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Abstract. In this contribution, we are concerned with the detection and
re�ned localization of 3D point landmarks. We propose multi-step di�er-

ential procedures for subvoxel localization of 3D point landmarks. More-

over, we address the problem of choosing an optimal size for a region-of-
interest (ROI) around point landmarks. That is, to reliably localize the

landmark position, on the one hand, as much as possible image informa-

tion about the landmark should be incorporated. On the other hand, the
ROI should be restricted such that other structures do not interfere.

The multi-step procedures are generalizations of an existing two-step

procedure for subpixel localization of 2D point landmarks. This two-step
procedure combines landmark detection by applying a di�erential op-

erator with re�ned localization through a di�erential edge intersection

approach. In this paper, we investigate the localization performance of
this two-step procedure for an analytical model of a Gaussian blurred

L-corner. The results motivate the use of an analogous procedure for

3D point landmark localization. We generalize the edge intersection ap-
proach to 3D and combine it with 3D detection operators to obtain

multi-step procedures for subvoxel localization of 3D point landmarks.

The multi-step procedures are experimentally tested for 3D synthetic im-
ages and 3D MR images of the human head. We also propose an approach

to automatically select an optimal ROI size. This approach exploits the

uncertainty of the position estimate resulting from the edge intersection
approach. We present �rst promising results for a real 2D image with

di�erent types of corners as well as for anatomical brain landmarks in

2D slices of a 3D MR image.

1 Introduction

The registration of medical images of the human head such as MR (Magnetic

Resonance) and CT (X-Ray Computed Tomography) images is important, e.g.,

for the planning of neurosurgical interventions, radiotherapy, and therapy eval-

uation. One possibility to register two images is a point-based approach. In this

case, prominent points, denoted also as point landmarks, have to be extracted

from images. In general, the registration result heavily depends on the accu-

rate localization of suitable point landmarks. Potential point landmarks of the



human head are salient tips, which can be found, for instance, on the ventric-

ular system, the skull base, as well as on other anatomical structures. Usually,

such 3D point landmarks are manually selected|a task which is di�cult, time-

consuming, and which often lacks accuracy. An alternative to manual selection

is a semi-automatic approach to landmark localization. The advantage of such

an approach is that the user has the possibility to interactively control the re-

sults, which is important in clinical applications. For example, �rst, an approxi-

mate position of a speci�c landmark is manually determined. Second, to extract

potential landmark candidates, a computational approach is applied within a

region-of-interest (ROI) around the approximate position. Third, the user se-

lects the most promising candidate. The computational approach has to reliably

and robustly detect as well as to accurately localize prominent points. Recently,

3D di�erential operators have been introduced [15, 14, 2] which are, however,

only designed for the detection of 3D point landmarks. Since reliable and robust

landmark detection generally requires operators with large size, the accuracy of

the detected points often is not satisfactory and additional steps are necessary

to obtain better position estimates.

In the �rst part of this paper, we propose di�erential-based multi-step procedures

for re�ned localization of 3D point landmarks. Our multi-step procedures are

based on a two-step procedure for localizing point landmarks in 2D images [5].

This two-step procedure combines landmark detection by applying a 2D di�eren-

tial operator with re�ned localization through a 2D di�erential edge intersection

approach. This two-step procedure only employs �rst-order partial derivatives

of the image function and therefore does not su�er from potential instabilities of

computing high-order partial derivatives. In this contribution, �rst, we investi-

gate the localization performance of the two-step procedure for a 2D analytical

model of a Gaussian blurred L-corner. We then generalize the 2D edge inter-

section approach to 3D. By combining the 3D edge intersection approach with

3D di�erential operators for landmark detection we propose multi-step proce-

dures for re�ned localization of 3D point landmarks. We present experimental

results for 3D synthetic images as well as 3D MR images of the human head.

In the second part of the paper, we address the problem of choosing an optimal

size of the ROI. Obviously, the chosen ROI should be adapted to the scale of a

landmark. On the one hand, it is reasonable to use as much as possible informa-

tion about the structure containing the landmark to reliably localize the position

of the landmark. On the other hand, it is clear that the ROI should not include

other structures. In this paper, we introduce a new approach to automatically

select the optimal size of a ROI. Our approach is based on the uncertainty of

the position estimate resulting from the edge intersection approach. A compa-

rable approach has been proposed in [7]. However, there a di�erent detection

operator has been used and also the criterion for ROI size selection is di�erent.

