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Abstract. Existing approaches to extracting 3D point landmarks based
on deformable models require a good model initialization to avoid local
suboptima during model fitting. To overcome this drawback, we propose
a generally applicable novel hybrid optimization algorithm combining the
advantages of both conjugate gradient (cg-)optimization (known for its
time efficiency) and genetic algorithms (exhibiting robustness against
local suboptima). We apply our algorithm to 3D MR and CT images de-
picting tip-like and saddle-like anatomical structures such as the horns of
the lateral ventricles in the human brain or the zygomatic bones as part of
the skull. Experimental results demonstrate that the robustness of model
fitting is significantly improved using hybrid optimization compared to
a purely local cg-method. Moreover, we compare an edge strength- to an
edge distance-based fitting measure.

Keywords: 3D landmark extraction, deformable models, robustness, hy-
brid optimization

1 Introduction

Extracting 3D point landmarks from 3D tomographic images is a prerequisite
for landmark-based approaches to 3D image registration, which is a fundamental
problem in computer-assisted neurosurgery. While earlier approaches exploit the
local characteristics of the image data using differential operators (e.g., [16],[11]),
in [5] an approach based on parametric deformable models has recently been
proposed that takes into account more global image information and allows to
localize 3D point landmarks more accurately. However, since local optimization
is employed for model fitting, a good model initialization is required to avoid
local suboptima. To overcome this, we propose a generally applicable new hybrid
optimization algorithm combining the computational efficiency of the (local) con-
jugate gradient (cg-)optimization method with the robustness of (global) genetic
algorithms. Existing optimization algorithms for fitting parametric deformable
models to image data are either purely local (e.g., [13],[18],[1],[5]) or strictly
global (e.g., [4],[17]). Moreover, we compare an edge strength- (e.g., [18]) with an
edge distance-based fitting measure (cf., e.g., [1]). We apply our fitting algorithm
in order to extract salient surface loci (curvature extrema) of tip- and saddle-
like structures such as the tips of the ventricular horns or the saddle points at
the zygomatic bones (see Fig. 1(a),(b)). For representing such structures, we
use globally deformed quadric surfaces (Sect. 2). The fitting measures for model
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Fig.1. (a),(b): Ventricular horns of the human brain (from [12]) and the human skull
(from [2]). Examples of 3D point landmarks are indicated by dots. (c),(d): Quadric
surfaces as geometric models for tips ((c): tapered and bended half-ellipsoid) and for
saddle structures ((d): hyperboloid of one sheet). The landmark positions are indicated
by a dot.

fitting are then described in Sect. 3, while our hybrid algorithm for optimizing a
fitting measure w.r.t. the model parameters is outlined in Sect. 4. Experimental
results of studying the robustness of model fitting are presented in Sect. 5. In
particular, we analyze the landmark localization accuracy of our new approach
and compare it with that of purely local cg-optimization.

2 Modeling Tip- and Saddle-Like Structures with Quadrics

In the literature, a variety of 3D surface models has been used for different
applications, e.g., segmentation, registration, and tracking (e.g., [13],[15],[4],[18],
[1]; see [9] for a survey). To extract 3D point landmarks, we here use quadric
surfaces as geometric models for tip- and saddle-like structures ([5]) since they
well represent the anatomical structures of interest here, but only have few model
parameters. It is advantageous here that they may be represented by both a
parametric and an implicit defining function. Tapered and bended ellipsoids are
utilized for representing 3D tip-like structures such as the ventricular horns,
whereas hyperboloids of one sheet are used for 3D saddle-like structures such as
the zygomatic bones (see Fig. 1(c),(d)). For tip-like structures, the parametric
form of our model is obtained by applying linear tapering [4] and quadratic
bending [4] as well as a rigid transformation, resp., to the parametric form of an
ellipsoid:
a1 cos 6 cos ¢/ (pe sin 0+1)+6 cos v(as sin §)2
Ttip (0, ¢) = Ra,ﬁﬁ as cos fsin ¢/(py sin§+1)+dsinv(azsin§)> | + ¢, (1)
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where 0 < 0 < /2 and —7 < ¢ < 7 are the latitude and longitude angle pa-
rameters, resp. Further on, ai,a2,a3 > 0 are scaling parameters, p;,p, > 0
denote the tapering strengths in z- and y-direction, and 4,v determine the
bending strength and direction, resp. For the rigid transformation, o, 5,7y de-
note the Eulerian angles of rotation and tT = (X,Y,Z) is the translation
vector of the origin. Hence, the model is described by the parameter vec-
tor p = (a1,a2,03,0,v, pz, py, X, Y, Z,, 3,7). The landmark position is then
given by @; = @4;p(7/2,0) = Ry (8 cosva?,dsinva?,az)’ +t. The paramet-
ric form of hyperboloids of one sheet is the same as the one given in [5].



