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Abstract

Common elastic registration schemes based on landmarks and radial basis functions (RBFs) such as thin-plate splines or multiquadrics are

global. Here, we introduce radial basis functions with compact support for elastic registration of medical images which have an improved

locality, i.e. which allow to constrain elastic deformations to image parts where required. We give the theoretical background of these basis

functions and compare them with other basis functions w.r.t. locality, solvability, and ef®ciency. A detailed comparison with the Gaussian as

well as conditions for preserving topology is given. An important property of the used RBFs (Wendland's c-functions) is that they are

positive de®nite. Therefore, in comparison to the use of the truncated Gaussian, the solvability of the resulting system of equations is always

guaranteed. We demonstrate the applicability of our approach for synthetic as well as for (two-dimensional) 2D and 3D tomographic images.

q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Registration is an important technique in medical image

analysis. Rigid and af®ne registration methods can only

cope with global differences, for example, translation, rota-

tion, and scaling. In many cases, however, elastic or non-

rigid methods are required to cope with local differences

between the images. Such differences are due to, for exam-

ple, scanner-induced deformations, movements of the

patient, surgical interventions, or different anatomy (e.g.

image atlas-registration).

In this paper, we consider a point-based elastic registra-

tion approach based on radial basis functions (RBFs). With

this approach the transformation is composed of radially

symmetric functions that serve as basis functions. The

choice of the type of the RBF is crucial for the overall

characteristics such as the smoothness or the locality of

the transformation function.

Bookstein [2] has introduced thin-plate splines for medi-

cal image registration. This approach yields minimal bend-

ing energy properties measured over the whole image, but

the deformation is not limited to regions where the point

landmarks are placed. This behaviour is advantageous for

yielding an overall smooth deformation, but it is proble-

matic when rather local deformations limited to image

parts are desired. To cope with local deformations, the land-

marks have to be well distributed over the images to prevent

deformations in regions where no changes are desired [1].

Others have investigated multiquadrics as RBFs for regis-

tration, e.g. [11], and for image deformations [15]. These

RBFs have a parameter which controls their locality.

However, the function values of multiquadrics are increas-

ing with growing distance from the landmark position and

thus the registration result at locations far off the center of

the RBFs is largely in¯uenced. Other RBFs decrease with

growing distance from the landmark position such as

inverse multiquadrics, e.g. [15], and the Gaussian, e.g. [1].

Since these RBFs asymptotically approach zero, the global

in¯uence is reduced, but it is not spatially limited, i.e. these

RBFs have no compact support. In Ref. [8], a local registra-

tion approach has been described, where polynomials with

spatially local weight functions have been used, but where

the distribution of landmarks must satisfy certain require-

ments to avoid the appearance of holes in the transformed

images.

In this paper, we introduce RBFs with compact support

for the registration of medical images. The basis functions

we employ have a similar shape as the Gaussian, but they

have the advantage that their in¯uence is limited around a
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landmark (in 2D and 3D images on a circle or a sphere,

respectively). This property allows the registration of medi-

cal images where changes occur only locally. The applica-

tion scenario we have in mind is the registration of local

changes in medical images due to the resection of a tumor or

due to other surgical interventions. Our approach has also

very nice theoretical properties. Actually, for the basis func-

tions we use, it can be shown that the resulting system of

equations is always solvable. Thus, we provide an answer to

a previously posed question in Ref. [1], where Gaussian-

shaped RBFs with compact support are sought while solva-

bility is always ensured.

Below, we ®rst give an overview of the general scheme

for registration based on RBFs (Section 2). In Section 3, we

introduce an elastic registration scheme using RBFs with

compact support and describe its properties. Finally, in

Section 4, we present experimental results for 2D and 3D

images. Parts of this work have previously been published in

Refs. [5,6].

2. Image registration with RBFs

In this section, we brie¯y describe the radial basis func-

tion approach and discuss its properties depending on the

choice of the basis function.