We show for a real 2D image that our approach allows the extraction of ROIs

with optimal size for various image structures such as L-, Y-, and Arrow-corners.

Results for a number of anatomical landmarks in 2D slices of a 3D MR image

also demonstrate the suitability of our approach for medical images.



2 Multi-Step Procedures for Point Landmark

Localization Using an Edge Intersection Approach

2.1 Two-step procedure for localizing 2D point landmarks

F�orstner and G�ulch [5] proposed a two-step procedure for localizing 2D point

landmarks (corners) which combines landmark detection by applying a 2D di�er-

ential operator with re�ned localization through a di�erential edge intersection

approach.

Landmark detection The used di�erential operator [4, 8] exploits the matrix
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This matrix represents (up to a factor) the averaged dyadic product of the in-

tensity gradient. The subscripts x and y of the intensity function g(x; y) stand

for the partial derivatives in the respective spatial direction and the sum index i

denotes the spatial location. The detection operator reads

F (x) =
det(N)

tr(N)
; (1)

where det(�) denotes the determinant and tr(�) the trace of a matrix. Each point

x = (x; y) in the image is being assigned the measure in (1), where N is usually

computed in a symmetric and quadratic window of certain size around that

point. Point landmarks are detected by searching for local maxima of F (x).

Re�ned localization We consider the neighborhood around a detected point.

Suppose an L-corner has been detected and the observation window captures

su�cient edge information of the structure. For simplicity, a local coordinate

system with the detected point as origin is chosen. For each edge point in the

observation window we de�ne a tangent locally approximating the edge direc-

tion. For this, the intensity gradients are taken as normals to the tangents. The

tangents are represented in the Hessian normal form, that is, for a point xi with

intensity gradient rgi we have < rgi;x >=< rgi;xi >, where < �; � > denotes

the inner product. Rewriting this as "i(x) =< rgi;x� xi > yields the perpen-

dicular distance from x to the tangent at xi. Note that the distance is implicitly

multiplied with the gradient magnitude since rgi generally is not a unit vector.

The position of the tip can be estimated through intersection of all tangents

using the least-squares method, that is, through minimization of the residual

error function

E(x) =
X
i

"i(x)
2: (2)

So far, solely edge points have been considered. However, due to implicitly

weighting the residual errors with the gradient magnitude, it is possible to give



up this restriction and to include in the sum in (2) all points within the observa-

tion window. Points in rather homogeneous regions with low gradient magnitude

should hardly contribute to the sum anyway. On the other hand, edge points

with generally high gradient magnitude should actually force a small distance

from the position estimate to their corresponding tangent. Finally, the condition

rE(x) = 0 yields the system of normal equations

Nx� = y; (3)

where x� denotes the position of the tip w.r.t. the local coordinate system, N is

the matrix from above, and

y =
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2.2 Analytical study for an L-corner

It is known that for an L-corner the detection operator in (1) yields systematic

localization errors w.r.t. the correct corner position. The error generally depends

on the blur, the aperture angle of the structure, and the size of the operator

(see [13] for an analytical study). Hence, in general, additional steps are necessary

to improve the localization accuracy. In the following, we analyze the localization

performance of the two-step procedure for an analytical model of a Gaussian

blurred L-corner [11] and compare the achieved accuracy with that resulting

from the detection operator alone.

In [13], the positions for the detection operator alone have been determined.

We have centered the observation window for the edge intersection approach at

the position determined with the detection operator. Then, we have computed

the matrixN and the vector y and have solved the system of normal equations

in (3) to obtain the position estimate.