3 Model Fitting with Edge-Based Fitting Measures

In order to fit the geometric models from Sect. 2 to the image data, a fitting
measure is optimized w.r.t. the model parameters. Here, we consider an edge
strength- and an edge distance-based fitting measure. For the edge strength-based
measure Mgs (e.g., [18]), [14]), the edge strength e, is integrated over the model
surface M:
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where e, () = ||Vg(z)|| is the gradient magnitude of the intensity function g
and z is a vector at the model surface M which is parameterized by 6, ¢. To
emphasize small surfaces, we additionally apply a surface weighting factor to the

fitting measure (2) which then takes the form Mgs = —u a®aE /—?Aim;zF-

dfd¢ — Min!, (2)

The edge distance-based fitting measure Mgp used here is written as (cf., e.g.,
[13],[1],[17])
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The sum is taken over all N image voxels £ ={&,,... ,€ x5} which — in order to

eliminate the influence of neighbouring structures — lie within a region-of-interest
(ROI). and whose edge strength e,(€;) exceeds a certain threshold value. The
vector of model parameters is denoted by p. Further on, we use p(z)=|z|'? for
all z €R as a distance weighting function to reduce the effect of outliers ([19]).
The argument of p is a first order distance approximation between the image
voxel with coordinates €; and the model surface ([17]), where F denotes the
inside-outside function of the tapered and bended quadric surface after apply-
ing a rigid transform (cf., e.g., [13],[4],[1]). The inside-outside function of both,
undeformed superellipsoids (F.; upper plus sign in eqn. (4)) and undeformed su-
perhyperboloids of one sheet (F; lower minus sign in eqn. (4)), can be written
as

€x/€1
Fun(@) = taa ( (/™ + le/eal) ™" £ leafaa’ ), (@)

where f.(z) := sign(z)|z| for z € R is the signed power function for ¢ > 0 and
& = (&,&,8&)t. Since superellipsoids have a closed surface, there is a simple
interpretation of the inside-outside function that explains its name:

If F() =1, £ is on the surface,
if  F()>1, ¢ is outside, and (5)
if  F() <1, & is inside.

Also, a volume factor is used in conjunction with (3) to emphasize small vol-

umes. This factor has been chosen as 1+ —49228——, where the weighting

factor aj estQ2,e5¢03,¢5¢ is coarsely estimated to a value of 103 voz® (vor denotes
the spatial unit of an image voxel). For volume weighting factors (or size factors),
see also, e.g., [13].



4 A Novel Hybrid Optimization Algorithm

Most optimization algorithms considered in the literature for model fitting are
local algorithms such as the conjugate gradient (cg-)method (e.g., [13],[18],[1],[5])
and thus are prone to run into local suboptima. The cg-method combines prob-
lem specific search directions of the method of steepest descent with optimality
properties of the method of conjugate directions (e.g., [6]). However, since it is
a purely local method, it is prone to run into local suboptima. On the other
hand, global optimization methods such as genetic algorithms (GAs); e.g., [7])
have been proposed to avoid local suboptima (e.g., [4],[17]), but are plagued with
slow convergence rates. We here propose a hybrid algorithm which combines the
advantages of both methods. Similar to GAs, we consider a whole population of
parameter vectors, but we differ in the mutation strategy since we do not use bit-
flips and crossovers to imitate natural mutation ([7]). By contrast, we use several
most promising local optima resulting from a line search after each cg-step as
candidate solutions. In order to obtain a generally applicable strategy, we adapt
the population size to the complexity of the problem by increasing the maximal
population size each time a candidate solution converges to a local optimum,
i.e. when its objective function value does not improve for a given number of
cg-iterations. Consequently, several parameters can be adapted to the specific
optimization problem at hand:
e the maximum population size that must not be exceeded (here: 20),
e the number of cg-iterations after which the least successful population mem-
bers (measured by their value of the fitting measure) are discarded (here: 5),
e the minimum number of population members that are retained after each
such ’survival of the fittest’ step (here: 5), and
e the number of cg-iterations with no significant improvement of the value of
the fitting measure after which a population member is marked convergent
and is not subject to further cg-iterations (here: 80).
e a difference threshold for two parameter vectors of the deformable model
below which they are considered as being equal.
The mentioned parameters have been used in all our experiments. Except for the
need of adjusting these parameters, the optimization strategy presented here is a
general-purpose method for poorly initialized nonlinear optimization problems.
and its applicability is not confined to model fitting problems in medical image
analysis. Only one example of hybrid optimization in image analysis is known
to us: In [8], discontinuity preserving visual reconstruction problems, e.g. sparse
data surface reconstruction and image restoration problems, are described as
coupled (binary-real) optimization problems. An informed GA is applied to the
binary variables (describing the discontinuities), while a cg-method is applied
to the real variables for a given configuration of the binary variables visited by
the GA. By contrast, in our approach the local and the global part are treated
uniformly.