2.1. General scheme

Generally, in registration applications one has to deter-

mine a transformation function u : R d ! Rd , where d is the

image dimension, e.g. d� 2, 3 for 2D and 3D images,

respectively. An interpolation transformation function u(x)

based on point-landmarks must ful®ll the following

constraints:

u�pi� � qi; i � 1¼n; �1�
where pi [ Rdconstitute a given set of point-landmarks in

the source image and qi [ Rd are the corresponding land-

marks in the target image. Often, each coordinate of the

transformation function is calculated separately, i.e. the

interpolation problem uk : R
d ! R is solved for each coor-

dinate k � 1¼d with the corresponding constraints uk�pi� �
qi;k: In the following, we write u(x) instead of uk�x�. In 2D,

u(x) is calculated separately for u1�x� and u2�x� and in 3D

for u1�x�; u2�x�; and u3�x�:
If we apply a radial basis function approach, then the

interpolation function u(x) generally consists of two parts.

u�x� � fs�x�1 Rs�x�; �2�
where fs�x� is a sum of polynomials up to degree p and

Rs�x� consists of a sum of RBFs (the index s denotes sum):

fs�x� �
XM
j�1

bjfj�x�; Rs�x� �
Xn

i�1

aiR�ix 2 pii�:

Here, the fj�x� are a basis of Mfunctions for all polynomials

up to degree p, R�r� � R�iri� is a function depending only

on the distance r $ 0 from the origin, ix 2 pii � iri is the

Euclidean distance from x to pi, and a i and b j are coef®-

cients. The RBFs R�ix 2 pii� are centered around the n

landmarks pi. Inserting Eq. (2) in Eq. (1), and using the

following additional constraints:Xn

i�1

aifj�pi� � 0; j � 1¼M;

yields the following system of linear equations for the coef-

®cients a � �a1;¼;an�T and b � �b1;¼;bM�T :

K P

PT 0

 !
a

b

 !
�

qk

0

 !
; �3�

where K is the n £ n sub-matrix given by Kij � R�ipi 2 pji�
and P the n £ M sub-matrix given by Pij � fj�pi�: qk �
�qk;1;¼;qk;n�T is a vector of the kth coordinate of the target

landmarks qi.

The scheme in Eq. (3) can also be extended to allow for

the case of approximation. In this case we have:

K1lW21 P

PT 0

 !
a

b

 !
�

qk

0

 !

with

W � diag 1=s 2
1 ;¼; 1=s 2

n

n o
;

�4�

where s i are the individual weights of the landmarks which

represent landmark localization errors and l is a general

weighting parameter. Previously, approximation scheme

for elastic registration based on thin-plate splines have

been proposed in Refs. [14,13].

2.2. Important properties

The choice of the RBF R(r) determines the characteristics

of the transformation function u(x). Given the application

scenario from above the following properties are of primary

interest:

² Locality. By locality we denote the spatial range of in¯u-

ence induced by an additionally used landmark pair.

These in¯uences can be rather local, i.e. regions of the

registration result at larger distances than a certain radius

from the landmark pair do not undergo changes. Alter-

natively, the landmark pair can in¯uence the whole trans-

formed image. Some RBFs have locality parameters,

which allow us to control their in¯uence on the registra-

tion result (see also Section 2.3).

² Solvability. To ®nd solutions for the coef®cients a and b
for all possible sets of landmarks, which are not colinear

in 2D and not coplanar in 3D, it is required that the matrix

on the left-hand side of Eq. (3) has to be non-singular. We

will discuss the non-singularity of the matrix based on the

choice of the RBF in Section 2.3.
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² Ef®ciency. Computational ef®ciency is important espe-

cially for large data sets such as 3D images. The compu-

tation of a transformation function depends on the used

basis function. Also, for ef®ciently solving the system

(Eq. (3)) it is important whether the involved matrix is

dense or sparse.

2.3. Commonly used radial basis functions

A variety of different RBFs have been proposed for elas-

tic image registration and image deformation. These are, for

example, thin-plate splines (RTPS) [2,4,14], multiquadrics

(RM) [9,11,15], inverse multiquadrics (RIM) [15], and the

Gaussian (RG) [1]:

RTPS�r� �
r42d ln r 4 2 d [ 2N

r42d otherwise;

(
�5�

RM�r� � �r2 1 c2�m; m [ R1; �6�

RIM�r� � �r2 1 c2�2m
; m [ R1; �7�

RG�r� � e2r2
=2s 2

: �8�
Locality. The ®rst two functions increase, while the latter

two functions decrease with growing r from the landmark

point. All these functions have in common that they have no

compact support and therefore a landmark pair in¯uences

the whole registration result.

