Proceedings of the 2001 Workshop on
Applications of Description Logics

Editors: Giinther Gorz, Volker Haarslev,
Carsten Lutz, and Ralf Moller

Vienna, Austria
September 18, 2001

Abstract

Recently, a growing interest in description logics and their applica-
tions can be observed. This is mainly due to the development of very
expressive description logics and optimized description logic systems
which support terminological and/or assertional reasoning for these
logics. This workshop intended to gather researchers as well as practi-
tioners who are interested in description logics and their applications.
The primary focus of this workshop was on applications of description
logics. Tan Horrocks, University of Manchester, gives a tutorial-style
talk about latest developments in description logic research.

These proceedings can also be found at http://www.CEUR-WS.org.

Technical papers

E 1. Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo E
' Reasoning on UML Class Diagrams using Description Logic !
E Based Systems E

E 2. Sebastian Brandt and Anni-Yasmin Turhan '
. Using Non-standard Inferences in Description Logics — E
E what does it buy me? !

. 3. Kerstin Biicher, Yves Forkl, Giinther Gorz, Martin Klarner, E
! Bernd Ludwig E
: Discourse and Application Modeling for Dialogue Systems !

4. Francois de Bertrand de Beuvron, Martina Kullmann, Francois Rous-
selot
An Optimized Tableau Structure for Explicit Representation
of Disjunction

E 5. Eugenio Di Sciascio, Francesco M. Donini, Marina Mongiello,
E Giacomo Piscitelli .
' A Knowledge Based System for Person-to-Person E-Commerce,

6. Malte Gabsdil, Alexander Koller, Kristina Striegnitz
Building a Text Adventure on Description Logic

7. Javier Gonzalez-Castillo, David Trastour, Claudio Bartolini
Description Logics for Matchmaking of Services

. 9. Bo Hu, Ernesto Compatangelo, Ines Arana |
+ A hybrid approach to extend DL-based reasoning with con- !
! crete domains :

El(). Michael Knorr, Bernd Ludwig, Glinther Gorz :
' Some Requirements for Practical Modeling in Dialogue Sys- ,

i11. Stefan Schlobach
Interpolation based Assertion Mining

12. Heiner Stuckenschmidt and Jérome Euzenat
i Ontology Language Integration: A Constructive Approach

1

The Unified Modeling Language (UML) is the de facto standard formalism for
object-oriented modeling [1, 11]. There is a vast consensus on the need for a
precise semantics for UML [9, 14], in particular for UML class diagrams. Indeed,
several kinds of formalizations of UML class diagrams have been proposed in the
literature [8, 9, 10, 7]. Many of them have been proved very useful with respect to
the task of establishing a common understanding of the formal meaning of UML
constructs. However, to the best of our knowledge, none of them has the explicit
goal of building a solid basis for allowing automated reasoning techniques, based
on algorithms that are sound and complete wrt the semantics, to be applicable

Reasoning on UML Class Diagrams using
Description Logic Based Systems

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”

Via Salaria 113, 00198 Roma, Italy

lastname@dis.uniromal.it

Abstract

In this paper we study how automated reasoning systems based on
Description Logics (DLs) can be used for reasoning about UML class di-
agrams. The ability of reasoning automatically on UML class diagrams
makes it possible to provide computer aided support during the appli-
cation design phase in order to automatically detect relevant properties,
such as inconsistencies and redundancies. We show that UML class dia-
grams can be formalized as knowledge bases expressed in the DL DLR.
DLR knowledge bases can be translated into knowledge bases expressed
in the variants of ALC QT accepted by state-of-the-art DI.-based systems.
Hence, in principle, the reasoning capabilities of such systems can be used
to reason on UML class diagrams. However, we report some experiments
indicating that state-of-the-art systems have still difficulty in dealing with
the resulting knowledge bases.

Introduction

to UML class diagrams.

We are interested in exploiting the research on Description Logics (DLs),
which are decidable logics tailored towards class based knowledge representation,
to carry out various forms of reasoning on UML class diagrams, so as to provide
support during the specification phase of software development. Recently the
research on DLs has resulted in a number of automated reasoning systems [15,
16, 17, 12, 13], that have been successfully tested in various application domains
(see e.g., [19, 20, 18]). Such systems are candidates to form the core reasoning
engine for advanced UML CASE tools.

In this paper, we illustrate a formalization of UML class diagrams in terms
of DLs [2]. In particular, we show how UML class diagrams can be captured
by knowledge bases expressed in the DL DLR [4, 3]. This logic is particularly
well tailored towards the high expressiveness of UML information structuring
mechanisms, and allows one to easily model important additional properties,
such as disjointness of classes, or partitions of classes into subclasses, that are
typically specified by means of constraints in UML class diagrams. DLR asser-
tions can be translated into ALC QT assertions. Since variants of the latter are
accepted by state-of-the-art DL-based reasoning systems, in principle, we can
exploit such systems to reason about UML class diagrams. However, in spite
of the fact that such systems have shown to perform nicely in several context,
we report in this paper some experiments indicating that they still have serious
efficiency problems when dealing with UML class diagrams.

