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Abstract

We introduce a novel multi-step approach to improved detection of 3D anatomical point landmarks in tomographic images. Such

landmarks serve as important image features for a variety of 3D medical image analysis tasks (e.g. image registration). Existing approaches

to landmark detection, however, often suffer from a rather large number of false detections. Our multi-step approach combines an existing

robust 3D detection operator with two different novel approaches to the reduction of false detections, and is applied within a semi-automatic

procedure allowing for interactive control by the user. Experimental results obtained for a number of different anatomical landmarks of the

human head in 3D CT and MR images demonstrate that both automatic ROI size selection and incorporation of a priori knowledge of the

intensity structure at a landmark significantly improve the detection performance. The applicability of semi-automatic landmark extraction is

thus considerably improved. We also summarize the results of a validation study in which we compare the performance of semi-automatic

landmark extraction with that of a (standard) manual procedure for landmark extraction. As an exemplary application, we consider rigid

MR/CT registration. The main result of our study is that compared to a purely manual procedure, semi-automatic landmark extraction

(a) significantly reduces the elapsed time for landmark extraction, (b) generally yields registration results of comparable quality, and

(c) increases the reproducibility of the results.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Anatomical point landmarks are useful features for a

variety of medical image analysis tasks. If selected suitably,

such landmarks may represent substantial image

information very concisely, which is important in medical

applications with regard to the vast amount of data one has

to deal with. For example, anatomical point landmarks are

often used in image registration (e.g. [1–5]), which is a key

issue in clinical diagnosis and the planning of surgical

interventions. Examples of other applications utilizing

anatomical point landmarks are the generation of shape

models or morphometrics. The main problem with
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anatomical point landmarks is, however, their reliable and

accurate extraction from 3D tomographic images. In

practice, landmarks are usually manually extracted from

3D images, which is tedious and time-consuming and also

difficult to reproduce. Consequently, automated procedures

for landmark extraction are of central interest. In particular,

our emphasis is on semi-automatic procedures allowing for

interactive control by the user, which we consider important

in clinical applications (‘keep-the-user-in-the-loop’; see,

e.g. [6]). Such a semi-automatic procedure, generally,

comprises three steps: (i) the user interactively determines

a coarse position of the landmark of interest, (ii) a

computational approach to landmark extraction is applied

within a region-of-interest (ROI) around that position to

provide potential landmark candidates, and (iii) the user

selects the most promising candidate.

When developing computational approaches to landmark

extraction, key issues are reliable and robust landmark

detection as well as accurate localization. This contribution

is concerned with the crucial step of landmark detection.
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Fig. 1. Examples of anatomical point landmarks of the human head.

(a) Skull (adapted from [30]), (b) ventricular system (adapted from

[31]).
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Among the different types of point landmarks, we here focus

on the (generic) geometric classes of tips and saddle points.

Examples of landmarks of such types in the case of the

human head, in which we are primarily interested here, are

shown in Fig. 1.

Existing work on the detection of such types of landmarks

has mainly concentrated on differential approaches (e.g.

[7–9]). Differential approaches exploit only local image

information and, therefore, the application of such approaches

is, generally, associated with rather low computational costs.

A general problem is, however, that often a rather large

number of false detections are obtained. A large number of

false detections does not only affect in a negative way the

effort required for selecting the correct candidate, but also

the reliability, and thus reduces the confidence of a user in the

results. One reason for false detections is image noise.

In particular, differential approaches that employ image

derivatives of higher order are affected by this (e.g. [7,9],

where second or even third order derivatives are utilized); see

also [10] for a comparative study of the detection performance

of various 3D differential operators for landmark detection.
Second, a considerable number of false detections are caused

by neighboring anatomical structures that are captured by the

region-of-interest (ROI) for landmark detection. One main

contribution of this paper is a novel multi-step approach to

improved landmark detection that significantly reduces the

number of false detections and thus increases the applicability

of semi-automatic landmark extraction. The second main

contribution describes the results of a validation study in

which different observers participated and where we analyzed

the performance of semi-automatic landmark extraction

based on our new multi-step approach in comparison to

that of a (standard) manual procedure. Preliminary results of

the material presented in this paper have been published

in [11,12].

The paper is structured into two parts. In the first part, we

introduce the multi-step approach to landmark detection,

which features the combination of two different novel

approaches to the reduction of false detections, while

landmark detection is performed by applying an existing

robust 3D differential operator that utilizes only first order

image derivatives ([8]). The first approach to the reduction

of false detections, which is described in Section 2,

addresses the problem of selecting an optimal ROI size

for a landmark. We present a novel statistical approach to

automatic ROI size selection. Second, in Section 3 we take

advantage of additional a priori knowledge of the intensity

structure at a landmark to impose further constraints on

detected candidates. The multi-step approach to landmark

detection is finally described in Section 4. The second part

of the paper is devoted to the experimental evaluation of the

multi-step approach to landmark detection. In Section 5, we

first analyze in detail the detection performance of our new

multi-step approach for different anatomical point

landmarks in 3D MR and CT images of the human head.

In Section 6, we are finally concerned with the validation of

semi-automatic landmark extraction. As a standard

application, we consider landmark-based rigid image

registration. The performance is compared with that of a

purely manual procedure for landmark extraction. As

performance criteria being important for practice, we

consider (i) the elapsed time for landmark extraction,

(ii) the results of MR/CT registration based on the extracted

landmarks, as well as (iii) the inter-observer variability of

the localized landmark positions as an indicator for

reproducibility.
2. Statistical approach to automatic ROI size selection

Within a semi-automatic procedure for landmark

extraction, the user interactively determines a coarse 3D

position of a landmark. At this position, a 3D ROI is placed

in which a differential operator is applied to detect land-

mark candidates. However, a general problem is to select a

suitable ROI size. On the one hand, the ROI should capture

a sufficient amount of the intensity structure to enable
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reliable landmark detection. For that reason, the ROI is

required to be sufficiently large. On the other hand, the ROI

should be sufficiently small so that just the landmark alone

is captured by the ROI, while interfering neighboring

structures are excluded. In practice, an ROI of fixed size is

usually applied. Because of this, however, neighboring

anatomical structures are often captured by the ROI, which

gives rise to additional, unwanted detections. In this section,

we develop a statistical approach to the automatic selection

of a suitable ROI size. Our approach is based on a 3D

differential edge intersection approach, which was

originally developed for refined landmark localization

[13]. With the edge intersection approach, tangent planes

that are defined based on the intensity gradient are used to

locally approximate the surface at a landmark. The

landmark position is estimated by intersecting the tangent

planes using the least-squares method. Applying this

approach in the context of ROI size selection, we exploit

the statistical localization uncertainty of the edge

intersection position estimate as a criterion for isolating an

anatomical landmark (e.g. a tip) within the ROI.