5 Experimental Results for 3D Tomographic Images

Scope of experiments In our experiments, the deformable models were fitted
to tip-like and saddle-like anatomical structures and our hybrid optimization
algorithm has been compared to purely local cg-optimization w.r.t. poorly ini-
tialized model parameters using
o different types of image data: two 3D T1-weighted MR images and one
3D CT image of the human head,
o different types of landmarks: frontal/occipital horn of the left/right lateral
ventricle, left/right zygomatic bone as part of the skull,
o different fitting measures: edge distance-based and edge strength-based, and
e different sizes of the region of interest (ROI):
ROI radius of 10 voz and 15 voz (voz: spatial unit of an image voxel).

Experimental strategy For each 3D MR and 3D CT image, an initial good
fit is determined by repeated model fittings and visual inspection of the fitting
results. For obtaining poor initial estimates for model fitting, the parameter
values of the initial good fit are varied by adding Gaussian distributed random
numbers with zero mean and large variances. In order to determine the landmark
localization error e, the landmark positions calculated from the fitted deformable
models are compared to ground truth positions that were manually specified in
the 3D images in agreement with up to four persons. In addition, we consider
the root-mean-squared distance between the edge points of the image and the
model surface, egups, using a Euclidean distance map ([10]) from the image
data after applying a 3D edge detection algorithm based on [3]. This procedure
is iterated sufficiently often (here: 100 times) with different, randomized model
initializations. The mean values and RMS estimates of the resulting values of e
and erpg are tabulated then. For evaluating the fitting measures (2),(3), the
derivatives of the intensity function are computed numerically using cubic B-
spline interpolation and Gaussian smoothing (see [5]).

General results Common to all experiments is that the final value of the
fitting measure is better by about 10-50% for hybrid optimization than for purely
local cg-optimization. In most cases, the landmark localization and the model
fitting accuracy also improve significantly. Thus, hybrid optimization turns out
to be superior to purely local cg-optimization at the expense of an increase in
computational costs of a factor of 5-10 (30s—90s for local cg-optimization and
150s—900s for hybrid optimization on a SUN SPARC Ultra 2 with 300MHz CPU).

The edge distance-based fitting measure in (3) turns out to be more suitable
for 3D MR images of the ventricular horns with high signal-to-noise ratio since
it incorporates distance approximations between the image data and the model
surface (long range forces, cf. [15]). However, in comparison to (2), it is relatively
sensitive to noise. Moreover, it is not suitable for hyperboloids of one sheet due
to inaccuracies of the first order distance approximation associated with it.

