function
repeated for different frames.)

The other inputs, namely fc, pr, and ss, are functionally similar to those with the other
convolution functions above. Note thal there is no reduction factor because the result is
only computed al one frame anyway.

If the sequence does not have enough images for the size of the mask specified then the
frame-number given was either close to the beginning or close to the end of the sequence.
In such cases, by default, the function assumes that all images before time 0 are equal
to frame 0 (i.e., it assumes a static past), and that all images beyond the final frame are
equal to the final frame (i.e., it assumes a static future). However, the user may also
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specify that the past and future pixel values should be zero by setting the boolean key

parameler zero-past to true.

The main workings of the convolve-image-sequence routine are actually contained in two
other functions that are reasonably involved. The goal was to adapt the IMAGE-CALC
image-point-operator macro to take a linear combination of an arbitrary number of
images. Therefore, dynamically (when given the size of mask and therefore the number
of images) a new image-point-operator instance is generated, and compiled with the
appropriate number of arguments. Therefore each call to convolve-image-sequence
will be slow the first time with a specific number of images. Subsequently it retains the
compiled version on the function’s property list for future use.

6.1.2 General Convolutions

convolve-1d image mask &key row column into-image display-image display-only transpose-
result (fixnumcalc t) (precision 5) (sample-spacing 1) (reduction-factor 1)

This is a friendlier function than the 1-d convolution routines above. With respecl to the
key-parameters: 1) either row or column should be specified as true, both not both; 2)1f
an 8-bit display version of the result is desired as output in addition to the 32-bit result,
the appropriate image type should be provided using the display-image key-parameter
into which the output will be placed; 3) if only the display version is required then
display-only should be set to true, in which case the function returns the 8-bit image
instead of a 32-bit image which is the default (a display-image may still be supplied for
the output); 4) the option of transposing the result to allow for subsequent completion of
a separable 2-d convolution is allowed with the boolean key-parameter transpose-result;
5) the last four key-parameters are functionally similar to those described in Section 3.1,
but provide default values and therefore need not be specified explicitly.

convolve-2d-separable image row-mask col-mask &key key-parameters

This, like convolve-1d is a more comfortable routine that enables 2-dimensional sep-
arable convolution. Therefore, in addition to the input image, both a row mask and
a column mask must be given. Otherwise, its key-parameters are similar to those of
convolve-1d, except for row, column, and transpose-result of which it has no use.

Thus far, a separable 3-d convolution, and general 2-d and 3-d convolutions have not been
written. To do so shouldn’t be hard at all. For the general case however, the first step should
be the construction of a bordered image as described in the 1-d case to allow the mask to be
applied up to the border. A function in the utility-fns file already exists to do this as described
in Section 3.6.2. The remaining code can be adapted from convolve-1d-rows.

6.2 Utility/Menu Functions
6.2.1 Timing and Debugging

These functions (and global variables) have been used to display diagnostic information about
the time taken by various functions and intermediate values of various parameters, mask
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coefficients, etc. The functions of interest are: dbg-on, dbg-off, timer-on, and timer-off.
They are called with no arguments.

6.2.2 Image Operators

rescale-image image scale-factor &key into-image

This function simply rescales all values in the image by the scale-factor.

shift-intensity image off-set &key into-image

This function adds the off-set to all intensity values in the image. If the input image has
floating point pixel values so will the result.

set-image-intensity image new-value

This acts like an initialization function setting all pixels values of the image to new-value.

bordered-image image x-size y-size &optional (x-offset 0) (y-offset 0)

The adds a border to the existing image. The returned image will be larger horizontally
by 2 times x-size, and vertically by 2 times y-size. By default the old image is placed in
the centre. However, using the key-parameters it may be shifted towards one or two of

the bounaries.

make-image-copy image &key into-image
This function is used to avoid problems in using IMAGE-CALC’s copy-image function
with other than 8-bit fixnum images this one was written.

extract-image-window image x-start y-start &key x-dim y-dim into-image unmake-original
A window is extracted from image and returned as an image. The lower left-hand point
of image for the window is given by ( x-start , y-start ). The size of the window can be
specified by the key-parameters x-dim and y-dim, or the size of into-image. Otherwise by
default it is the remaining portion of image. If unmake-original is true then the original
input image will be discarded and expunged.

image-ipo-add image-a image-b &key into-image

Useful image-point-operators were written to perform frequent operations on images with
no re-scaling of results as is done by several IMAGE-CALC functions. The two functions

below are similar.
image-ipo-sub image-a image-b &key into-image
image-ipo-mult image-a image-b &key into-image

rotate-image image orientation &key interpolation

This function creates a new image from the given image by rotating it counter-clockwise.
Orientation is specified in degrees.
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6.2.3 Image Generators

make-2d-impulse &key into-image (intensity 100000)
This simply returns an image which has been initialized to zero, except for the centre
pixel which is set to the value of ’intensity’. A 3-d impulse function can be formed
implicitly using a 2-d impulse function, and specifying zero-past when calling convolve-
image-sequence.