2.1. Related work on ROI size selection

The choice of a suitable ROI size or the choice of an

optimal observation window size for an operator is a

general problem in computer vision, and some work

addressing this issue does exist. However, ROI size

selection in the context of 3D landmark extraction has not

been considered so far. Related work regarding the

selection of suitable windows was done, for example, in

the context of matching stereo images (e.g. [15]), optical

flow measurements (e.g. [16]), or 2D junction localization

(e.g. [17]). In view of our work, the approach presented in

[17] has the closest relation. It has to be stressed, however,

that in [17] 2D junction localization in 2D images using

windows of optimal sizes was considered, while in our case

we consider the selection of 3D ROIs around prominent 3D

anatomical structures as depicted in 3D medical images.

Also, the criterion that was used in [17] for selecting an

optimal window size differs from ours. In [17], optimal

window sizes were determined based on so-called scale-

space maxima of the 2D differential operator in [18] (i.e. the

respective scale at which a junction is detected is assumed

to be an appropriate scale for the observation window at the

structure of interest), while we here exploit the statistical

uncertainty of the position estimate resulting from the 3D

edge intersection approach.

2.2. Description of our approach

Let us consider, for simplicity, a cubic ROI of width w

centered at the interactively determined position (i.e. the

ROI size is controlled by one parameter w). Let x̂w denote

the position estimate resulting from the 3D edge intersection

approach [13]. Then, the statistical localization uncertainty
of x̂w is given by the covariance matrix

X
w

Z s2
3

Xn

iZ1

VgðxiÞVgðxiÞ
T

 !K1

; (1)

where s2
3 is a data-dependent noise term, Pg(xi) is the

intensity gradient at xi (the index i spans over all voxels

within the ROI), and nZw3 denotes the number of voxels

within the ROI (see Appendix A for details). The matrix Sw

reflects the consistency of the data observed within the ROI

with the assumed polyhedral model of the surface at the

landmark. The idea behind ROI size selection is then to vary

the ROI width and to select the optimal ROI width based on

minimal uncertainty.

Our algorithm for ROI size selection works as follows:

we start with a user-specified minimal ROI width (e.g.

wminZ7 voxels). As a scalar measure for the uncertainty,

we consider the determinant of the covariance matrix,

UwZdet(Sw), which is also referred to as the generalized

variance (e.g. [14]). When the ROI does not capture a

sufficient amount of the intensity structure to reliably

estimate the landmark position, Uw is large. Hence, by

enlarging the ROI and thus by capturing a larger amount of

the intensity structure around the landmark, Uw can be

expected to decrease. However, when neighboring struc-

tures are eventually captured by the ROI, Uw significantly

increases, which suggests that further enlargement of the

ROI is not adequate. In our implementation, we detect such

a change of Uw at wincrease, say, by requiring that (a) Uw

increases and (b) the relative spatial variation of the

position estimate resulting from the edge intersection

approach exceeds a threshold tV. For criterion (a), we

check whether UwOUwK2, while for criterion (b), we test

if jjx̂w K x̂wK2jjR tV (x̂w and x̂wK2 denote the position

estimates based on ROI widths of w and wK2, resp.).

Experimentally, we found that the combination of these

two criteria turned out to be very robust. Additionally, a

maximal ROI width wmax is prescribed. Finally, the

optimal ROI width wopt is selected in between, that is,

woptZarg min Uw with wmin%w%min{wincrease, wmax}.
3. Incorporation of additional a priori knowledge

of the intensity structure at a landmark

In Section 2, we have described an approach to the

automatic selection of a suitable ROI at a landmark to avoid

the inclusion of neighboring structures in the ROI and thus

to reduce the number of false detections. In this section, we

follow a different approach to reducing the number of false

detections, namely, by taking advantage of additional a

priori knowledge of the intensity structure at a landmark.

For example, the user generally knows the type of the

landmark of interest (e.g. a tip or a saddle point) as well as

the modality and the imaging parameters of the image used

(e.g. CT or T1-, T2-, or PD-weighted MR). This knowledge
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can be used to impose additional constraints on the detected

candidates. We here suggest using differential measures to

classify the intensity structure at the detected candidates.

Then, candidates can be rejected which have an intensity

structure being inconsistent with the a priori knowledge of

the intensity structure at the landmark. For classification, we

exploit curvature properties of the isointensity surfaces at

the detected candidates.

3.1. Related work on the utilization of curvature measures

for landmark extraction

Measures based on the curvature of isointensity surfaces

have previously been utilized for the detection of 3D point

landmarks in [7,9], for example. However, using such

measures requires computing image derivatives up to the

second order or even up to the third order. Note that the

estimation of high order derivatives is, generally, very

sensitive to noise, which gives rise to detections due to noise

only (see also [10]). For reasons of robustness, we here

apply a 3D differential operator for landmark detection that

requires only first order image derivatives ([8]). Afterwards,

we additionally take into account second order image

derivative information and utilize curvature measures to

classify the local intensity structure at the detected

candidates.

3.2. Description of our approach

Suppose we have detected a point xd (with Pg(xd)s0)

on the surface of an anatomical structure and assume that

the isointensity surface at xd, which is implicitly defined by

g(x)Kg(xd)Z0, well approximates the surface of the

anatomical structure. The type of the surface (e.g. a tip or

a saddle) can then be determined based on the signs of the

principal curvatures of the isointensity surface or, alter-

natively, based on the signs of the Gaussian curvature and

the mean curvature of the isointensity surface (for closed

formulae of the Gaussian and the mean curvature, see, e.g.