Solvability. The transformation function (2) has a certain

`polynomial precision', which corresponds to the polyno-

mial part of degree p. Naturally, polynomials have global

in¯uence on the registration result. Therefore, to reduce the

global in¯uence it would be advantageous to have no poly-

nomial part. Note, that due to a mathematical property of

some of these functions, which is the conditional positive

de®niteness, certain polynomials are necessary to guarantee

the non-singularity of the matrix in Eq. (3). For thin-plate

splines we have p � 1�d � 2; 3� and for multiquadrics p

depends on the exponent m . The minimal degree p is p �
dme 2 1 where dme denotes the smallest integer $ m: The

inverse multiquadric and the Gaussian are positive de®nite,

and thus they can be calculated without any polynomial

part.

Ef®ciency. All functions (Eqs. (5)±(8)) involve the calcu-

lation of transcendental functions (the logarithm, the expo-

nential, or the square root with m � 0.5). Also, the matrix in

Eq. (3) is always dense since the functions have no compact

support.

3. Image registration using RBFs with compact support

The disadvantages of the functions described above are

the global in¯uence of a landmark pair on the registration

result, the necessary polynomials for some functions, and

the necessity of calculating transcendental functions. In this

section, we describe a spatially limited RBF which does not

have these disadvantages, and is thus suited for our purpose

of spatially limited medical image registration.

3.1. c -functions of Wendland

We propose to use the c -functions of Wendland [17] as

RBFs for elastic registration of medical images. These

radial basis functions have compact support, are positive

de®nite, and are moreover polynomials. These RBFs have

previously been used in Ref. [16] to model facial expres-

sions for videocoding applications. The general form of the

RBFs can be stated as:

c�r� �
p�r� 0 # r # 1

0 r . 1;

(
�9�

where p(r) is a univariate polynomial. Let c (r) denote the

univariate function, then c : R d ! R;c�iri� � c�iri� is the

corresponding multivariate function in the space of dimen-

sion d. The mathematical property of positive de®niteness

of c depends on the space dimension d. If c is positive

de®nite on R d
; then c is also positive de®nite on R g with

0 , g # d: It has been proven in Ref. [17] that for given

space dimension d and smoothness C2k�R� there exists Ð

up to a constant factor Ð only one function c (r) of the form

(9) which is positive de®nite on R d and which has a poly-

nomial of minimal degree bd=2c 1 3k 1 1; where bxc; the

¯oor function, is the largest integer # x: This function is

given by:

cd;k�r� U Ik�1 2 r�bd=2c1k11
1 �r� �10�

with

�1 2 r�v1 �
�1 2 r�v 0 # r , 1

0 r $ 1;

(
as the truncated polynomial and

Ic�r� U
Z1

r
tc�t� dt r $ 0

as the integral operator which is applied k times in Eq. (10).

Note, that for even dimensions d, the property cd;k � cd11;k

holds due to the ¯oor function in Eq. (10). For the functions

cd;k�r�, we chose d� 3 which is the largest image dimen-

sion in our registration applications. As we have mentioned,

the function c3;k is positive de®nite also for smaller dimen-

sions than three. Below, we list c -functions for d� 3 and

k � 0¼2 :

c3;0�r� � �1 2 r�21

c3;1�r� � �1 2 r�41�4r 1 1�

c3;2�r� � �1 2 r�61�35r2 1 18r 1 3�:
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In Fig. 1, the functions c 3,0 and c 3,1 are plotted together with

the Gaussian.