The rest of the paper is organized as follows. In Section 2 we give a brief
overview of the Description Logic DLR. In Section 3 we show how UML class
diagrams can be formalized in DLR. In Section 4 we discuss the use of DL-
based reasoning systems, namely FACT [17] and RACER [13], for reasoning
about UML class diagrams, and show some results of our experimentation with
such systems. Section 5 concludes the paper. In the appendix, we show the
UML class diagrams used in the reported experiments.

2 The Description Logic DLR

The basic elements of DLR [4, 3] are concepts and n-ary relations. We assume
to deal with a finite set of atomic relations and atomic concepts, denoted by P
and A, respectively. Arbitrary relations (of given arity between 2 and na.),
denoted by R, and arbitrary concepts, denoted by C, are built according to the
following syntax:

R == T, | P | (i/n:C) | =R | RiMRy
C == T, | A|-C | CNCy | (L£Ek[iR)

where 7 denotes a component of a relation, i.e., an integer between 1 and 1,4, 1
denotes the arity of a relation, i.e., an integer between 2 and n,,,., and k denotes

T, C (ah)r TI = AZ
pt c T AT C A
(i/n:C)i = {te T%ZI [tile C*} (-0)T = AT\(CZ
(ﬂR)I = T%\RI (C,nCy)t = cInct
(BiMRy)" = RiNE, (< k[i]R)T = {ae AT |#{t e RT |t[i] =a} <k}

Figure 1: Semantic rules for DLR (P, R, R, and R, have arity n)

a non-negative integer. We consider only concepts and relations that are well-
typed, which means that (i) only relations of the same arity n are combined to
form expressions of type R; M Ry (which inherit the arity n), and (ii) i < n
whenever ¢ denotes a component of a relation of arity n.

We also make use of the following abbreviations: C; L Cy for =(=C} M —=Cy),
Cy = Cy for =C, U Cy, (> k[i|R) for =(< k—1[i]R), J[i|R for (> 1[i]R), V[i|R
for =3[i]=R. Moreover, we abbreviate (i/n: C) with (i: C'), when n is clear from
the context.

A DLR knowledge base (KB) is constituted by a finite set of inclusion as-
sertions, where each assertion has one of the forms:

RIERQ CIEC2

with R; and R of the same arity.!

The semantics of DLR is specified through the notion of interpretation. An
interpretation T = (AT, -T) of a DLR KB K is constituted by an interpretation
domain AT and an interpretation function I that assigns to each concept C' a
subset C7 of AT and to each relation R of arity n a subset RZ of (AT)", such
that the conditions in Figure 1 are satisfied (in the figure, ¢[i] denotes the i-th
component of tuple ¢). We observe that T; denotes the interpretation domain,
while T,,, for n > 1, does not denote the n-Cartesian product of the domain,
but only a subset of it that covers all relations of arity n. It follows, from this
property, that the “=” constructor on relations is used to express difference of
relations, rather than complement.

To specify the semantics of a KB we first define when an interpretation sat-
isfies an assertion as follows: An interpretation Z satisfies an inclusion assertion
Ry C Ry (resp. C} C Cy) if R C RE (resp. Cf C C%). An interpretation that
satisfies all assertions in a KB IC is called a model of K.

Several reasoning services are applicable to DLR KBs. The most important
ones are KB satisfiability and logical implication. A KB I is satisfiable if there

'DLR knowledge bases may also include identification-constraints that allow one to force
instances of concepts or relations to be uniquely identified through suitable mechanisms (see [4]
for details). Interestingly, however, such additional constraints play no role in checking knowl-
edge base satisfiability or logical implication of inclusion assertions. For this reason in this
paper we do not consider them.

1 mMy. .My, Ng. .My Co

A

Figure 2: Aggregation in UML

exists a model of L. An inclusion assertion « is logically implied by IC if all
models of K satisfy a. One can easily verify that logical implication and KB
(un)satisfiability are mutually reducible.

One of the distinguishing features of DLR is that it is equipped with rea-
soning algorithms that are sound and complete wrt to the semantics. Such
algorithms allow one to decide all the above reasoning tasks in deterministic
exponential time [4, 3].

3 Representing UML class diagrams

We concentrate on UML class diagrams for the conceptual perspective. Hence,
we do not deal with those features that are relevant for the implementation
perspective, such as public, protected, and private qualifiers for methods and
attributes.