[7,19]). Additionally, we can distinguish different land-

marks w.r.t. their appearance as compared to the surround-

ing intensity (i.e. a dark or a bright tip).

In the case of a tip, both principal curvatures have the

same sign, which implies that the Gaussian curvature, which

is the product of both principal curvatures, is positive. In the

case of a saddle point, the principal curvatures have opposite

signs and the Gaussian curvature is negative. Finally, it is

possible to distinguish objects w.r.t. their appearance as

compared to the surrounding intensity by exploiting the sign

of the mean curvature (recall that the mean curvature is the

mean value of both principal curvatures). This is possible

because the sign of the mean curvature depends on the

orientation of the gradient of the intensity function, which is

normal to the surface. Note, however, that this additional

discrimination is only useful in the case of tips. In the case of

a dark tip as compared to a bright surrounding, the gradient
of the intensity function points out of the structure and,

consequently, both principal curvatures are negative. There-

fore, the mean curvature is negative, too. In the case of a

bright tip, the gradient of the intensity function points into

the structure and, therefore, both principal curvatures are

positive. Consequently, the mean curvature is also positive.
4. A novel multi-step approach to 3D point landmark
detection

In summary, our multi-step approach to landmark

detection comprises three steps:

1 A cubic ROI is centered at the interactively determined

position, and then an optimal size for the ROI is

automatically selected (see Section 2).

2 Landmark candidates are detected by applying a

computationally efficient 3D differential operator [8].

The operator is applicable to different types of land-

marks and is relatively robust w.r.t. noise since only first

order image derivatives are used (cf. [10]). The operator

reads Op3Zdet(C)/trace(C), where C denotes the

averaged dyadic product of the intensity gradient,

CZVgVgT. Landmark candidates are usually deter-

mined by searching for local maxima of the operator

responses.

3 Detected candidates with an intensity structure being

inconsistent with the a priori knowledge of the intensity

structure at the landmark at hand are automatically

rejected (see Section 3).

In contrast, in previous work (e.g. [8,20]) the 3D

detection operator Op3 was applied alone, that is, an ROI

of fixed size was used and additional a priori knowledge of

the intensity structure at a landmark in terms of the surface

curvature was not incorporated.
5. Evaluation of the detection performance

using 3D MR and CT images

In this section, we analyze in detail the detection

performance of the new multi-step approach for different

anatomical point landmarks in 3D MR and CT images of the

human head. In particular, we compare the detection

performance with that of an existing 3D detection operator.

5.1. Performance evaluation

To evaluate the detection performance, we use a certain

type of performance visualization as well as a scalar

quantity measuring the detection capability (cf. [21]). To

visualize the detection performance, the operator responses

at the detected candidates are plotted as a function of

the distance to the ROI center. Thus, these plots reflect
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the spatial scatter of the detected positions within the ROI,

the number of detections, as well as the significance of the

different detections in terms of the strength of the operator

response. To evaluate the detection performance quantitat-

ively, we use a performance measure that takes into account

both the number of detections and the significance of the

different detections. This measure reflects the separability of

the detections w.r.t. the operator response. Suppose we have

obtained n detections for a landmark. Let RiR0, iZ1,.,n,

denote the operator responses at the detected positions and

let Rmax denote the maximum of these values. Then, the

performance measure denoted by j reads:

j Z

0 n Z 0;

Xn

iZ1

Ri

Rmax

nR1:

8>>>><
>>>>:

(2)

When there is only one correct detection, we obviously

have jZ1. Additional false detections with small operator

responses yield jz1. In this case, the correct detection can

clearly be distinguished from the false detections. On the

other hand, when there are detections with operator

responses similar to the maximal operator response, j is

much larger than 1. In the case of equal responses R1Z/Z
Rn, we have jZn. In sum, the closer j is to 1, the better is

the detection performance. Note, however, that these

considerations assume that the detection with the strongest

operator response is also a correct detection (we speak of a

correct detection if the detection is associated with the

landmark at hand).
5.2. Experimental set-up

As landmarks, we consider visually salient features

located at the skull and within the brain: the saddle points

at the zygomatic bones (MC15), the tip of the external

occipital protuberance (MC5e), the tip of the vermex of the

cerebellum at the fourth ventricle (MC2), the junction at

the top of the pons (MC18), and the tips of the frontal

(MC6) and occipital (MC7) ventricular horns (see Fig. 1).

We use five T1-weighted 3D MR/CT image pairs from

different patients: one (C06) acquired at Utrecht University

Hospital, The Netherlands, and four (V101, V104, V107,

V109) acquired at Vanderbilt University, USA. The voxel

sizes of the C06 data are 0.86!0.86!1.2 mm3 (MR

image) and 0.63!0.63!1.0 mm3 (CT image). The voxel

sizes of the original data provided by Vanderbilt University

are about 0.85!0.85!3.0 mm3 (MR images) and 0.42!
0.42!3.0 mm3 (CT images). Here, we used up-sampled

data based on cubic B-spline image interpolation ([22])

with a slice thickness of 1.0 mm.

For automatic ROI size selection, the minimal and

maximal width of the cubic ROI was set to wminZ7 voxels

and wmaxZ21 voxels. The threshold for the spatial variation
of the position estimate was set to tVZ0.5 mm. For

estimating the image derivatives, we applied a scheme

based on cubic B-spline interpolation and Gaussian

smoothing. With this scheme, the derivatives are calculated

from the reconstructed continuous signal, while the

anisotropic image resolution is taken into account (see

[23] for details). The standard deviation s of the Gaussian

filters (given in mm units) was thereby coarsely adapted

to the scale of the landmark at hand: a smaller scale

(sZ1.0 mm) was used for the zygomatic bone and the top

of the pons, and a somewhat larger scale (sZ1.5 mm) was

used for the external occipital protuberance, the fourth

ventricle, and the frontal and occipital ventricular horns.

The components of the averaged dyadic product of the

gradient of the intensity function (matrix C utilized by the

detection operator Op3) were computed within 5!5!5

neighborhoods. Landmark candidates were determined by

searching for local maxima of the operator responses within

3!3!3 neighborhoods.

5.3. Experimental results

In the following, we first present in detail the

experimental results obtained for one MR/CT image pair.

Then, we summarize the results obtained for all five MR/CT

image pairs from above.