Since we prefer differentiable and smooth functions at

r� 0, we exclude k� 0 and chose the polynomial c 3,1 for

k� 1 of next smallest degree for use in registration. The

mathematical properties also hold for different spatial

supports a:

ca�r� � c�r=a�

3.2. Properties of our registration approach

Locality. In our elastic registration approach we ®rst

apply a rigid (or af®ne) transformation function computed

by a least squares ®t to cope with global differences. Second,

we apply the c 3,1-function as RBF together with the identity

transformation. These RBFs ensure limited locality of each

landmark on a circle or a sphere depending on the length a

of the support.

Solvability. The c 3,1-functions are positive de®nite which

ensures that the matrix K is regular (invertible). Since an

additional polynomial part f s is not necessary, Eq. (3)

reduces to:

Ka � qk: �11�
Note, that we use an equal support size a for all landmarks.

We are not aware of a theoretical result which states that K
in the case of different support sizes a is non-singular. Thus,

the solvability is not guaranteed for varying a.

In case of approximation, Eq. (11) can be extended to:

�K 1 lW21�a � qk with W � diag{1=s 2
1 ;¼; 1=s 2

n };

�12�
where s i are the individual weights of the landmarks which

represent landmark localization errors and l is a general

weighting parameter (see Section 2.1). Also in this case,

the solvability of Eq. (12) is always guaranteed, since W

is positive de®nite and a sum of two positive de®nite

matrices also yields a positive de®nite matrix.

Ef®ciency. In comparison to the Gaussian or the inverse

multiquadrics, neither exponential nor root functions have

to be evaluated for the c 3,1-function, which is a polynomial.

Also, depending on the size a of the support and the distri-

bution of the landmarks pi the matrix K is rather sparse (see

also below). However, one has to note that the difference in

ef®ciency between c and the Gaussian or the inverse multi-

quadrics depends on the number and the spatial distribution

of landmarks.

Note, that landmarks with zero displacement, i.e. which is

the case if the source landmark pi and the target landmark qi

coincide, can be used to ª®xº the transformation at these

points. However, these ª®xedº landmarks can be dropped

when no other landmark with non-zero displacement is

placed inside the radius of the compact support.

3.3. Comparison with the Gaussian

In Fig. 1, we compare the shape of the c -functions

c a,3,0(r) and c a,3,1(r) with Gaussian. Like all positive de®nite

functions, c (r) has its maximum at r� 0.

For a given value of s of the Gaussian, we computed a

such that the integrals over both functions were equal. This

yields:

a=3 � �������
p=2s
p ) a � �������

p=2s
p

:

The similarity of the graphs c a,3,1 and the Gaussian is strik-

ing.

Having demonstrated the shape similarity between the c -

functions and the Gaussian, we investigate the differences of

the mathematical properties when used for registration.

Suppose a registration task with 7 landmarks where 4 land-

marks have been placed at the respective corners of the

image which are ®xed while 3 landmarks placed in

the middle of the image have a non-zero displacement.

The calculated matrices K in Eq. (11) are shown for c a,3,1

M. Fornefett et al. / Image and Vision Computing 00 (2000) 000±0004

Fig. 1. Comparison of c a,3,0, c a,3,1 with a� 1.504 and the Gaussian with s � 0:4: The similarity is apparent.

Image and Vision Computing ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 09-08-2000 14:14 IV0830 kbs Alden



UNCORRECTED P
ROOF

with a� 120 in Eq. (13) and for the Gaussian with the

corresponding s � 31.91 in Eq. (14).

Kc3;1
�

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0:000825 0

0 0 0 1 0 0 0:0282

0 0 0 0 1 0 0

0 0 0:000825 0 0 1 0

0 0 0 0:0282 0 0 1

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
�13�

The matrix in Eq. (13) is sparse and can easily be separated

into sub-matrices where only one entry per row and column

appears, whereas matrix (14) is dense and cannot be sepa-

rated. When instead using a truncated Gaussian (which is

the case, when very small numbers are zero due to ®nite

machine precision) the positive de®niteness is no longer

valid and thus, it is not guaranteed that the corresponding

matrix is regular. Instead the matrix for c 3,1 in Eq. (13) is

both sparse and regular and thus the linear system of equa-

tions is always solvable.