Classes A class in an UML class diagram denotes a set of objects with common
features, hence it can be represented by a DLR concept. This follows naturally
from the fact that both UML classes and DLR concepts denote sets of objects.
Attributes and operations of classes can be easily represented by means of DLR-
relations [2].

Relationships between classes come in two forms in UML: aggregations, de-
noting part-whole relationships, and associations, denoting general relationships
between two or more classes.

Aggregations An aggregation in UML, graphically rendered as in Figure 2, is
a binary relation between the instances of two classes, denoting a generic form
of part-whole relationship, i.e., a relationship that specifies that each instance
of a class is made up of a set of instances of another class. An aggregation A,
saying that instances of the class C; have components that are instances of the
class (s, is formalized in DLR by means of a binary relation A together with
the following assertion:
ALC (1:C))N(2:0y).

Note that the distinction between the contained class and the containing class
is not lost. Indeed, we simply use the following convention: the first argument
of the relation is the containing class. The multiplicity of an aggregation can be

4

Ca

T2

Cy r1 Tn Chn

Figure 3: Association in UML

[o e e]

1 : T2

Figure 4: Binary association in UML

easily expressed in DLR. For example, the multiplicities shown in Figure 2 are
formalized by means of the assertions:

Cy
Cs

C (= ne[114) N (< n, [1]4)

C (= me[2]4) 1 (< my [2]4)

Associations An association in UML, graphically rendered as in Figure 3, is
a relation between the instances of two or more classes. An association often
has a related association class that describes properties of the association such
as attributes, operations, etc.

Since associations have often a related association class, we formalize asso-
ciations in DLR by reifying each association A into a DLR concept A with
suitable properties. We represent an association among n classes C,...,C,, as
shown in Figure 3, by introducing a concept A and n binary relations r, ..., ry,,
one for each component of the association A. Each binary relation r; has C;
as its first component and A as its second component. Then we introduce the
following assertion:

AT J1r (L 1[Ary) OV[L(ry = (2:C)) 1T

El[l]r:n A (< 1[1]r,) OV[A)(r, = (2:Cy))

where [1]r;, with ¢ € {1,...,n}, specifies that the concept A must have all
components 11, ...,r, of the association A, (< 1[1]r;) specifies that each such
component is single-valued, and V[1](r; = (2:C})) specifies the class each com-
ponent has to belong to.2

2In addition, we would need an identification constraint saying that the relations 71,..., 7,

Cl CZ N Cn

Figure 5: A class hierarchy in UML

For a binary UML association, we can easily represent multiplicities by im-
posing suitable number restrictions on the DLR relations modeling the compo-
nents of the association. The multiplicities shown in Figure 4 are captured as
follows:

Ch
Cy

(= ne [1](re 11(2: A4))) (< [1] (1 1121 A)))

C
C (Z2me[1](ra11(2:A4))) 11 (< ma [1(r2 11 (2: A)))

Generalization In UML one can use generalization between a parent class
and a child class to specify that each instance of the child class is also an instance
of the parent class. Hence, the instances of the child class inherit the properties
of the parent class, but typically they satisfy additional properties that do not
hold for the parent class.

Generalization is naturally supported in DLR. If an UML class C5 general-
izes a class C7, we can express this by the DLR assertion:

Cy C Oy

Inheritance between DLR concepts works exactly as inheritance between UML
classes. This is an obvious consequence of the semantics of inclusion assertions,
which is based on subsetting. Indeed, in DLR, given an assertion C; C Cy, every
tuple in a relation having C5 as i-th argument type may have as i-th component
an instance of ', which is in fact also an instance of C';. As a consequence,
in the formalization, each attribute or operation of C5, and each aggregation
and association involving C) is correctly inherited by C;. Observe that the for-
malization in DLR also captures directly inheritance among association classes,
which are treated exactly as all other classes, and multiple inheritance between
classes (including association classes).

In UML, one can group several generalizations, as shown e.g.., in Figure 5,
and impose covering or mutual disjointness between classes, if needed. This is
captured in DLR by a set of inclusion assertions, one between each child class

form an identifier of the concept A. However, as mentioned, such a constraint has no impact
on reasoning on logical implication or satisfiability of the resulting knowledge base, so we omit
it here.

and the parent class:
C; CC for each i € {1,...,n}

Then if the superclass C' is a covering of the subclasses C4, ..., C,, we include
the additional assertion
C ECiU---UGC,

For each pair of subclasses C; and Cj that are mutually disjoint, we include the
assertions

C; C =C;

Constraints In UML it is possible to add information to a class diagram by
using constraints. In general, constraints are used to express in an informal
way information which cannot be expressed by other constructs of UML class
diagrams. Omne can exploit the expressive power of DLR to formalize several
types of constraints that allow one to better represent the application semantics
and that are typically not dealt with in a formal way. This allows one to take
such constraints fully into account when reasoning on the class diagram.