5.3.1. Analysis of the detection performance

using one MR/CT image pair

Exemplarily, we here consider six landmarks located

within the mid-sagittal plane and within the left hemisphere.

In these first experiments, the respective ROI center was the

position resulting from best possible manual landmark

localization in the images (in agreement with two persons).

Thus, using this ground truth, we can also study the impact

of our approach on the localization accuracy. No thresholds

were applied to the operator responses. In Figs. 2 and 3, the

results obtained for one MR image and one CT image (V109

image pair) are shown, respectively. Thick bars indicate

those detections obtained with the multi-step approach,

whereas narrow bars indicate the detections that would

additionally occur by applying the 3D detection operator

Op3 alone, that is, by using an ROI of fixed size and without

the incorporation of a priori knowledge of the intensity

structure at a landmark (for comparison, we here set the ROI

width to wZwmaxZ21 voxels). Additionally, the number of

detections n as well as the value of the detection

performance measure j are given.

From Figs. 2 and 3, one can conclude that the detection

performance of the multi-step approach is significantly

better than that of applying the 3D detection operator alone.

A rather large number of false detections with significant

operator responses is suppressed, for example, in the MR

image in the case of the external protuberance and the fourth

ventricle (Figs. 2b and c) and in the CT image in the case of

the fourth ventricle and the top of the pons (Figs. 3c and d).
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Fig. 2. Detection performance of the multi-step approach for different landmarks in a T1-weighted 3D MR image. The detection operator responses at detected

positions are drawn as a function of the distance to the ROI center. Thick bars indicate those detections obtained with the multi-step approach, whereas narrow

bars indicate the detections that would additionally occur when applying an existing 3D detection operator alone. In addition, the number of detections n as well

as the value of the detection performance measure j are given (e.g. in (a) nZ2/18 means two detections for the multi-step approach and 18 detections as the

result of applying the 3D detection operator alone).
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Fig. 3. Same as Fig. 2 but for a 3D CT image.
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Note that in the MR image in the case of the fourth ventricle

and in the CT image in the case of the fourth ventricle and

the top of the pons, a number of significant detections with

larger operator responses than the respective candidate with
minimal distance to the manually specified position were

automatically rejected. Moreover, among the remaining

detections, the candidate with minimal distance to the

manually specified position (i.e. the correct candidate) is



Table 1

Detection performance of the multi-step approach for different landmarks in five T1-weighted 3D MR images

MC151 MC15r MC5e MC2 MC18 MC61 MC6r MC71 MC7r

�n 2.0/4.8 3.3/8.3 1.8/8.3 1.0/12.0 1.0/5.0 2.5/3.0 2.4/3.4 1.8/2.8 2.0/3.4

nmax 3/8 5/12 2/13 1/15 1/7 3/4 3/5 3/4 3/5

D �n 59% 61% 79% 92% 80% 17% 30% 36% 42%
�j 1.5/2.6 1.8/3.6 1.5/4.0 1.0/4.9 1.0/2.6 1.7/1.8 1.7/2.2 1.3/1.5 1.4/1.8

jmax 2.1/4.5 2.8/4.9 2.0/6.0 1.0/4.9 1.0/3.5 2.3/2.7 2.4/3.6 1.9/2.0 1.6/2.5

For comparison, the results of applying an existing 3D detection operator alone are given. For each landmark, the mean �n and the maximal nmax number of

detections, the relative difference D �n between the mean values, as well as the mean �j and the maximal value jmax of the detection performance measure j are

listed (e.g., in the case of MC151 �nZ2:0=4:8 denotes in the mean 2.0 detections for the multi-step approach and 4.8 detections as the result of applying the 3D

detection operator alone).
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distinguished by the largest operator response. Thus, for a

user the ease of the selection of the correct candidate is

considerably increased. The fact that the remaining

detections are better distinguishable w.r.t. the operator

response is also reflected by smaller values of the

performance measure j. Also, it has to be pointed out that

both approaches to the reduction of false detections, that is,

automatic ROI size selection as well as incorporation of a

priori knowledge of the intensity structure at a landmark,

complementarily contribute to the improvement of the

detection performance. For example, in the MR image in the

case of the fourth ventricle (Fig. 2c), we found that

automatic ROI size selection alone yielded two detections,

while the incorporation of a priori knowledge of the

intensity structure at that landmark yielded four detections.

The combination of both approaches actually yielded the

optimal result of one detection. In all cases, the localization

performance was not affected, that is, the detection with

minimal distance to the manually specified position was

retained. For the other four MR/CT image pairs, we

obtained similar results.
5.3.2. Summary of results obtained

for five MR/CT image pairs

The results presented in the following were obtained

within a validation study of the applicability of semi-

automatic landmark extraction (see Section 6 for more

details). In this study, five observers used a semi-automatic

procedure for landmark extraction based on the new multi-

step approach to landmark detection from Section 4 to

determine seven up to nine corresponding landmarks in the

five MR/CT image pairs from above. The landmarks were

those from above plus the respective landmarks in the right

hemisphere.
Table 2

Same as Fig. 1 but for five 3D CT images

MC151 MC15r MC5e MC2 M

�n 1.6/2.6 1.8/3.0 1.5/2.3 1.0/8.0 3.

nmax 2/3 2/4 2/4 1/10 5/

D �n 39% 40% 35% 88% 50
�j 1.3/1.9 1.6/2.1 1.2/1.4 1.0/3.5 1.

jmax 1.8/2.3 2.0/2.8 1.5/2.0 1.0/3.9 2.
In Tables 1 and 2, the results of one observer are shown.

We compare the performance of the multi-step approach

with that of applying the 3D detection operator Op3 alone.

This was possible since the user inputs in the validation

study (e.g. the interactively determined positions) were

automatically recorded by the computer system so that, for

comparison, an alternative algorithm for landmark detection

could be applied retrospectively. In the experiments, we

applied a dynamic threshold to the operator responses to

suppress insignificant detections (i.e. detections with less

than 10% of the maximal operator response in an ROI).

Table 1 shows the results obtained for the five MR images,

while Table 2 shows the results obtained for the five CT

images. For abbreviation, we used the landmark symbols

introduced in Section 5.2. A suffix added to the landmark

symbols indicates the respective hemisphere, for example.