The reason why the matrix K corresponding to the trun-

cated Gaussian is generally not positive de®nite can be

explained as follows. A truncation of a function is obtained

by multiplication with a box function. In the frequency

domain this corresponds to a convolution with a sine-func-

tion. In the case of the Gaussian the Fourier transformation

of the truncated function generally has negative values.

From this directly follows that the truncated Gaussian

cannot be positive de®nite (see Refs. [1,8]).

3.4. Preservation of topology

A major requirement for an elastic registration scheme is

preservation of topology. Necessary conditions are that the

function u is continuous and that the determinant of

the Jacobian matrix must be positive at each point of the

image (ªlocally 1-to-1º property) [3]:

det�7u� . 0: �15�

To prove the global univalence or ªglobally 1-to-1º property

[3] of the transformation we use a theorem from Ref. [7]:

Theorem 1. If u : V! R n
; where V is a closed rectan-

gular region of R n
; is differentiable mapping such that the

Jacobian matrix 7u is a P-matrix for all x in V then u is

univalent in V .

Note that an n £ n real matrix is said to be a P-matrix, if all

its principal minors are positive.

We analyzed the Jacobian matrix for an isolated land-

mark p for our transformation function u, which consists

of an identity mapping plus the superposition of a local basis

function. For an isolated landmark in the 2D case we have:

u1�x� � x 1 D1c�ix 2 pi� u2�x� � y 1 D2c�ix 2 pi�;
�16�

where c is a local RBF, D 1 and D 2 are the displacement

from the source landmark p to the target landmark q in x-

and y-coordinate direction, respectively, and p is an arbi-

trary position of the landmark. Inserting Eq. (16) in Eq. (15),

it follows:

det�7u� � 2u1

2x

2u2

2y
2

2u1

2y

2u2

2x

� 1 1 D1

2c

2x

� �
1 1 D2

2c

2y

� �
2 D1D2

2c

2y

2c

2x
. 0

) D1

2c

2x
1 D2

2c

2y
. 21

) D1

2c

2r

x 2 px

ix 2 pi
1 D2

2c

2r

y 2 py

ix 2 pi
. 21

) D1

2c

2r
cos f 1 D2

2c

2r
sin f . 21;

where c stands for c�ix 2 pi� and r � ix 2 pi: If we now

set D � max�D1;D2� we get for the worst case �f � p=4� in
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2D:

D
2c

2r
. 2

1��
2
p : �17�

For the 3D case we obtain an analogous condition:

det�7u� � 1 1 D1

2c

2x
1 D2

2c

2y
1 D3

2c

2z
. 0:

If we again set D � max�D1;D2;D3� we obtain for the worst

case in 3D:

D
2c

2r
. 2

1��
3
p : �18�

With the conditions (17) and (18) it can be shown that all

principal minors of the Jacobian are positive for the 2D and

3D case, respectively. It follows that the transformations

(de®ned for 2D in Eq. (16)) preserve the topology if Eqs.

(17) and (18) hold. The minimum of �2c=2r� depends on the

locality parameter either a or s . Table 1 summarizes

�2c=2r� for different local basis functions. With the help

of Table 1 and Eqs. (17) and (18), the conditions for the

locality parameter a and s can be derived. They are listed in

Table 2.

These conditions are valid only for isolated landmarks for

which no other landmark is placed within the radius a of the

support. For landmarks with intersecting support regions

the minimal value of a depends also on the positions of

the landmarks pi which leads to a much more complicated

calculation. Nevertheless, Table 2 is a good reference

and gives a clue for choosing a value for the locality para-

meter a.

As our experiments (see below) revealed, the setting of

the locality parameter is related to the spatial distribution of

landmarks. Further investigations are necessary to clarify

this relationship. As one conclusion from our experiments,

one can say that the closer the landmarks are placed the

smaller the locality parameter can be chosen. In our experi-

ments, we kept the parameter a as small as possible such as

to maximize the locality of the transformation.

4. Experimental results

We now present registration results for synthetic and

tomographic images using the elastic registration approach

based on RBFs with compact support introduced in Section

3. Here, we con®ne ourselves to the interpolation case. We

®rst demonstrate the applicability of this approach for

simple objects, which shift or scale in elastic material.