4 Experiments

We have formalized as DLR knowledge bases several UML class diagrams. Then
we have used state-of-the-art DI-based systems to reason with them, by trans-
lating the DLR knowledge bases into ALCQT knowledge bases (or more pre-
cisely knowledge bases expressed in the variants of ALCOT accepted by the
systems used). In particular, we have used the two systems FACT * (the exe-
cutable SHZ Q reasoner (shig-app.exe) contained in the Corba-FACT distribu-
tion v.2.15, excluding the corba interface) and RACER * (v.1-5-10). We have
run the experiments on a Pentium III biprocessor, 866 Mhz, 512MB of RAM
and OS Windows 2000 Professional.

Below we report the results obtained with four rather simple UML class
diagrams, shown in the appendix: Restaurant, Library, Soccer, and Hospital,
modeling, respectively, a restaurant, a library, a soccer championship and the
acceptance procedure in a hospital. The reasoning service we focused on is satis-
fiability of the class diagram. Observe that all diagrams are obviously satisfiable.
The obtained results are shown in Table 1, where:

e complete refers to the original UML class diagrams;

3 Available at http://www.cs.man.ac.uk/~horrocks/FaCT.
*Available at http://kogs-www.informatik.uni-hamburg.de/~race.

7

Restaurant || Hospital Soccer Library

FACT | RACER FACT | RACER FACT | RACER FACT | RACER

no mult. constr. yes | yes yes | yes yes | yes yes | yes
no minimal mult. constr. || yes no yes | yes || yes | yes || yes | yes
no maximal mult. constr. || yes no yes | no yes | no yes | yes
complete no no yes | no no no yes | no

Table 1: Successful classification of the considered UML class diagrams

e no multiplicity const. refers to the class diagrams weakened by removing all
multiplicity constraints, i.e., making all multiplicities of the form 0..x;

e no minimal multiplicity const. refers to the class diagrams weakened by
removing minimal multiplicity constraints, thus getting multiplicities of
the form 0..x or 0..1;

e no maximal multiplicity const. refers to the class diagrams weakened by
removing maximal multiplicity constraints, thus getting multiplicities of
the form 0..x or 1..x.

In the table, “yes” indicates that the reasoner could classify the knowledge base
corresponding to the UML class diagram, and “no” that the reasoner couldn’t
classify it because it ran out of resources.

When the reasoners are able to classify a knowledge base (yes in the table),
they both take less than 1 minute to perform the classification. When FACT
cannot classify a knowledge base (no in the table), this is because it goes in
stack overflow (in about 1 minute on the experiments reported). Observe that
the only limit to the stack size is the one imposed by the OS, and FACT goes
in stack overflow whenever the OS can’t provide more memory. FACT memory
requests increase quite regularly, until all the available memory is exhausted.
As for RACER, when it cannot classify a knowledge base (no in the table, this is
because it starts paging, so that all the resources are used to perform memory
swaps and the CPU usage decreases greatly. After 1 hour of paging we stopped
the reasoner. The only exception to this behaviour is in classifying the knowledge
base corresponding to Hospital with no maximal multiplicity constraints, where
RACER goes in stack overflow, even setting the stack size to the maximum.

FACT can classify all knowledge bases corresponding to the class diagrams
having no minimal multiplicity constraints and those having no maximal mul-
tiplicity constraints, but it can’t classify some of those corresponding to the
complete class diagrams: namely Soccer and Restaurant, which are characterized
by having cycles of associations/aggregations all involving minimal multiplicity
constraints in both directions. °

5Curiously, we noticed that FACT is able to classify the knowledge base corresponding

RACER can classify none of the knowledge bases corresponding to the com-
plete UML class diagrams. Instead, it can classify the knowledge bases corre-
sponding to the weakened class diagrams with no multiplicity constraints, and
those corresponding to the class diagrams with no minimal multiplicity con-
straints, with the exception of Restaurant. The weakened class diagrams with
no maximal multiplicity constrains are too complex for the current version of
RACER, with the exception of Library, where only few minimal multiplicity con-
straints appear.

From an analysis of the UML class diagrams and the corresponding knowl-
edge bases, it appears that what makes reasoning difficult for the current systems
is the combination of: (1) terminological cycles involving existentials (which in
UML class diagrams are generated by minimal multiplicity constraints); (2) in-
verse roles (which are intrinsic in the possibility of navigating UML aggregations
and associations components in both directions); (3) functional restrictions com-
bined with existential restrictions (which are present in the complete class dia-
grams); (4) the overall size of the UML class diagrams.