In Fig. 1a, the distances e from the localized positions to the correct corner posi-

tion are depicted in dependence on the aperture angle �. The standard deviation

of the Gaussian blur function has been set to � = 1. The solid line results from

the detection operator alone and the dashed line results from the two-step pro-

cedure using the edge intersection approach. The size of the observation window

for the edge intersection approach has been the same as that for the detection

operator, that is, 3� 3 pixels. It can be seen that the edge intersection approach

yields an improvement of about 1pix (pix denotes spatial unity) for a large range

of aperture angles. Moreover, we can obtain even better position estimates if we

further enlarge the observation window for the edge intersection approach. The

result for a window size of 15� 15 pixels is shown in Fig. 1b. The localization

error is thus reduced to nearly zero. We conclude that a reasonable strategy for

improving the localization accuracy is to capture with the observation window

as much as possible information of the intensity structure. On the other hand, it

should be guaranteed that no other structures interfere. As a second main topic

of this paper, we will report on optimal size selection for a region-of-interest

(ROI) around point landmarks in Section 3.
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Fig. 1a and b. Localization accuracy for a Gaussian blurred L-corner with � = 1. The

distances e from the localized positions to the correct corner position are depicted in

dependence on the aperture angle �. The solid lines result from the detection operator
alone and the dashed lines result from the two-step procedure. Observation windows

of sizes 3� 3 pixels (a) and 15 � 15 pixels (b) have been used.

2.3 Extension of the edge intersection approach to 3D

In the 2D case, we have dealt with an L-corner to motivate the edge intersec-

tion approach. A 3D generalization of an L-corner is a tetrahedron. Suppose we

have obtained an approximate position of the tip, for instance, by applying a

3D detection operator, and have placed there an observation window captur-

ing su�cient image information. The position of the tip of the tetrahedron is

the intersection point of three plane surfaces which correspond to 3D edges.

Analogously to the 2D case, we locally approximate the surfaces of a landmark

through tangent planes. The intensity gradients are taken as normals to the tan-

gent planes. The Hessian normal form of the tangent plane at a point xi reads

< rgi;x >=< rgi;xi >. The position of the tip can be estimated through in-

tersection of all tangent planes using the least-squares method, that is, through

minimization of a residual error function which formally agrees with that in (2)

of the 2D edge intersection approach. Note that also here the gradient magni-

tudes implicitly weight the residual error function. We thus obtain a system of

normal equations

Nx� = y; (4)

where x� denotes the estimated subvoxel position of the tip and
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2.4 Multi-step procedures for localizing 3D point landmarks using

the 3D edge intersection approach

In [14], 3D di�erential operators for detecting point landmarks have been pro-

posed. The operators exploit the matrix N in (4) (up to a factor) and read

Op3(x) = det(N)=tr(N), Op30(x) = 1=tr(N�1), and Op4(x) = det(N). The

operators are 3D extensions of existing 2D corner detectors in [4, 8, 10, 11]. In

this contribution, we propose three multi-step procedures for re�ned point land-

mark localization in 3D images, combining the 3D detection operators with the

3D edge intersection approach.

i) Two-step procedure

First, points are detected with either Op3, Op30, or Op4, where a large op-

erator size is chosen for reasons of robustness w.r.t. noise in images. Second,

to re�ne the positions, a small operator size is chosen and the respective

di�erential operator is applied within a small neighborhood around the de-

tected points. A similar procedure for 2D point landmark localization was

proposed earlier [3, 10].
ii) Two-step procedure with subvoxel localization

First, points are detected with either Op3, Op30, or Op4. Second, the po-

sitions are re�ned through the 3D edge intersection approach. This scheme

essentially is the 3D extension of the two-step procedure of F�orstner and

G�ulch [5].
iii) Three-step procedure with subvoxel localization

This procedure is a combination of the procedures i) and ii) and is there-

fore a three-step procedure. The �rst two steps correspond to the two-step

procedure i). In the third step, the position estimates resulting from i) are

further re�ned through the 3D edge intersection approach.

2.5 Experimental results

We report on experiments for 3D synthetic images as well as 3D MR images of

the human head. The partial derivatives have been estimated with 3D extensions

of the 2D �lters of Beaudet [1]. For the detection step we have used a �lter

size of 5� 5� 5 voxels. For the re�nement steps of the procedures i) and iii)

�lters of size 3� 3� 3 voxels have been used. The components of the matrix

N and the vector y in (4) are the averaged values of products of the partial

derivatives within an observation window. To study the localization accuracy of

the di�erent procedures in dependence on the widthw of the observation window,

we have investigated various window widths, starting with w = 3 voxels. The

size of the observation window for the 3D edge intersection approach has been

the same as that for the detection operator. Maxima of the detection operator

responses have been determined by local maximum search in neighborhoods of

3� 3� 3 voxels. In the case of several maxima within the chosen ROI of the

image, we have selected the candidate with the largest operator response. To

alleviate subjectivity in our experiments we have not used any thresholds on the

operator responses. However, a few cases in the experiments on medical images

have required special attention.