Second, we show experimental results for registering a

pre-operative image with the corresponding post-operative

image after tumor resection. Since with our approach only

local misregistrations can be handled, prior global

registration is necessary, e.g. by applying a rigid or af®ne

transformation.

In Fig. 2, we demonstrate the registration of objects

embedded in elastic material that change their position or

form. Landmarks are placed at the outlines. These experi-

ments simulate typical medical cases, where image parts

shift and either shrink or grow as it happens in cases of,

e.g. tumor growth or tumor resection. The grids in Fig. 2

represent 301 £ 301 pixels and they are transformed using

24 landmarks as indicated in Fig. 2(a) and (d). Landmarks of

the source and the target image are marked by a box (A) and

a circle (W), respectively. The distance between two adja-

cent gridlines is 15 pixels. Parts of the grids which represent

the areas to be registered are colored gray. Source and target

landmarks are both shown in the left images. In Fig. 2(a), the

landmarks were shifted 20 pixels on both the x- and y-axes

to the bottom right. Fig. 2(b) shows the registration result

using c 3,1 with a support of a� 90 which we found experi-

mentally to be visually the best. We started with the value

from Table 2 a� 60 and proceeded to a� 120 in steps of

10. With growing distance outside the square the in¯uences

of the landmarks decrease monotonically. The margin

where the transformation function reduces to the identity

is marked as gray curve. In Fig. 2(d) we demonstrate a

scaling example. Fig. 2(e) shows the registration result for

a� 50 which we found to be the smallest value with good

results while testing values from a range of 30±120 (Table 2

gives a clue of 45). The registration result is mainly limited

to the square.

For comparison, we registered both images using also the

thin-plate spline approach, see Fig. 2(c) and (f). To prevent

an overall shift, we have added 4 landmarks in the corners of

the images which all have a zero displacement. It can be

seen that the registration is global and affects the whole

image. Over the whole image the deformation is smooth.

Using the c-functions, there is a tradeoff between the

smoothness and the locality of the registration: the larger

the area of in¯uence the smoother is the registration and

vice versa. Actually, using c -functions with a very large

support (a . < 1000) for registration, the results resemble

very much those registered with the TPS approach as shown

in Fig. 3.

Fig. 4 shows an experiment with tomographic images

where a tumor in a pre-operative image has to be registered

M. Fornefett et al. / Image and Vision Computing 00 (2000) 000±0006

Table 1

Minimum values of �2c=2r�

c a,3,1 c a,3,2 Gaussian

 
2c

2r

!
min

2
135

64

1

a
22:50

1

a
2

1��
e
p 1

s

Table 2

Minimum a and s for given displacement D

Dimension c a,3,1 c a,3,2 Gaussian

d� 2 a . 2.98D a . 3.54D s . 0.86D
d� 3 a . 3.66D a . 4.33D s . 1.06D
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with the corresponding resection area in the post-operative

image. An application scenario is the registration of pre-

operative tomographic images of high resolution (e.g.

MR) with intra-operative images of worse quality (e.g. CT

or MR). The aim is to correct the pre-operatively acquired

image such that it agrees with the current anatomical situa-

tion. For demonstration purposes, in our case, we use a post-

operative image instead of an intra-operative image. The

source image 4(a) and the target image 4(b) are correspond-

ing slices of rigidly transformed 3D MR datasets. In Fig.

4(a), landmarks are placed at the margin of the brain tumor

as well as at the outer and inner part of the skin in the

vicinity of the tumor. Corresponding target landmarks are

shown in Fig. 4(b). The tumor itself corresponds to the

resection area. The correspondences between the contours

of the skin, the brain, and the tumor have been determined

M. Fornefett et al. / Image and Vision Computing 00 (2000) 000±000 7

Fig. 2. Local elastic registration using c 3,1 as RBF: (a) shift and (d) isotropic scaling of a square; (b) and (e) show registration results together with the in¯uence

area where elastic deformations occur; (c) and (f) show registration results with thin-plate splines for comparison.