More information about the conducted experiments, including the DLR
knowledge bases corresponding to the UML class diagrams considered here, and
the knowledge bases expressed in the languages accepted by FACT and RACER,
are available at http://www.dis.uniromal.it/~berardi/uml2dl.

5 Conclusions

We have seen that UML class diagrams can be formalized as DL knowledge
bases, and this potentially allows for exploiting DL-based reasoning systems to
perform various kinds of reasoning on them. However, the experimentation with
state-of-the-art DL reasoners, shows that the current reasoners may have serious
efficiency problems in dealing with the resulting knowledge bases. Observe that
all results obtained apply also to Entity-Relationship diagrams (with cardinality
constraints) [6, 5], which are tightly related to UML class diagrams.

Hence, we encourage further research on practical DL reasoners. Reasoning
with UML class diagrams (with multiplicity constraints) can be a challenging
testbed for them.

Acknowledgments We would like to thank the developers of FACT and
RACER, and in particular Tan Horrocks, Sergio Tessaris, Volker Haarslev, and

to Restaurant, if we reverse the direction of two aggregations (related and is_comprised),
which in this case amounts to reversing the order of the two arguments of the DLR relation
corresponding to two aggregations. This appears quite strange, considering that DLR relations
are reified in ALCQZ and the treatment of the two components in the translation of the
relations is completely symmetrical.

Ralf Moller, for their kind and very helpful assistance during the experimentation
with their systems.

References

[1]

2]

[11]

[12]

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison Wesley Publ. Co., Reading, Massachussetts, 1998.

A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning on UML class
diagrams in description logics. In Proc. of IJCAR Workshop on Precise Modelling
and Deduction for Object-oriented Software Development (PMD 2001), 2001.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. of PODS’98, pages 149-158, 1998.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Identification constraints and
functional dependencies in description logics. In Proc. of IJCAI 2001, 2001. To
appear.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Use of the
reconciliation tool at Telecom Italia. Technical Report DWQ-UNIROMA-007,
DWQ Consortium, Oct. 1999.

D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199-240, 1999.

T. Clark and A. S. Evans. Foundations of the Unified Modeling Language. In
D. Duke and A. Evans, editors, Proc. of the 2nd Northern Formal Methods Work-
shop. Springer-Verlag, 1997.

A. Evans, R. France, K. Lano, and B. Rumpe. The UML as a formal model-
ing notation. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Proc. of the
OOPSLA’97 Workshop on Object-oriented Behavioral Semantics, pages 75-81.
Technische Universitat Miinchen, TUM-19737, 1997.

A. Evans, R. France, K. Lano, and B. Rumpe. Meta-modelling semantics of
UML. In H. Kilov, editor, Behavioural Specifications for Businesses and Systems,
chapter 2. Kluwer Academic Publisher, 1999.

A. S. Evans. Reasoning with UML class diagrams. In Second IEEE Workshop on
Industrial Strength Formal Specification Techniques (WIFT’98). IEEE Computer
Society Press, 1998.

M. Fowler and K. Scott. UML Distilled — Applying the Standard Object Modeling
Laguage. Addison Wesley Publ. Co., Reading, Massachussetts, 1997.

V. Haarslev and R. Moller. High performance reasoning with very large knowledge
bases: A practical case study. In Proc. of IJCAI 2001, 2001.

10

[13] V. Haarslev and R. Moller. RACER system description. In Proc. of IJCAR 2001,
2001.

[14] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that
stuff. Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot,
Israel, 2000.

[15] 1. Horrocks. Using an expressive description logic: FaCT or fiction? In Proc. of
KR’98, pages 636647, 1998.

[16] I. Horrocks and P. F. Patel-Schneider. Optimizing description logic subsumption.
J. of Log. and Comp., 9(3):267-293, 1999.

[17] 1. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive descrip-
tion logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of
LPAR’99, number 1705 in LNAI, pages 161-180. Springer-Verlag, 1999.

[18] T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The Information Manifold.
In Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from
Heterogeneous, Distributed Enviroments, pages 85-91, 1995.

[19] D. McGuinness and J. Wright. Conceptual modelling for configuration: A de-
scription logic-based approach. Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing Journal, 12:333-344, 1998.

[20] U. Sattler. Terminological Knowledge Representation Systems in a Process Engi-
neering Application. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, 1998.