MC151 refers to the saddle point at the left zygomatic bone.

For each landmark, the mean �n and the maximal number

nmax of detections, the relative difference D �n between the

mean values (D �nZ ð �nOp3K �nmulti-stepÞ= �nOp3100%), as well as

the mean �j and the maximal value jmax of the detection

performance measure j are given.

For all landmarks, the mean number of detections was

reduced using the multi-step approach. In most cases, we

obtained significantly fewer detections, as compared to

applying the 3D detection operator alone. The values of the

detection performance measure j are much smaller and

closer to 1, which again indicates that the remaining

detections are better distinguishable w.r.t. the operator

response. In the MR image, especially in the case of the

saddle points at the zygomatic bones (MC15), the external

occipital protuberance (MC5e), the fourth ventricle (MC2),

and the top of the pons (MC18) the results were significantly

improved. In the CT image, in the case of MC2 and MC18
C18 MC6 l MC6r MC7 l MC7r

0/6.0 1.3/2.0 2.8/3.6 1.6/3.8 2.0/3.8

7 2/2 5/6 2/7 3/7

% 35% 23% 58% 48%

7/2.7 1.0/1.2 1.9/2.2 1.3/2.1 1.5/2.0

6/3.3 1.2/1.2 3.6/3.9 1.9/2.6 1.8/2.9
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the results were also considerably improved. In general, the

detection performance was better in the case of the CT

images, that is, the number of detections was smaller and

also the value of j was smaller. In most cases, we obtained

only one or two detections with the multi-step approach

(in the case of the MR images in 72% of all cases and in the

case of the CT images in 83% of all cases). However, in

either case, we obtained not more than five detections for a

landmark, while applying the 3D detection operator alone

yielded 15 detections in the worst case.
6. Validation study of semi-automatic landmark

extraction

The validation of methods intended for clinical routine

use is imperative. In this section, we present the results of a

first, rather extensive validation study of the applicability of

semi-automatic landmark extraction. We consider the

extraction of corresponding anatomical point landmarks

from multi-modality images for the purpose of landmark-

based image registration. In comparison to a purely manual

procedure for landmark extraction, which is commonly used

in practice but which is generally time-consuming and lacks

reproducibility, an automated procedure offers the possi-

bility to reduce the elapsed time for landmark extraction and

to increase the reproducibility of the results. The aim of our

study was to investigate to what extent this can be achieved.

6.1. Validation strategy

Exemplarily, we here consider the extraction of anatomical

landmarks from MR and CT images of the same patient. To

assess the performance of semi-automatic landmark extrac-

tion, we consider the following criteria: (a) the elapsed time

spent for landmark extraction, (b) the accuracy of the results

of rigid MR/CT registration based on the extracted landmarks,

and (c) the reproducibility of the results for different observers

(for a detailed description of these criteria, see Section 6.2).

The performance of semi-automatic landmark extraction is

compared with that of a (standard) manual procedure. Five

observers participated in our study (three computer scientists,

one physicist, and one physician), and five MR/CT image

pairs from different patients were used. Although none of the

participants can be considered a clinical expert in radiology or

neurosurgery, all persons were sufficiently familiar with 3D

brain anatomy and the task at hand.

6.1.1. Scenario for landmark extraction and registration

Since we compare the performance of two procedures for

landmark extraction that are basically different and which

require both user interaction with the data, it is important to

ensure independence of the experiments. In particular, a bias

towards one procedure due to the results of the respective

other procedure must be avoided. To diminish a bias towards

the (new) semi-automatic procedure, each observer started
with this procedure and afterwards used the manual

procedure. Thus, familiarity with the data would not have

been to the advantage of the semi-automatic procedure. In

addition, to diminish adaption effects to the data and to ensure

independence of the experiments, the second run-through of

each observer with the manual procedure was scheduled at

least four weeks later. Also, to enable a fair comparison of the

results, the user-interfaces for semi-automatic and manual

landmark extraction were almost identical.

Landmarks were simultaneously extracted from both

modalities through simultaneous display on two monitors

that were placed in a darkened room to guarantee high-

contrast image display. The simultaneous display helps the

user to orient within the 3D images as well as to establish

corresponding landmark positions. The extracted landmarks

were then used for MR/CT registration. We assume that the

multi-modal images were acquired approximately at the same

time. In such a case, a global rigid transformation comprising

translation and rotation is generally sufficient for image

registration. Local deformations, for example, due to scanner-

induced distortions or patient movements, are not considered.

Although a rigid transformation has only a few degrees of

freedom, in practice a rather large number of landmarks

should be used for registration for reasons of robustness.

However, in our case only seven up to nine landmarks were

used owing to the relatively poor quality of the used CT data.

Consequently, the registration results can be expected to be

sensitive to errors in landmark localization. Therefore, the

observers were allowed to reject landmarks if the registration

results were not satisfactory. To support the identification of

possibly erroneous correspondences, each observer was asked

to coarsely rank his confidence in having established

corresponding landmark positions after extracting a landmark

from both modalities. After inspecting the registration result,

each observer was allowed to reject up to two landmarks

according to his confidence in the results and to redo

registration using the reduced set of landmarks. The basis for

this decision were the visual impression of the registration

result, the landmark rankings, and the computed registration

error based on the landmarks used for registration.

6.1.2. Related work on experimental evaluation

of landmark extraction

Only a few experimental studies on point landmark

extraction have been published up to now. A detailed study

of the performance of an automated procedure for landmark

extraction as compared to the performance of a (standard)

manual procedure does not exist. In [7], 3D differential

operators using image derivatives up to the third order were

applied within a fully automatic procedure to extract

general feature points for the special case of rigid

registration of monomodality images. In [24], image

registration based on 3D anatomical point landmarks was

validated. However, in contrast to our validation study,

only manual landmark extraction was considered. More-

over, the elapsed time for landmark extraction was not
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reported. In [9], the performance of various 3D differential

operators for landmark detection was studied. The operators

involve image derivatives up to the second or third order

and were applied within a semi-automatic procedure to

extract 3D anatomical point landmarks from MR and CT

images. However, only one person was involved in the

experiments, and the elapsed time for landmark extraction

was not recorded. In [10], the detection performance of

various 3D differential operators using first order image

derivatives as well as first and second order derivatives was

investigated. However, the extraction of corresponding

landmarks from images of different modalities within a

semi-automatic procedure involving different observers as

well as the use of the landmarks for image registration were

not considered.