Fig. 3. Comparison of c 3,1 with large support and TPS: (a) registration result using TPS (same as Fig. 2(c)) and (b) registration result using c 3,1 with a� 1500.
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M. Fornefett et al. / Image and Vision Computing 00 (2000) 000±0008

Fig. 4. Registration of a tumor with its resection area: (a) pre-operative image; (b) post-operative image; (c) registration result; (d) difference between (a) and

(c); (e) and (f) same as (c) and (d) for an underlying grid.

Fig. 5. Registration of a tumor with its resection area. Comparison with TPS: (a) registration result using thin-plate splines with additional landmarks and (b)

difference between Figs. 4(a) and 5(a).
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through the use of a snake algorithm [10] (see also Ref.

[12]). Out of these correspondences we have interactively

selected 21 pairs of landmarks shown in Fig. 4(a) and (b).

Note, that there is also a signi®cant brain shift at the top of

Fig. 4(b), which will not be considered here. For this regis-

tration problem, a reduction of the in¯uence of the registra-

tion scheme far off the area of interest is necessary and thus

the locality of the registration w.r.t. tumor is desired.

In Fig. 4(c), the transformation result is shown using c 3,1

with a� 60 as RBF. Since the maximum displacement in

one coordinate direction of the landmark set is 17, the refer-

ence value is a < 50 (Table 2). Our experiments revealed

that a value of a� 60 yielded quite good results, while

being close to the reference value and thus ensuring a rather

local registration result. To assess the form of the transfor-

mation, we have applied it to a regular grid which we show

in Fig. 4(e). It can be seen that the tumor is registered to the

resection area while the region around the tumor is shifted

towards the resection area. The reduced in¯uence of the

transformation is demonstrated in Fig. 4(d) and (f) where

the source image was subtracted from the registration result.

To demonstrate the differences to RBFs without compact

support, we applied the thin-plate spline approach to the

same problem as shown in Fig. 5(a). Note, that additional

landmarks in other parts of the image are necessary to

prevent deformations there. Although we have added 11

of these additional landmarks, thin-plate spline transforma-

tions are rather global as it is best seen in the difference

image in Fig. 5(b). Here, the deformations are not limited

on the tumor area.

In Fig. 6, we demonstrate the applicability of our

approach for the case of a 3D registration problem. The

outlines of the tumor as well as of the resection area have

been determined manually. 40 landmarks have been used

M. Fornefett et al. / Image and Vision Computing 00 (2000) 000±000 9

Fig. 6. 3D Registration of a tumor with its resection area. (a) and (b) 3D segmentation of the tumor and the resection area as well as (c) 3D registration result

showing the transformed tumor only. (d) and (f) show different slices of the 3D source image, (e) and (g) the corresponding slices of the 3D registration result.
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and the correspondences have been determined by simply

intersecting rays going through the common geometric

center point with the corresponding surfaces. First, we

segmented the tumor and the resection area as shown in

Fig. 6(a) and (b). The registration result is shown in Fig.

6(c), which is quite similar to the target image. Fig. 6(d) and

(f) shows exemplarily two slices of the 3D dataset together

with the outlines of the tumor. The registration result for the

same slices is shown in Fig. 6(e) and (g), respectively. Also

here, the deformation is limited to an area around the tumor.

5. Conclusion

We have proposed an approach to elastic registration

which utilizes positive de®nite functions of compact support

as RBFs. In comparison to the truncated Gaussian, they have

the advantage that the corresponding matrix for solving the

system of equations is always regular, thus the system of

equations is always solvable. In comparison to thin-plate

spline based elastic registration [2,14] with our approach,

we have a signi®cant reduction of the global in¯uence, i.e.

the in¯uence of a landmark on the registration result is

limited to a circle in 2D or, respectively, to a sphere in

3D. Therefore, the registration is locally constrained

which especially allows us to deal with local changes in

medical images. The synthetic experiments have shown

that object deformations can well be locally registered

using landmarks placed at the outlines of the objects.

Experiments with 2D and 3D tomographic images have

demonstrated the applicability of our approach to register-

ing pre-operative images with post-operative images in the

case of tumor resection. Further investigations are necessary

to determine appropriate landmark distributions and corre-

spondences as well as support sizes of the RBFs for regis-

tration problems at hand.
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