A Appendix

1

—

reof meof |

‘
‘
‘
i
pr— " o
i

Figure 6: UML class diagram: RESTAURANT

11

perper
11

petiv
o

dayplace

place

gaplace

1.1

day

daypar

hosper
therapy e

0.¢ hosrthe

hospitalization

hosiop
s

hosin hosir
T T

operation

instin

10 diard

diagnosis

s

institute

leapar

‘ league

Figure 7: UML class diagrams: HOSPITAL and SOCCER

intuprop

bookprop

0.1

0 booksent 0.*

gavis

teamvis

plapar

1.

referee

reref
1.1

I
garef

game

gahost
1

teamhost

4‘—‘ booksup 0..*

supsup
0.1 supplier
supor supinv
0.1 1.1

bookvis book
0.1
intuvis
external internal intubor cabobor
user user
0.* ! 0.*
|
i
caboinv
Y o
user T
|
| catalogued
uscon | cabocons b
0. 0r |
0.* cabopos
caboby 0..*
0.*
belonging
11
copos
P 1.1

bibliographic
category
0

containing

subcategory

1x
auby

author

Figure 8: UML class diagram: LIBRARY

12

Using Non-standard Inferences in Description
Logics—what does it buy me? *

Sebastian Brandt and Anni-Yasmin Turhan,
Theoretical Computer Science,
RWTH Aachen, Germany
Email: {sbrandt, turhan}@cs.rwth-aachen.de

Abstract

In knowledge representation systems based on Description Logics,
standard inference services such as consistency, subsumption, and in-
stance are well-investigated. In contrast, non-standard inferences like
most specific concept, least common subsumer, unification, and matching
are missing in most systems—or exist only as ad-hoc implementations.
We give an example of how these inferences can be applied successfully
in the domain of process engineering. The benefit gained in our example,
however, occurs in to many domains where knowledge bases are managed
by persons with little expertise in knowledge engineering.

1 Process Engineering

As an application domain for knowledge representation systems based on De-
scription Logics (DL-systems) in general, and certain non-standard inferences
in particular, we give a brief introduction to the basic notions of the field of
process engineering. In this context, a process is defined as a sequence of physi-
cal, chemical, biological, and informational operations intentionally executed to
change substances in respect to their nature, properties, and composition.

Process engineering is concerned with methods, tools, and their management
for the design and control of a process.! Here, models are used to represent, an-
alyze, and optimize processes and get a deeper understanding of their nature. In
general, a model is an abstraction of some object under consideration character-
ized by a lower level of complexity while retaining some of the original properties
of interest.

*This work has been supported by the DFG, Project BA 1122/4-1.
! Plant engineering in turn deals with the actual (chemical) plant performing the process
and its construction, which is abstracted from in process engineering.

In process engineering, exact equation-based mathematical models are partic-
ularly desirable because of their high predictive capabilities in numerical analysis
and simulation. Unfortunately, even for simple chemical processes, such models
are too complex for ad-hoc construction by hand. Nevertheless, adequate mod-
els can be obtained step by step, starting with other representation formalisms,
e.g., so-called block-oriented models. In such models, a process is represented
by an undirected graph with blocks as vertices and connections as edges. Each
block stands for a standardized sub-unit of the entire process with certain in-
terfaces and each connection for a flow of material, energy, or information. The
type of a connection linking two interfaces of blocks is determined by the in-
terface specifications. Typically, block-oriented modeling environments have a
block repository in which building blocks are stored.

During the life-cycle of a chemical process, several models on different levels
of detail are involved. In an early design stage, for instance, rather crude models
allow to consider alternative designs in minimal time. Once one of them proved
promising, more accurate models are used for further examination. With such
a cascade of models, however, it is not clear how to benefit from one modeling
stage when going into further detail on the next.

In answer to this, several requirements have been identified for block-oriented
models and appropriate modelling environments in process engineering [15]:

o Variable granularity: The model should allow composite building blocks,
i.e., blocks again comprising blocks and connections. These can be decom-
posed during the design phase until the desired level of detail is reached.

e Generic building blocks: A block in the repository should not be fully
specified but rather represent a class of some subunit. During the design
procedure, particular instances are obtained by specifying the relevant
variables, equations, and values abstracted from in the classes.

e Structured storage: To avoid unnecessary extensions of the block repository
and to facilitate browsing and searching, the existing blocks should be
arranged in an “is-specialization-of” hierarchy.

o Automatic classification: If the specialization order would be derivable
automatically, the system could additionally maintain consistency of new
building blocks during the design procedure and locate the correct posi-
tions for their storage in the repository.

e Re-use of submodels: It should be possible to store (abstractions of) sub-
units in existing models in the repository for later re-use.

e Maintenance support: As the block repository typically will be developed
over a long period of time by many people, detecting redundancies and
integrating additional repositories should be possible.

The challenge to meet these requirements has inspired a cooperation be-
tween the Institute for Process Systems Engineering at RWTH Aachen, where
a prototype modelling environment is being developed, and our research group,
where DL-systems are studied. It has already been shown that DL-systems can
successfully be employed for most of the above tasks [15]. Testing the devel-
oped prototype environment has provided additional insights. When designing
models by means of block-oriented modelling environments, process engineers
showed two characteristic strategies for the design of new (generic) blocks:

e Bottom-up design: From several existing process models, the process engi-
neer selects a certain collection of subunits deployed for a similar purpose.
She then introduces a new generic block as an abstraction of these units.

e Design by modification: Before assembling a new generic block from scratch,
the knowledge engineer tries to locate a structurally similar one in the
repository. She then modifies the existing block to suit the new require-
ments.