3D synthetic images We have investigated the localization accuracy of the proce-

dures i), ii), and iii) for the tip of a 3D tetrahedron. This structure is a 3D gen-

eralization of an L-corner with aperture angle �. For the construction of the

3D object in Fig. 2a, where the tip is marked through a black dot, the sym-

metric axis of the L-corner has been spread into the direction of the z-axis such

that it also encloses the angle � with the x-axis. The shape of the so constructed

tetrahedron is determined by the aperture angle �.

In Fig. 2b, for a tetrahedron with � = 90� the Euclidean distances e from the

localized positions to the position of the tip are depicted in dependence on the

width w (in voxels) of the observation window. DET denotes the detection op-

erator Op30. We see that applying the detection operator alone yields the worst

results. Procedure i) is only for w = 5 better than DET. The position estimates

resulting from the procedures ii) and iii) are signi�cantly more accurate than

those resulting from DET and procedure i). The accuracy gets worse for DET

and procedure i) if w increases. By contrast, the accuracy for the procedures

ii) and iii) gets better if w increases. In Fig. 2c, the results for a much more

tapered tetrahedron with � = 45� are shown. The results are comparable with

those for the tetrahdron with � = 90�. However, for the procedures ii) and iii)

the localization error slightly increases for w � 11 and w � 7, resp. We suspect

that discretization errors give rise to this e�ect.
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Fig. 2a. Tetrahedron with aperture angle �. b and c. Localization accuracy for tetra-
hedrons with � = 90� and � = 45�, resp. The Euclidean distances e from the localized

positions to the position of the tip are depicted in dependence on the width w of the

observation window.

3D MR images Here, we present results for three 3D MR images of the human

head. We consider as anatomical landmarks the tips of the frontal, occipital, and

temporal horns of the ventricular system, abbreviated by MC6, MC7, and MC13,

resp. The tips are indicated in Fig. 3a through black dots within dashed circles.

The letters `l' and `r' denote the respective hemispheric part. We have manually

speci�ed the positions of these landmarks in the investigated data sets and have

taken them as `ground truth' positions, although we know that manual local-

ization of 3D landmarks generally is di�cult and may be prone to error. Note
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Fig. 3a. Anatomical preparate of the ventricular system of the human head (adapted

from Sobotta, 1988) b.O�-sagittal slice of MR image 1. The manually speci�ed position

of the tip of the left occipital horn is marked through a white cross.

also that manually we have only determined voxel positions, while the multi-

step procedures ii) and iii) use the 3D edge intersection approach and hence

yield subvoxel positions. We have respectively chosen a region-of-interest (ROI)

around the `ground truth' positions and then have applied the computational

approaches described above. For landmark detection and the re�nement steps

of the procedures i) and iii) we here have used the operator Op3. We have used

the same �lter widths to estimate the partial derivatives as in the experiments

for the 3D synthetic images. The size of the observation window for the 3D edge

intersection approach has been the same as that for the detection operator. To

alleviate subjectivity, we have not used any thresholds on the detection operator

responses. In the case of several detected points within the ROI, we have selected

that point with the largest operator response. The thus selected candidates have

been visually inspected for validity, according to the semi-automatic approach

described in Section 1.

In Figs. 4a and b, the mean values e for both w = 3 and w = 5 of the Euclidean

distances from the localized positions to the manually speci�ed positions are

depicted according to each landmark and according to each MR image, resp.

In general, the procedures ii) and iii) yield the most accurate positions. Also

procedure i) generally yields better positions than the detection operator alone,

although not as good as ii) and iii). Basically, we have selected the candidates

with the largest operator responses. The visual inspection of the detected candi-

dates for the left and right temporal horns MC13l,r in MR image 2 and the left

temporal horn in MR image 3 has been very di�cult since in these images the

temporal horns are extremely poorly pronounced. Also, the positions of these

landmarks resulting from manual localization are rather uncertain. Therefore,

for these images the respective landmarks have not been considered. For the right

temporal horn MC13r in MR image 3 two points with extremely high operator

responses have been detected. Visual inspection has revealed that the respec-

tive candidates with the highest operator responses are false detections and has

caused us instead to select the candidates with the second-highest operator re-

sponses.