6.2. Performance criteria

In this section, we describe in detail the performance

criteria used in our study.

6.2.1. Elapsed time for landmark extraction

To measure the effort required for landmark extraction,

we consider the time interval between the time at which the

system is ready for user interaction and the time at which

the last landmark has been successfully extracted. Thus, the

time for loading of the data and for initialization, which may

considerably vary depending on the actual net load in our

workstation cluster and which thus would make the time

measurements hardly comparable, is not considered. The

elapsed time was automatically recorded by the computer

system. We then compare the elapsed time for semi-

automatic (tsem) and manual (tman) landmark extraction.

However, drawing conclusions which are based only on the

absolute elapsed time can be problematic. One reason is that

in our study no clinical expert was involved. Moreover, both

the quality of the data and the number of landmarks varied.

Therefore, we primarily analyze the relative differences

Dtman,sem between the elapsed time for manual and semi-

automatic landmark extraction:

Dtman;sem Z
tman K tsem

tman

100%: (3)

Our assumption is that the relative difference is

comparable with that observed in the case of clinical experts.

6.2.2. Accuracy of the registration results

The extracted landmarks are used for rigid registration.

To evaluate the registration results, we here follow different

ways to assess the results both qualitatively and

quantitatively:

1 First, we visually assess the registration results based on

the overlay of the transformed MR images with

automatically extracted edges from the CT images. In

addition, we consider the root-mean-squared (RMS) sum
of the residuals of the positions of the used landmarks

after registration

eRMS Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nl

Xnl

lZ1

kelk
2

s
; (4)

where nl is the number of landmarks used for registration

and elZ R̂xl;MRC t̂Kxl;CT denotes the residual error at

the lth landmark with R̂ and t̂ being the estimated

rotation matrix and translation vector, respectively. We

are well aware that visual assessment is highly

subjective, but unfortunately standardized assessment

methods do not exist yet. Note also that drawing

conclusions regarding the registration accuracy based

on the measure in (4) is generally critical (cf. [25]).

2 In the case of one MR/CT image pair, we estimate the

registration error using a number of spatially scattered

landmarks that were independently manually specified

by an expert participating in another study ([24]). Note,

however, that the positions of these landmarks (voxel

positions) may be prone to error and, therefore,

conclusions based on these error measurements must

be drawn carefully.

3 For some part of the data, we estimate the registration

error using a marker-based gold standard transformation.

That data were provided from the registration evaluation

project carried out at Vanderbilt University, USA ([26]).

Note, however, that also the gold standard carries some

inherent error (see [26] for details).
6.2.3. Reproducibility of the results for different observers

A general requirement in practical applications is the

reproducibility of a method. To assess the reproducibility of

the results based on semi-automatic and manual landmark

extraction for different observers, we study the inter-

observer variability of the localized landmark positions.

For each procedure, we analyze the variability of the

localized landmark positions separately for each landmark

in each image. Let xo denote the position of a certain

landmark in a certain image localized by the oth observer.

The mean position of the landmark is then given by

�xZ1=no

Pno

oZ1 xo, where no denotes the number of observers

who localized the landmark. As a variability measure for the

spatial scatter of the landmark positions obtained with one

procedure, we consider the RMS distance dRMS from the

mean landmark position:

dRMS Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

no

Xno

oZ1

kxo K �xk2

s
: (5)
6.3. Experimental set-up

As mentioned above, we used five MR/CT image pairs

from different patients (see Section 5.2 for a description of
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the image data). Depending on the image quality, the field-

of-view of the images, and the presence of lesions, we

selected between seven and nine landmarks for each image

pair that had to be extracted using both a semi-automatic

and a manual procedure. In the case of semi-automatic

landmark extraction, the parameter setting was the same as

above (see Section 5.2). However, to suppress insignificant

detections, we compared the operator responses at the

detected positions with a dynamic threshold based on the

respective maximal operator response. Note that dynamic

here means that detections with operator responses less than

10% w.r.t. the respective maximal operator response were

suppressed. To facilitate candidate selection in the case of

several detections, the detected candidates were presented

to the user in the order of decreasing strength of the operator

responses. To estimate the parameters of the rigid

transformation, we used the closed-form solution in [27].

6.4. Results of the validation study and discussion

6.4.1. Elapsed time for landmark extraction

In Table 3, the elapsed time for semi-automatic (tsem) and

manual (tman) landmark extraction is given for each observer

and each image pair. In addition, the relative difference Dtman,

sem between the elapsed time for manual and semi-automatic

landmark extraction is listed. Note that these values refer to

the extraction of all landmarks from one image pair.

From Table 3, one can see that in all cases, the elapsed

time for semi-automatic landmark extraction was shorter

(in part significantly shorter) than the elapsed time for

manual landmark extraction. The achieved relative

reduction of the elapsed time for semi-automatic landmark

extraction as compared to manual landmark extraction

ranged between 3 and 66%. One reason for the variation of

the elapsed time among the observers is that the strategies

for exploring the 3D data as well as the degree of mastering

the user-interface were different for the different observers.

Note that these differences could be diminished by

appropriate training. Also note that the number and types

of landmarks to be extracted varied among the different

image pairs. Another reason for the variation of the elapsed
Table 3

Elapsed time for semi-automatic (tsem) and manual (tman) landmark extraction (in

MR/CT data Obs. 1 tsem/tman

Dtman,sem

Obs. 2 tsem/tman

Dtman,sem

C06 7 landmarks 6 020/18037 6 013/14 021

66% 57%

V101 7 landmarks 9 017/18035 12 003/18 012

50% 34%

V104 7 landmarks 8 023/20017 9 054/13 056

59% 29%

V107 8 landmarks 7 032/18014 11 009/17 001

59% 34%

V109 9 landmarks 13 038/20036 16 001/21 046

34% 26%

Dtman,sem denotes the relative reduction between tman and tsem.
time is that the quality of the data varied noticeably in terms

of contrast and noise. Finally, the spatial pose of the patients

relative to the scanner (image) coordinate system varied,

which in part made it difficult for the observers to orient

within the 3D images since the appearance of anatomy in

consecutive slices differed significantly among the different

data sets. In the mean, semi-automatic extraction of nine

corresponding landmarks from both modalities took

11 030 min, while manual landmark extraction took

18 028 min. Thus, the achieved mean relative reduction of

the elapsed time for semi-automatic landmark extraction

compared to manual landmark extraction was about 38%.