In this work, we will show how these design strategies can be supported
by non-standard inferences offered by DL-systems. In the following section,
we will introduce Description Logics formally and discuss their benefit for the
requirements mentioned above. Sections 3 and 4 describe the particular non-
standard inference services used to support the two design techniques.

2 Description Logics and Process Modelling

Description Logics (DL) form a category of knowledge representation (KR) for-
malisms used to represent terminological knowledge in a structured and well-
defined way. A DL-system consists of a knowledge base together with certain
inference services. The knowledge base comprises two components, the TBox
and the ABoz. Intuitively, the TBox defines the vocabulary by which a concrete
world (in this application a process model) is described in the ABox. Both are
defined by means of concepts, whose syntax and semantics is introduced next.

Concepts are inductively defined using a set of concept constructors, starting
from a set N¢g of concept names and a set Ny of role names. The constructs
available in the DLs considered here are listed in Table 1. In £C, the top-concept
(T), conjunction (CT1D), and existential restriction (Ir.C') are allowed. ALE ad-
ditionally provides the bottom-concept (L) and primitive negation (—A). ACN
extends ALE with number restrictions (>nr) and (<nr), but does not provide
existential restrictions. A concept defined over the DL L (£ € {&L, ACE, ACN'})
is referred to as L-concept.

The semantics of concepts is defined in terms of an interpretation I =
(AZ,-T). The domain AT is a non-empty set, and the interpretation function -*

3

| Syntax ‘ Semantics | &€ | ACE | ACN |

T AT X X X
cnb ctnD? X X X
vr.C {z e AT |Vy: (z,y) € rt —y € CT} X b'e
ar.C {re AT |Jy: (z,y) ert myeCt}| x X

L 0 X X
—~A, A€ Ng AT\ AT x | x
(>nr),neN| {zeAl|#{y| (z,y) €rt} >n} X
(<nr),neN| {zeAl|#{y]|(z,y) €rt} <n} X

Table 1: Syntax and semantics of concepts.

maps every concept name A € N¢ to a set AT C AT and each role name r € Ny
to a binary relation 72 C AT x A%, The second column of Table 1 shows how -Z
is extended to complex concepts.

Definition 1 (TBox) A TBox T is a finite set of concept definitions of the
form A = C, where A € Ng and C is a concept. Every concept name A may
occur only once on a left-hand side in T. If it does, then A is called defined,
otherwise primitive. In DLs providing primitive negation only primitive concepts
may be negated on the right-hand side of concept definitions. An interpretation

T is a model for T iff AL = C? for every A=C € T.

To illustrate the introduced notions of concept, concept definition and TBox,
consider an example TBox.

Example 2 The ALE-TBox T., contains the following concept definitions in-
spired by the process engineering domain:

Liquid = =Solid M —Gas,
Container = Volume 1 (V contains. Substance),
FluidTank = Container 1 (¥ hasConnection. Port) 1
(d contains. Liquid) ,
Pipeline = Volume 1 Tube
(V hasConnection. (Port 1 (3 hasPart. Valve))) M
(V contains. Substance) M (3 contains.—Solid)

In the TBox T., the concept Liquid s defined as something that is no Gas and no
Solid. A Container is defined as a Volume containing only Substances. Based on
these two defined concepts, a FluidTank is defined as a Container which contains
a Liquid and is only connected to Ports. Finally, a Pipeline is defined as a Volume
and a Tube and is only connected to Ports which in turn must have a Valve as
a part. Furthermore, a Pipeline must contain something, which is no Solid and
all it contains are Substances.

To represent knowledge about an actual instance of the application domain,
individuals and their interrelations are described in an ABox. Thus, in addition
to N¢ and Ng, we introduce a finite set Ny of individual names. Formally, an
ABox can now be defined as follows:

Definition 3 (ABox) An ABoz A is a finite set of concept assertions of the
form a: C' and role assertions of the form (b,c): r, where a,b,c € Ny, C is an
arbitrary concept, and r € Ny a role name. An interpretation Z is a model
for A, iff at € CT and (b%,ct) € T for every a: C and every (b,c): r in A.
For every interpretation I, every a € Ny is mapped to some ar € AT, such that
a # b implies al # b (unique name assumption,).

