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Abstract. A new algorithm is proposed to incorporate orientation attributes at landmarks in an elastic medical
image registration scheme. The approach is based on a minimizing functional and can cope with images of
arbitrary dimensions. Constraints due to orientations are incorporated through scalar products between the
transformed orientations in the source image and vectors which are perpendicular to the orientations in the target
image. For synthetic data sets we show that the structure of a rigid object in an otherwise elastically deformed
image can be preserved. The application of our approach to tomographic data sets shows that improvements
w.r.t. accuracy can be achieved provided a sufficient number of landmarks is well-distributed over the image.

1 Introduction

Landmark-based elastic registration relies on the information associated with landmark points. To improve the re-
sults of landmark-based approaches while maintaining their efficiency, work in the past has been done on including
additional landmark attributes, like orientation. Especially in medical applications it is desirable to improve the
registration result without adding further landmarks.

Bookstein and Green [1] incorporate orientations by approximating them through two landmarks. Mardia et al. [2,
3] use a kriging method to include derivative information. Their interpolation scheme yields an exact solution, but
orientation vectors are required to be unit vectors. In this paper, we describe a new approach which i) is based on a
minimizing functional and ii) allows to incorporate orientation attributes. As in the approach of Mardia et al. [2,3],
exact orientations at landmarks are incorporated. However, in our case the directional constraints are represented
through scalar products and therefore the lengths of the orientation vectors need not to be normalized to unit
vectors. Another advantage of our approach is that it covers the full range from interpolation to approximation
using a regularization parameter �. In Sect. 2, we give an overview of our approach for the general case of d-
dimensional images and in Sect. 3, we demonstrate the applicability of our approach for 2D and 3D images.

2 Methods

The inclusion of orientations at landmarks of two corresponding images means to constrain the transformation in
the neighborhood of the landmarks in direction of the mapped orientations. Note, that it is possible to apply several
constraining orientations at single landmarks. In our scheme the searched transformation functionu � IRd � IRd ,
where d is the image dimension, minimizes the following functional:
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where n is the number of pairs of point landmarks �pi �qi�. n� is the number of orientations di at locations p�i

in the source image. The vectors e�i�j � j � � � � �d � � are perpendicular to the corresponding orientations ei at
locations q�i

in the target image. Jdm�u� is the smoothness-related energy term described in [4,5], where m is the
order of derivatives used.
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The second term in (2) is a scalar product between �di
Tr�u�p�i

� and the vectors e�i�j . �di
Tr�u�p�i

� is the
transformed orientation vector of the source image and it is perpendicular to e�i�j , the j orthogonal vectors of the
orientation vector of the target image, such that its contribution to the functional is zero.

Choosing vectors from the orthogonal space has the advantage that the corresponding scalar product is zero inde-
pendent of the length of the vectors. Note however, that this holds true only in the case of interpolation but not for
approximation. The d�� perpendicular orientationse�i�j to the target orientation vector ei constrain the orientation
of the transformed source orientation vector di to lie on a line. Accordingly, the number of constraints is lower if
an orientation is not constrained w.r.t. a line, but w.r.t. a plane, for example. The landmark pairs �p�i

�q�i
� with

orientation information may, but need not be a subset of the landmark pairs �pi �qi�.

Application of the spline theorem in [5] yields the following solution to the minimizing functional in (2):
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where ��� � � � � �M are the basis functions of the corresponding null-space of dimension M and U �x� are radial
basis functions depending on the used function space. Note, that in order to obtain bounded functionals L i the
used function space has to be constrained. As a consequence, we obtain for both cases of 2D and 3D registration
incorporating orientations the function U �x� � jxj� in (3) as the solution with smallest exponent for m � �.
The parameters a � �a� �� � a� �� � � � � � a� �d� a� �� � � � � � aM �d � and w � �w� �� �� � � � � �w� �n �d� � � � �w� �� ��� � � � �
w� �n��d��� can be computed as the solution of the following system of linear equations:

Kw �Pa � v

PTw � ��
(4)

where K and P are matrices consisting of elements of the functions U �x�, �di
Tr�U �x�, �di

Tr��dj
Tr�U �x�,

��x�, and �di
Tr���x�, respectively. v is a vector corresponding to the target landmarks as well as zero values

due to the scalar product of the orientations.

3 Experimental Results

Experiments with 2D and 3D synthetic as well as 2D tomographic data sets have been carried out. In medical
images it is often important to distinguish between rigid and elastic parts of the image, e.g. rigid parts may be
bones while the elastic parts correspond to soft tissue. With our synthetic experiments we have studied whether
rigid parts can be mapped onto each other, while the elastic parts deform smoothly inbetween.