All in all, for the detection operator alone the mean of the Euclidean dis-
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Fig. 4a and b. Localization accuracy of the detection operator alone (DET) and the
multi-step procedures i), ii), and iii) for the ventricle landmarks in the investigated

three MR images. The mean values e for both w = 3 and w = 5 of the Euclidean

distances from the localized positions to the manually speci�ed positions are depicted
according to each landmark (a) and according to each MR image (b).

tances from the localized positions to the manually speci�ed positions amounts

to 3.27vox (vox denotes spatial unity). The two-step procedure i) improves the

accuracy w.r.t. DET by 0.59vox. Additionally using the 3D edge intersection

approach further improves the accuracy w.r.t. i) by 0.93vox . Thus, the three-

step procedure iii) improves the accuracy w.r.t. DET by 1.52vox. The two-step

procedure ii) improves the accuracy w.r.t. DET by 1.14vox.

To give a visual impression of the localization capabilities of the di�erent proce-

dures, we also show in Fig. 5 orthogonal image cuts at the respectively localized

positions for the tip of the left occipital horn in MR image 1 (w = 5). The loca-

tion of the landmark within the human head is marked through a white cross in

a sagittal view in Fig. 3b. Note that, due to technical reasons, the subvoxel coor-

dinates resulting from the multi-step procedures ii) and iii) have been rounded

to voxel coordinates. Nevertheless, it can be seen that the multi-step procedures

ii) and iii) yield the best results.

3 Automatic ROI Size Selection for Point Landmarks

The performance of the semi-automatic approach for landmark localization de-

scribed in Section 1 substantially depends on the size of the region-of-interest

which generally should be adapted to the scale of a speci�c landmark. On the one

hand, the ROI should capture as much as possible information about the land-

mark. On the other hand, the ROI should not include neighboring structures.

In the following, we introduce a novel approach for automatically determining

an optimal size for the ROI. The approach is based on the uncertainty of the

position estimate resulting from the edge intersection approach.



Fig. 5. Localized positions at the tip of the left occipital horn in MR image 1 (w = 5)

for the detection operator alone and the multi-step procedures i), ii), and iii) (from left

to right) in axial, sagittal, and coronal views (from top to bottom).

3.1 Localization uncertainty of the edge intersection position

estimate

The covariance matrix of the position estimate x� in (3) (resp. (4) in the 3D case)

is given by

� = �2"N
�1; (5)

under the assumption that the residuals "i are independently and normally dis-

tributed random errors with zero mean and variance �2" . We estimate the variance

through �2" = E(x�)=(n� 2) (2D) and �2" = E(x�)=(n� 3) (3D), where E(�) is

the respective residual error function and n stands for the number of points in

the chosen observation window (see also [5]). In the 2D case, the localization

uncertainty of the position estimate is represented by the covariance ellipse (co-

variance ellipsoid in the 3D case). Evidently, the size of the covariance ellipse

(ellipsoid) should be small, indicating low localization uncertainty of the position

estimate. In the 2D case, the Eigenvalues of the covariance matrix, �1 and �2,

are the squared lengths of the the semi-axes of the covariance ellipse. A scalar

measure for the localization uncertainty of the position estimate is the product

of the Eigenvalues U = �1�2, which is actually the squared area of the covariance

ellipse. Analogously, a scalar measure for the localization uncertainty in 3D is

U = �1�2�3, where �i denote the Eigenvalues of the 3D covariance matrix and

represent the squared lengths of the semi-axes of the ellipsoid. That is, in the

3D case, U is the squared volume of the covariance ellipsoid. Equivalently, when

using the determinant of the covariance matrix, we can write in both cases

U = det(�2"N
�1): (6)

3.2 Localization uncertainty in dependence on the ROI size

Suppose we have an initial position for a landmark around which we place a

symmetric observation window. Let us de�ne an uncertainty function U (w) de-

pending on the width w of the ROI. Then, for example, U (5) gives the local-

ization uncertainty of the position estimate for an observation window of size



5� 5 pixels (5 � 5� 5 voxels in the 3D case). Assume that further enlarging

the observation window gives us more edge information about the landmark but

other structures are still excluded. In this case, we do not expect a signi�cant

signal change in U (w). On the other hand, additionally capturing other struc-

tures by the ROI gives rise to a more or less strong increase of U (w) which tells

us that further enlargement of the ROI is not useful. The respective value of w

then gives us the width of a suitable ROI.