6.4.2. Accuracy of the registration results

In most cases, the different observers used all landmarks

that were extracted from the MR/CT image pairs for

registration. By assessing the registration results of both

procedures through visual inspection, we found that the

results generally showed comparable quality. This is also

reflected by Table 4, which gives the computed registration

errors based on the landmarks used for registration. From

this table, one can conclude that the landmark registration

error in general lies between 1 and 3 mm, which indicates

reasonable registration results in the case of both pro-

cedures. However, one can also see that in most cases, the

landmark registration error is somewhat larger in the case of

the semi-automatic procedure. Also, the mean landmark

registration error is, with the exception of the results

obtained for the C06 data, slightly larger in the case of this

procedure. Note, however, that drawing conclusions

regarding the registration accuracy based on the landmark

registration error is generally critical (cf. [25]). Figs. 4 and 5

exemplarily depict the registration results of one observer

(observer 1), which represent typical results. Here, the

transformed MR data were overlaid with the computed

edges of the CT data, which were extracted using a 3D

extension of the approach in [28]. In the overlaid data, those

voxels lying on a detected edge in the CT image were

assigned a high intensity.

To analyze the registration results in more detail, in the

following we consider error measures that are independent
minutes)

Obs. 3 tsem/tman

Dtman,sem

Obs. 4 tsem/tman

Dtman,sem

Obs. 5 tsem/tman

Dtman,sem

14 039/20 025 8 038/9 023 12 027/16038

28% 8% 25%

16 024/25 040 11 020/13059 17 042/18013

36% 19% 3%

12 004/21 036 8 026/12 005 11 016/25040

44% 30% 56%

13 023/16 054 10 007/15030 12 010/25050

21% 35% 53%

16 028/24 047 11 056/15042 12 038/20008

34% 24% 37%



Table 4

Root-mean-squared (RMS) registration error eRMS and respective maximal registration error emax based on the landmarks used for registration

MR/CT data Procedure Obs. 1 eRMS/emax Obs. 2 eRMS/emax Obs. 3 eRMS/emax Obs. 4 eRMS/emax Obs. 5 eRMS/emax �eRMS

C06 7 landmarks Semi-automatic 1.05/1.53 1.36/1.99 1.05/1.53 1.05/1.53 3.02/4.49 1.51

Manual 1.19/1.56 1.77/2.58 1.93/2.78 1.29/1.56 2.08/2.70 1.65

V101 7 landmarks Semi-automatic 2.45/3.45 3.24/3.96 2.80/4.54 2.73/3.70 3.40/6.51 2.92

Manual 1.44/2.04 3.61/6.30 2.59/4.53 2.21/2.96 1.55/2.74 2.28

V104 7 landmarks Semi-automatic 1.69/3.46 1.99/3.70 3.54/5.40 1.99/3.70 1.68/2.93 2.17

Manual 1.66/2.39 1.20/1.94 3.04/4.75 1.75/2.39 1.51/2.34 1.83

V107 8 landmarks Semi-automatic 2.81/4.78 1.97/2.78 2.92/5.09 1.54/2.19 2.81/4.41 2.41

Manual 1.96/2.72 2.22/3.19 2.44/3.57 2.13/2.87 1.81/2.76 2.11

V109 9 landmarks Semi-automatic 2.67/3.64 3.42/5.74 2.34/3.97 2.56/3.68 2.99/5.16 2.79

Manual 1.81/2.66 1.97/2.87 2.83/4.24 1.78/2.85 2.10/2.96 2.09

All values are given in mm units.
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of the landmarks used for registration. In the case of the C06

data, we estimate the registration error based on 21

landmarks that were independently determined by an

external expert ([24]). In Table 5, the computed registration
Fig. 4. MR/CT rigid registration results based on semi-automatic and manua
errors are summarized. The subtle differences in the RMS

registration errors, which are in most cases well below

1 mm, confirm our visual impression. The registration errors

at the considered landmarks generally ranged between 1 and
l landmark extraction (for C06, V101, and V104 data and observer 1).



Fig. 5. MR/CT rigid registration results based on semi-automatic and manual landmark extraction (for V107 and V109 data and observer 1).
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3 mm. The relatively large maximal error, which occurred

in all cases at the same landmark, indicates that the positions

for this landmark, which were determined by the expert, are

possibly erroneous. In the mean, the semi-automatic

procedure gave a registration error of �eRMS;sem Z2:45 mm,

whereas the manual procedure yielded a slightly smaller

error of �eRMS;man Z2:28 mm

In addition, part of the registration results obtained for

the V101, V104, V107, and V109 data were evaluated using

a marker-based gold standard transformation, which was

used to determine corresponding positions as well as the

registration error ([26]). In Table 6, the estimated

registration errors obtained in the case of the results of

observer 1 are given. From this table, one can again

conclude that the registration results based on the manual

procedure are slightly better. In the mean, the semi-

automatic procedure yielded here a registration error of

�eRMS;sem Z2:47 mm, whereas the manual procedure gave an

error of �eRMS;man Z1:88 mm. Note, however, that the

results refer to only one observer and recall also that
Table 5

Root-mean-squared (RMS) registration error eRMS and respective maximal reg

independently determined by an expert (for C06 data and all observers)

Procedure Obs. 1 eRMS/emax Obs. 2 eRMS/emax Obs. 3

Semi-automatic 2.09/4.57 2.41/5.20 2.09/4.5

Manual 2.26/4.70 2.09/4.79 2.14/5.1

All values are given in mm units.
while semi-automatic and manual landmark extraction

actually yielded similar registration results, while the

elapsed time for landmark extraction was significantly

reduced with the semi-automatic procedure.
6.4.3. Reproducibility of the results for different observers