make-disk radius &key x-centre y-centre (image-size 128) (intensity 500)

This creates an image with a bright disk on a dark background. The radius is required
as inpul. The key-parameters may be used to move the location of the disk from the
centre, the size of the output image created, and the intensity of the disk.

make-bar x-width y-width orientation &key x-centre y-centre (image-size 128) (intensity
500)

This creates an image with a bright rectangular region on a dark background with the
given orientation. The key-parameters may be used to move the location of the bar from
the centre, the size of the output image created, and the intensity of the bar.

make-sinusoid wavelength orientation &key phase (amplitude 250) (image-size 128)
This function is similar to make-bar. The sinusoid is generated in the horizontal direc-
tion, and then rotated using the function rotate-image.

make-disk-sequence n-frames disk-radius x0 y0 dx dy
Returned is an array of images with a disk of radius disk-radius translating with speed
(dx, dy), centred at an initial location of (x0, y0).

make-translation-sequence image n-frames dx dy

Returned is an array of images (all of the same size) with the image translating for
n-frames with speed (dx, dy).

6.2.4 Mask Functions

check-mask mask string This is used often when the debugger is no. It simply displays
information about the mask, including the coefficient values, the sum of the coefficient
values (and the absolute coef values), and their standard deviation.

rescale-mask mask scale-factor &key into-mask

This rescales the mask given by scale-factor. If into-mask is unspecified then a new
floating-point array is created into which the result is placed. As well into-mask may be
the same as the input mask, thus doing the scaling in place. In all cases the new mask
is returned by the function.

make-fixnum-mask old-mask &optional (precision 6) &key (remove-zeros t)
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This returns a new mask in which the coeflicients are all fixnum. The values of the old
mask input are scaled to the specified number digits of precision and then rounded to
determine the new mask coeflicients. If remove-zeros is specified, then the new mask will
trailing and leading zeros, thus creating a smaller mask.

6.2.5 Display Functions

make-display-image image &key assumed-min-max display-image (do-scaling t)
I had some problems displaying results from 32-bit computations. Therefore, for expe-
dience and consistency, a display routine was written to allow for rescaling of output

results into 8-bit images for display purposes. The function returns the scaled copy of

the original.

By default, for images containing only positive values, they are scaled from 0 to 255. For
images with positive and negative values, the results are scaled to fall within the range
-127 to +127. Using the key parameters assumed-min and assumed-max one can scale a
set of outputs according to the same minimum and/or maximum values. In other words
specifying assumed-max or assumed-min overrides the minimum or maximum found from
the input image. Also, by setting the do-scaling key-parameter to nil, the results will
simply be truncated at 0 and 255 with no rescaling.

display-image-sequence image-array

There is an undocumented function in IMAGE-CALC to display lists of images. The
function was adapted for use by the menu to display image sequences supplied as arrays.

draw-vector-field orient-image ampl-image max-ampl x0 y0 wx wy vect-radius disp-pane
This function assumes that orient-image is an image containing orientation values (esti-
mates) in degrees. Ampl-image is assumed to contain non-zero confidence values. The
parameters x0, y0, wx and wy specify the bottom left coordinates and widths of region
(window) of orient-image to be displayed. Finally, vect-radius gives the room necessary
for each vector (therefore the expansion factor), and disp-pane must be an image-calc
pane (e.g., use get-imagecalc-pane). Normally this function is accessed through the
menu system.

6.2.6 Input-Output Functions

input-image-sequence path-name number-frames frame-start-index
This function, normally accessed through menus, will load a sequence of images and
return them in an array of length number-frames. The images should be arranged so
that the i** image is found with file name ”pathname[i+frame-start-index].image”. In
other words, an extension of ”.image” is assumed, as is the numbering as a suffice onto
the basic file name assumed of all image common to pathname. This function is most
easily called using the menu.

output-image-sequence image-array number-frames pathname &key (array-start-index 0)
(frame-start-index 1)
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Much like input-image-sequence this places an array of images to disk under the basic

pathname specified, an index number, and the extension ”.image”. The function takes

the specified number of images from the array from index array-start-index to array-start-

index + number-frames and begins the suffice file numbering with frame-start-index.
write-image-to-file image pathname

This write the pixels values of the image to the specified file in ascii format so that it is
readable as a text file.

6.2.7 Menu Hierarchy

After invoking IMAGE-CALC the middle button provides access to a variety of the function
described here through menu control. In this section I simply list those functions available
in the menu hierarchy. The top level menu (when middle button hit) allows access to four

subordinate menus:
Gaussians Gabors I/0 Display
These four menus contain the following functions:

e Gaussian Menu

2-D Gaussian Filter
3-D Gaussian Filter
2-D Impulse Response

e Gabor Menu

2-D Gabor Filter
2-D Impulse Response
3-D Gabor Filter
3-D Impulse Response

Gabor Power
e 1/0 Menu

Input Image
Input Sequence

Output Sequence
e Display Menu

Display Image
Display Sequence
Display Vector Field
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