Let us now see how this works in practice for the 2D case. We consider an L- and

a Y-corner in a real image containing a polyhedral object as shown in Fig. 6. In

accordance to the semi-approach procedure for landmark localization, we have

manually determined the corner positions. The manually selected corner posi-

tions are marked by a small square for the L-corner in Fig. 6a and the Y-corner

in Fig. 6b. We have placed symmetric observation windows of width w = 5 pixels

around that points. The widths of the windows have been successively enlarged

by 2 pixels, that is, 1 pixel on each side. In Fig. 7a, for the L-corner the local-

ization uncertainty in (6) in dependence on the width of the ROI is depicted. In

Fig. 7b, for the Y-corner the uncertainty measure in dependence on the width

of the ROI is depicted (please ignore for a moment the vertical lines which have

been added to the graphs). We see that for the L-corner the uncertainty function

a. b.

Fig. 6a and b. ROI size selection for two di�erently complex structures in a real image

of a polyhedral object. The, based on the uncertainty measure U , manually selected

optimal ROIs are drawn for an L-corner and a Y-corner, resp. The also manually
speci�ed corner positions (centers of the ROIs) are marked by small squares (see text).

continuously decreases with increasing width of the ROI which is what we ex-

pect. Other structures do not interfere. In such a case, it is reasonable to choose

the ROI as large as possible. The width is only restricted due to the image

size. The thus manually determined ROI (w = 71) is drawn in Fig. 6a. For the

Y-corner we note interferences of other edges when the observation window ex-

ceeds a certain size. This is reected through a strong increase of the uncertainty

function, beginning at w = 63. Therefore, a maximal ROI with w = 63 seems

suitable. An observation window of this size is drawn in Fig. 6b.



3.3 Determining ROIs with optimal size

According to the above discussion, there are two principal optimality criteria

w.r.t. the size of the ROI. We speak of `criterion A' if we mean optimality

of the ROI w.r.t. minimal localization uncertainty. We refer with `criterion B'

to optimality w.r.t. maximal size of the ROI. Thus, depending on the need of

the user, we suggest the following procedure to select a ROI with optimal size:

First, determine a ROI with maximal size (criterion B). Then, if desired, reduce

the ROI by selecting the corresponding width of the minimal value of U (w)

(criterion A).

We have to detect a strong increase of the uncertainty function (criterion B).

Signal changes in U (w) are generally accompanied by a variation of the position

estimate resulting from the edge intersection approach. We have found that the

variation of the position estimate is a strong criterion to decide whether other

structures interfere due to enlargement of the observation window. In our case,

we compute the distance between the position estimates x�w (for the observation

window width w) and x�w�2
(for the observation window width w�2) and de�ne

a function

D(w) = jx�w � x�w�2
j (7)

which is compared with a threshold tD prescribing to what extent variations of

the position estimate are allowed. Additionally, we use a second criterion which

measures the increase of uncertainty. In our case, we simply compare successive

values of U (w) which has given good results. Alternative measures are the `deriv-

ative' or the `curvature' of U (w). Altogether, we propose to abort ROI enlarge-

ment if a) U (w + 2) > U (w) (increase of uncertainty) and b) D(w + 2) � tD. If

these conditions are both ful�lled, then the value of w gives us the optimal size

of the ROI according to criterion B.

3.4 Resulting algorithm for automatic ROI size selection

To sum up, our algorithm for ROI size selection consists of the following four

steps:

1. Determine an initial position for the searched landmark. Place a symmetric

and quadratic observation window of width w = wmin around that point,

for example, wmin = 5 pixels. Note that wmin determines the minimal width

of the ROI. Compute the uncertainty measure U (w) in (6) for the position

estimate.

2. If further enlargement of the observation window is not possible, for instance,

due to user restriction or image size, then either stop (criterion B with op-

timal width wopt = w) or go to step 4 (criterion A, then let wB = w denote

the maximal width of the ROI). Otherwise enlarge the observation window:

w = w + 2.