In total, each observer extracted up to 76 landmarks

(38 landmarks in five MR images and 38 landmarks in

five CT images). We found that for 58 out of the 76

landmarks (i.e. in 76% of all cases) the variability of the

localized landmark positions was smaller in the case of the

semi-automatic procedure. For 47 out of these 58 landmarks

all observers even selected the same candidate out of the set

of detected candidates for a landmark (i.e. in 62% of all

cases we have dRMS,semZ0 mm for the semi-automatic

procedure). For seven out of the remaining 11 landmarks we

found that only one observer selected a different (outlier)

candidate. Only for 18 out of the 76 landmarks the semi-

automatic procedure showed a larger variability of the

localized landmark positions than the manual procedure.
istration error emax based on 21 manually specified landmarks that were

eRMS/emax Obs. 4 eRMS/emax Obs. 5 eRMS/emax �eRMS

7 2.09/4.57 3.56/6.44 2.45

3 2.26/5.07 2.67/5.80 2.28



Table 6

Root-mean-squared (RMS) registration error eRMS and respective maximal registration error emax using a marker-based transformation (for V101, V104, V107,

and V109 data and observer 1)

Procedure V101 eRMS/emax V104 eRMS/emax V107 eRMS/emax V109 eRMS/emax �eRMS

Semi-automatic 3.38/4.78 2.29/3.02 2.21/2.93 1.97/2.28 2.47

Manual 2.56/2.62 1.58/2.39 1.72/2.41 1.66/2.08 1.88

All values are given in mm units.
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By inspecting the results further, we found that for 10 out of

these 18 landmarks only one observer selected a different

(outlier) candidate. In summary, in the case of the

semi-automatic procedure the mean variability of the

localized landmark positions was �dRMS;sem Z1:06 mm

while in the case of the manual procedure the mean

variability was �dRMS;manZ 2:22 mm. Given the relatively

small sample size, however, it is hard to draw final

conclusions w.r.t. the variability of the localized positions

of single landmarks. The experimental results revealed,

however, that the variability of the localized positions was

similar for both modalities: We found that in the case of the

MR images for 30 out of 38 landmarks the variability was

smaller in the case of the semi-automatic procedure

ð �dRMS;sem;MR Z0:94 mmÞ, while in the case of the CT

images for 28 out of 38 landmarks the variability was

smaller in the case of the semi-automatic procedure

ð �dRMS;sem;CTZ1:19 mmÞ.
7. Conclusion

The detection performance is crucial for an automated

procedure for landmark extraction. Ideally, such a

procedure should yield only one correct detection for the

landmark of interest. Existing approaches to landmark

detection, however, often suffer from a rather large number

of false detections, which in turn would affect in a negative

way the acceptance by a user. One main contribution of this

paper was a novel multi-step approach to improved

landmark detection, which combines an existing robust

3D differential operator for landmark detection with two

different approaches to the reduction of false detections.

We analysed in detail the detection performance of the

multi-step approach for a number of different anatomical

point landmarks of the human head in 3D MR and CT

images. Our experimental evaluation showed that the

combination of automatic ROI size selection with the

incorporation of a priori knowledge of the intensity structure

at a landmark is very effective in reducing the number of

false detections. In comparison to applying a 3D detection

operator alone, as has been done in previous work, the

detection performance is considerably improved, which

thus significantly improves the applicability of semi-

automatic landmark extraction.

As a second main contribution, we then presented the

results of a validation study in which we compared
the performance of semi-automatic landmark extraction

based on the new multi-step approach to landmark detection

with that of a purely manual (standard) procedure for

landmark extraction. As application, we exemplarily

considered rigid registration of 3D MR and CT images.

The main result of our study was that compared to a purely

manual procedure, (a) the elapsed time for landmark

extraction can be significantly reduced with the semi-

automatic procedure, (b) the registration results based

on semi-automatic landmark extraction generally show

comparable quality, and (c) the reproducibility of the results

in terms of the inter-observer variability of the localized

landmark positions is significantly smaller with the semi-

automatic procedure. The results of the validation study

demonstrated the applicability of semi-automatic landmark

extraction based on the multi-step approach to landmark

detection for the purpose of image registration. However,

the quantitative evaluation of the registration results

revealed also that compared to the results based on manual

landmark extraction, the semi automatic procedure showed

a slightly larger registration error. Thus, additional steps for

the purpose of refined localization of 3D anatomical

landmarks (e.g. using the differential approach in [13] and

also a recent more global approach in [29] based on

deformable models) are assumed to improve the results.
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Appendix A. Statistical localization uncertainty
of the edge intersection position estimate

The 3D edge intersection approach relies on a simple

polyhedral model of the surface at a landmark. The idea is to
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locally approximate the landmark’s surface through tangent

planes, which are defined based on the intensity gradient,

and then to intersect these tangent planes based on a

distance minimization to obtain a position estimate for the

landmark. To emphasize edge points, the distances are here

weighted by the gradient magnitude.

The gradient-weighted perpendicular distance from an

arbitrary point x to the tangent plane at a point xi within the

considered ROI then reads 3i(x)ZhPg(xi), xKxii, where

h$,$i denotes the inner product. The position estimate is

obtained by minimizing the residual distances using the

least-squares method

EðxÞ Z
Xn

iZ1

3iðxÞ
2/min:; (A.1)

where n denotes the number of voxels within the ROI.

Minimizing (A.1), we obtain as position estimate:

x̂ Z
Xn

iZ1

VgðxiÞVgðxiÞ
T

 !K1 Xn

iZ1

VgðxiÞVgðxiÞ
Txi

 !
:

(A.2)

Now let us assume that the residuals 3i, which (in the

case of an isolated structure) in general characterize the

noise, are statistically independent and normally distributed

with zero mean and variance s2
3 . This implies that the

position estimate x̂ resulting from the edge intersection

approach is also normally distributed, and its covariance

matrix reflecting the statistical localization uncertainty can

be stated as

X
w

Z s2
3

Xn

iZ1

VgðxiÞVgðxiÞ
T

 !K1

; (A.3)

where an estimate of the variance is given by ŝ2
3 Z

Eðx̂Þ=ðnK3Þ (e.g. [14]).
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