Results for the ventricular horns The tips of the frontal and occipital horns
of the lateral ventricles are considered here. Typical examples of successful model



fitting, which demonstrate the robustness of model fitting, are given in Fig. 2.
Here, contours of the model initialization are drawn in black and the results
of model fitting using purely local cg-optimization are drawn in grey, while the
results of model fitting using our new hybrid optimization algorithm are drawn
in white. The ground truth landmark positions are indicated by a @-symbol.
As can be seen from the averaged quantitative results in Table 1, hybrid opti-
mization is superior to purely local cg-optimization and yields not only better
values of the fitting measures, but in most cases also better model fitting (egars)
and landmark localization (e) results (cf. also Figs. 2(a),(b)). Note that rather
coarsely initialized model parameters have been used (€;nitiai = 7. . .9 voz), and
thus some unsuccessful fitting results — particularly in the case of the less pro-
nounced occipital horns — deteriorate the average accuracy of model fitting as
shown in Table 1. The average accuracy of landmark localization for the frontal
horn of the right lateral ventricle in Table 1 is less than that for the left ventricle
in the same 3D MR image due to its comparably thin anatomical structure.

Model initi-| Edge dist.-b. fitt. meas.|Edge strength-b. fitt. meas.

alization |local cg-opt.|hybrid opt.|local cg-opt.| hybrid opt.

Frontal e |7.71 £ 3.16(3.28 + 2.99 1.40 + 1.18|3.564 + 2.18| 2.49 + 2.21
horn (left) |erms|2.22 £ 1.10| 1.00 + 0.63 |0.65 + 0.22/1.04 + 0.31 | 0.87 + 0.35
Frontal € |6.57 + 3.18|3.87 + 2.16 |3.15 + 2.18|6.55 + 3.53 | 5.19 £ 3.70
horn (right)|€érms|2.12 + 1.11|1.05 + 0.60 |0.78 + 0.25|1.56 + 1.26 | 1.28 £+ 0.79
Occipital e [9.08 +4.4216.90 &+ 3.89 |6.68 £+ 3.93|4.74 + 4.33| 4.61 £+ 4.31
horn (right)|€rms|3.00 + 1.40|2.06 + 0.93 |2.04 + 0.87|1.34 + 0.87| 1.29 £+ 0.78

Table 1. Fitting results averaged over 100 model fittings with randomized poor model
initializations for 3D MR images of the frontal/occipital ventricular horns using 13
model parameters (€: mean landmark localization error (in voz), erms: RMS distance
between deformable model and image data (in vox), voxel size =0.86 % 0.86x 1.2mm?).

Results for the zygomatic bones All results for the zygomatic bones were
obtained with the edge strength-based fitting measure (2). Model fitting for
the saddle points at the zygomatic bones (e.g., Fig. 2(c)) in general is not as
successful as it is for the tips of the ventricular horns since our geometric prim-
itive does not describe the anatomical structure at hand with comparable ac-
curacy. However, the mean landmark localization error € can be reduced from
initially €;nt501 = 6-4...6.9voz to € = 2.5...3.2 vox and the accuracy of model
fitting is ermrs = 1.5. .. 1.8 voz (voxel size =1.0mm?).

6 Conclusion

In this paper, landmark extraction based on deformable models has been inves-
tigated in order to improve the stability of model fitting as well as of landmark
localization in the case of poorly initialized model parameters. To this end, a
generally applicable novel hybrid optimization algorithm has been introduced
and edge strength- and edge distance-based fitting measures have been com-
pared. Experimental results have demonstrated the applicability of our hybrid



(a) 3D MR image of the frontal horn of the left lateral ventricle, edge distance-
based fitting measure, ROI size 15.0 voz

(b) 3D MR image of the occipital horn of the right lateral ventricle, edge strength-
based fitting measure, ROI size 15.0 voz

(c) 3D CT image of the left zygomatic bone, edge strength-based fitting measure,
ROI size 15.0 voz

Fig.2. Examples of successfully fitting tapered and bended half-ellipsoids to
3D MR images of the frontal and occipital horns of the lateral ventricles (Fig. 2(a-b))
as well as of fitting a half-hyperboloid with no further deformations to a 3D CT image
of the zygomatic bone (Fig. 2(c)). Contours of the model surfaces in axial, sagittal,
and coronal planes are depicted here (from left to right). Black: model initialization,
grey: fitting result for local cg-optimization, and white: fitting result for our hybrid op-
timization algorithm. The ground truth landmark positions are indicated by a @-sign
here.



algorithm as well as its increased robustness as compared to a purely local cg-
method. However, the experimental results do not clearly favour one fitting mea-
sure. However, for the frontal ventricular horns, our edge distance-based fitting
measure is more successful, while for the less pronounced occipital horns and for
the zygomatic bones, the edge strength-based fitting measure is more suitable.
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