3. Compute U (w) and the variation of the position estimate D(w) in (7). If

a) U (w) > U (w � 2) and b) D(w) � tD, then either stop (criterion B,



wopt = w � 2) or goto step 4 (criterion A, then let wB = w � 2 denote the

maximal width of the ROI). Otherwise continue with step 2.
4. Select the corresponding width (wmin � w � wB) for which U (w) attains its

minimum, that is, minimal localization uncertainty for the position estimate

resulting from the edge intersection approach. Set wopt = w.

3.5 Experimental results

We present results for real 2D images. In our experiments, we have used Gaussian

�lters for derivative estimation. If not stated otherwise, then the standard devia-

tion � = 1:0 has been chosen. The minimal width of the ROI has always been set

to wmin = 5. The initial positions (ROI centers) have been selected manually.

In all experiments the threshold for the variation of the position estimate has

been �xed to tD = 0:5pix.

First, we have applied the algorithm on the image containing a polyhedral ob-

ject. In Fig. 7, the uncertainty measure U in dependence on the width of the

observation window is depicted for an L-corner (a), Y-corner (b), and Arrow-

corner (c). In these graphs, the automatically determined optimal ROI widths

are marked by a solid line for criterion A (minimal localization uncertainty of the

position estimate) and by a dashed line for criterion B (maximal size of the ROI).

The automatically determined ROIs are shown in Fig. 8a for criterion A and in

Fig. 8b for criterion B. The loci of the position estimates resulting from the

edge intersection approach are indicated through white crosses, although, due

to technical reasons, the coordinates have been rounded to pixel coordinates.

We see that for citerion B we obtain ROIs with more or less maximal size.
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Fig. 7. Uncertainty measure U in dependence on the window width w for the L-corner
(a), Y-corner (b), and Arrow-corner (c). The automatically selected ROI widths are

marked by a solid vertical line for criterion A and by a dashed vertical line for criterion B

(see text).

The ROIs capture no other structures. The algorithm stops nearby the obvious

strong increases of U (w) (wopt = 105 for the Arrow-corner and wopt = 67 for the

Y-corner). However, for the L-corner no other edges interfere if the observation

window is enlarged. Thus for the L-corner in both cases we have wopt = 67.

However, for criterion A we obtain for both the Arrow- and the Y-corner a sig-

ni�cantly smaller ROI.



a. b.

Fig. 8. Automatically determined ROIs for criterion A (a) and and criterion B (b).
The position estimates resulting from the edge intersection approach are marked by

white crosses (see text).

To analyze the localization accuracy of the position estimates resulting from the

edge intersection approach in more detail, we have compared the here calculated

positions with those obtained by �tting a parametric corner model to the data

[12]. Using this `ground truth' we have computed the respective distances to the

position estimates. We have varied the scale � of the Gaussian �lters for esti-

mating the partial derivatives to study the localization error in dependence on

the scale. The distances in dependence on � are listed for criterion A in Tab. 1a

and for criterion B in Tab. 1b. To show the relation between the localization

error and the size of the observation window, we have also listed the respective

value wopt (in parentheses) for each scale �. From Tabs. 1a and b we see that the

� Arrow L Y

0.5 0.12 (31) 0.33 (61) 0.27 (33)

1.0 0.11 (65) 0.16 (67) 0.28 (45)

1.5 0.25 (79) 0.13 (65) 0.32 (51)

a.

� Arrow L Y

0.5 0.96 (105) 0.39 (71) 0.49 (67)

1.0 0.99 (105) 0.16 (67) 0.52 (67)

1.5 1.26 (105) 0.13 (65) 0.46 (67)

b.

Table 1. Localization error (in pix ) of the position estimates resulting from the edge

intersection approach for the Arrow-, L-, and Y-corner for criterion A (a) and criterion
B (b). The values in parentheses denote the width of the determined ROI and � denotes

the respective scale of the Gaussian �lters for estimating the partial derivatives (see

text).

accuracy of the positions for criterion A is always better than or equal to that

for criterion B. On the other hand, the selected ROIs are, with except for the

L-corner, signi�cantly smaller. A general statement concerning the best suited

�lter scale � is not possible. However, we note that for criterion A we generally

obtain a larger ROI with increasing scale. On the other hand, with increasing

scale, for the Arrow- (criteria A and B) and Y-corner (criterion A), the local-

ization error increases, whereas that for the L-corner decreases. We assume that

the more complex structure of the Arrow- and Y-corner is the reason for this

e�ect.