(a) (b) (c) (d)

Figure 1. Synthetic 3D data sets. Registration result of a translated ((a),(b)) and rotated ((c),(d)) cube. Thin-plate
spline registration i) using only landmarks at each corner of the cube (object landmarks) and at each corner of
the image (image-border landmarks) ((a),(c)) as well as ii) with three orientations added to each object landmark
((b),(d)).

In Fig. 1 a translation of 60 pixels in each direction ((a),(b)) as well as a rotation of ��� around a spatially diagonal
axis ((c),(d)) of a cube are shown (image size 301�301�301 voxels), simulating both shape-preserving object
shifts and rotations of objects in medical images, respectively. The edges of the cubes of the source images are
drawn as outlines and each of the four images shows the transformed source image. Eight image-border landmarks
in the corners of the 3D-images have been used to tie the whole image to its corners and another eight object
landmarks have been used at the corners of the cube (see also the caption of Fig. 1).
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In case of translation ((a),(b)) we see that without orientation attributes (a) the surfaces of the elastically trans-
formed rigid cube become bended. In contrast, using orientation attributes at the cube‘s corners (b), the surfaces
of the rigid cube remain plane. Thus rigidity of the cube is preserved under translations. In case of rotation (c)
the surfaces and the edges of the cube become undulating. Using orientation attributes added at the corners of the
cube, the cube‘s overall shape is much better preserved (d).

(a) (b) (c) (d) (e)

Figure 2. Synthetic data set. Simulating a spine which is bended. Source (a) and target (b) images, registration
using thin-plate splines with landmarks only (c), adding two orientations to each object landmark (d), and using
the approximation scheme with � � ��� and the same orientations as before (e).

In Fig. 2 an example of rotated rigid structures is shown (image size is 181�451 pixels). The five rigid structures
simulate a human spine (according to Little et al. [6]). From image (c) to (e) of the figure the registration results
are represented. We see that registration with landmarks only does not preserve the rigidity of the squares. When
using orientation attributes and setting � � � (interpolation), we get a better registration result (d) The waviness of
the outlines of the squares is reduced. In the last image (e) we have used the approximation scheme with � � ���
and the same orientations as before. In this case we yield the best registration result. The structure of the squares
is nearly preserved and the mean distance between the transformed source landmarks and the target landmarks is
��	 pixels (the maximum is ��
 pixels).

Fig. 3 shows in the first row two sagittal slices of two MR-images of the brain of two different patients (image
(a) is the source and image (b) is the target image). We manually specified a number of 13 landmarks. In image
(c) the registration result using landmarks only is shown. The white outlines of image (b) are overlayed on the
transformed source image (a). Improvement of this result can be achieved if we add further landmarks. However,
specifying additional landmarks is often not possible. Therefore, we investigate the incorporation of orientation
attributes at landmarks. In image (d) we have added one orientation at each of the landmarks No. 1 and 13. As a
result we can see that the region between landmarks No. 1 and 2 (at the corpus callosum) is better registered than
using landmarks only. However, the incorporation of orientations has also strong global effects, e.g. the region
above the corpus callosum is deformed upwards.

4 Summary and Conclusion

We have demonstrated that by incorporating orientations in our elastic registration scheme it is possible to improve
the registration accuracy without further adding landmarks. For synthetic images we have demonstrated that rigid
structures can be preserved in an otherwise elastically deformed image. Experiments for tomographic data sets
have shown that improvements can be obtained, but landmarks should be well-distributed in order to achieve good
registration results. Future work will concentrate on how to limit the influence of the orientation constraints.
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(d)

Figure 3. Tomographic data sets. Two MR-images of different brains with 13 landmarks, source (a) and target (b)
images. Second row: thin-plate spline registration using only point landmarks (c) and thin-plate spline registration
using orientations at landmarks No. 1 and 13 (d).

Acknowledgement

This work has been supported by Philips Research Hamburg, project IMAGINE (Image- and Atlas-Guided Inter-
ventions in Neurosurgery).

References

1. F. L. Bookstein & W. D. K. Green. “A Feature Space for Edgels in Images with Landmarks.” Journal of Mathematical
Imaging and Vision 3, pp. 231–261, 1993.

2. K. V. Mardia & J. A. Little. “Image warping using derivative information.” In F. L. Bookstein, J. S. Duncan, N. Lange
& D. C. Wilson (editors), Mathematical Methods in Medical Imaging III, volume 2299, pp. 16–31. S.P.I.E., San Diego,
California, 25-26 July 1994.

3. K. V. Mardia, J. T. Kent, C. R. Goodall et al. “Kriging and splines with derivative information.” Biometrika 83(1), pp. 207–
221, 1996.

4. K. Rohr, H. S. Stiehl, R. Sprengel et al. “Point-Based Elastic Registration of Medical Image Data Using Approximating
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