As a second example, we have investigated 2D slices of a 3D MR image of the



human brain. In Fig. 9a, for criterion A the automatically determined ROIs for

several anatomical landmarks, namely the genu of corpus callosum (most left),

top of pons (middle), and the tip of fourth ventricle (most right) are shown. In

Fig. 9b, for criterion A the ROIs for the tip of the frontal horn (most left) and

the tip of a gyrus (top) are shown. In Figs. 9c and d, for criterion B the ROIs are

shown. The position estimates resulting from the edge intersection approach are

marked by white crosses. The determined ROIs have nearly the same sizes for

a. b.

c. d.

Fig. 9. Automatically selected ROIs for di�erent anatomical landmarks in a 3D MR

data set. For criterion A (a and b) and criterion B (c and d). The respective position
estimates are marked by white crosses (see text).

criteria A and B, except for the genu of corpus callosum, where the widths are

wopt = 11 and wopt = 17, resp. For this landmark, it appears that the accuracy

of the position estimate for criterion B is much worse, possibly due to interfering

brain convolutions in the neighborhood. One could expect that the maximalROI

for the frontal horn could be larger. However, note that there are several brain

structures in the area below (see the lower border of the ROI) which causes our

algorithm to stop with the selected width. All in all, it seems that the selected

observation windows for both optimality criteria actually cover representative

regions around all considered landmarks.

3.6 Related Work

Related work on the selection of suitable windows has been done in the context

of matching stereo images by Okutomi and Kanade [9] and for junction localiza-



tion by Lindeberg [7]. Lindeberg presented an approach for junction localization

with automatic scale selection. This approach di�ers in various aspects from our

approach. First of all, he selects so-called scale-space maxima of the operator by

Kitchen and Rosenfeld [6]. The respective scale at which a certain junction is

detected is assumed to be an appropriate scale for an observation window around

the structure. Note, however, that the used operator for structures of more com-

plex form than an L-corner (e.g., Y- and Arrow-corners) lacks for a well-founded

geometric interpretation. Also, it is not clear whether such a selected ROI is op-

timal w.r.t. localization uncertainty. That is, his criterion for selecting the size

of the ROI di�ers from ours. Second, he de�nes an error function based on the

residuals of the edge intersection approach. This error function is minimized by

varying the scale of the �lters for partial derivative estimation. The scale of the

obtained minimum is taken as optimal scale for derivative estimation. However,

with this approach the residual error is minimized, whereas we have considered

the uncertainty of the position estimate which is generally not the same.

4 Conclusion and Further Work

We have investigated multi-step di�erential procedures for the re�ned localiza-

tion of 3D point landmarks. The promising results due to our analytical study of

the 2D edge intersection approach motivated a generalization to 3D. Based on

this 3D extension, we have proposed two two-step and one three-step procedures

for the localization of 3D point landmarks, combining the detection of points

with re�ned localization through 3D edge intersection. We have experimentally

studied these approaches for 3D synthetic images as well as for 3D MR images

of the human head. For synthetic data, the combination of a two-step procedure

of large-scale and small-scale 3D di�erential operators followed by the 3D edge

intersection approach, that is, the three-step procedure, has yielded the most

accurate results. For the MR images, the two-step and three-step procedures,

both including 3D edge intersection, have yielded the best results. In compar-

ison to applying a 3D detection operator alone, the localization accuracy has

been signi�cantly improved. We have also proposed a novel approach for auto-

matically determining an optimal size for the ROI given a considered landmark.

Our approach is based on the uncertainty of the position estimate resulting from

the edge intersection approach. We have presented results for a real 2D image

containing a polyhedral object as well as for 2D slices of a 3D MR image demon-

strating the applicability of our approach.

Further experiments on medical images will be performed taking also other types

of point landmarks into account. Our approach for ROI size selection has been

formulated for use in 2D as well as 3D but so far has only been applied to 2D im-

ages. Thus, we will also study the performance for 3D images. Future work will

also concern the registration of 3D medical images using the semi-automatically

localized point landmarks.
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