In our process engineering application, each of the individual blocks is rep-
resented by an individual in an ABox. The generic blocks from the repository
are represented by concepts defined in a TBox. Thus, TBox and ABox form
a knowledge base for all blocks constructed in the modelling environment as
illustrated in Figure 1.

To derive implicit knowledge from the explicit one given in the knowledge
base, there are three so-called standard inferences, namely consistency, subsump-
tion, and instance, as defined below.

Definition 4 (Standard inferences) A concept C is consistent iff there ex-
ists an interpretation T such that CT # 0. A concept C is subsumed by a
concept D (written C C D) iff C* C D* holds for all interpretations Z. The
concepts C' and D are equivalent (written C' = D) iff they subsume each other.
An individual name a € Ny is an instance of C' w.r.t. an ABox A and its TBox
T (written a €4 7 C) iff a¥ € CT for every model T of A and T.

These inferences are essential for almost all DL-systems. Especially, comput-
ing the so-called subsumption hierarchy of concepts yields the “is-specialization-
of”-hierarchy mentioned in Section 1. Algorithms deciding subsumption form
the basis for structured storage and the algorithms for computing the “instance-
of”-relation realize the automatic classification of objects. Not all of the tasks
mentioned in Section 1 can be accomplished by means of standard inferences,
e.g., they do not facilitate the previously mentioned design strategies utilized by
process engineers. This is where the non-standard inferences come into play.

3 Supporting the Bottom-up Approach

The bottom-up generation of a new block (i.e., concept) from a set of process
models (i.e., ABox individuals) selected by the domain expert is realized by non-
standard inferences in two steps. Firstly, the most specific concept is computed
for each of the selected ABox individuals, such that the individual is an instance

Process model ABox

1 T <1
represent b b
g- | : - .\<: ° X °

“\‘abstract \‘\‘abstmct

Block repository TBox

structure

Figure 1: Modelling environment and knowledge base

of the obtained concept which is most specific w.r.t. subsumption. Next, a
single concept is computed from all the obtained concepts, which subsumes
all the obtained concepts and is also the most specific concept to do so. The
resulting concept is then offered to the process engineer for inspection and further
processing and, if suitable, added to the generic block repository. The first step
is realized by the non-standard inference most specific concept (msc) which is
defined in the following way:

Definition 5 (msc) Let A be an L-ABoz, a an individual in A and C a concept
in L, then C is the most specific concept (msc) of a w.r.t. A (msc4(a)) iff
acy C, and for all L-concepts C', a €4 C' implies CC C".

Computing the msc of an individual yields an abstraction from a concrete
individual and from its interrelationships expressed in the ABox by generalizing
it into a concept.

Example 6 As an example inspired from the application domain, we want to
describe a distillation device which takes sea-water as an input and separates it
into water and salt. Such a device could be represented by an EL -ABox A., with
the following assertions:

device : MarineDistiller, seawater : solution M Liquid,
(device, seawater) : haslnput, (seawater, water) : contains,
(device, water) : hasOutput, (seawater, salt) : contains,
(device, salt) : hasOutput, water : Solvent M Liquid,

salt : Solute M Solid

Note that the individuals water and salt occur as role-successors for both of
the individuals device and seawater. The msc(device) w.r.t. the underlying ABox
A is now given by:

msc 4, (device) = MarineDistiller M
Jhaslnput. (Solution M Liquid M
d contains. (Solvent M Liquid) M
dcontains. (Solute M Solid)) M
JhasOutput. (Solvent 1 Liquid) M
JhasOutput. (Solute M Solid)

In the obtained concept the concept names from the ABox A.. are preserved in
the msc concept and the interrelations are expressed by existential restrictions.
The co-references in A.. to each of water and to salt can not be captured in the
concept, instead the concepts from A.. corresponding to these individuals are
duplicated.

Unfortunately, the msc need not always exist due to cyclic relationships
between ABox individuals such as {(a,b): r, (b,a): r} C A. An individual
from a cyclic ABox may be instance of all concepts from an infinite sequence
of concepts C, Cs, ...where each concept C; encodes one more traversal of
the cycle expressed in the ABox than C;_; and is thereby more specific than all
its predecessors in the infinite sequence of concepts. Since the individual is an
instance of all C;s, the most-specific concept would be M52, C;, which cannot
be expressed in every DL with existential restrictions. For further details, refer
to [2].

However, for DLs providing existential restrictions the msc for cyclic ABoxes
can be approximated by the so-called k-approzimation. The k-approximation is
a msc whose nesting depth of quantifiers is bounded by k (k € IN). See [12] for
details. Once in our process engineering application the k-approximation or, if
possible, the msc of each selected individual block is attained, the subsuming
concept—the least common subsumer—of them is computed. It is defined as
follows:

Definition 7 (Ics) Let T be an L-concept and Cy, ..., C, concepts in L
from T, then Cis the least common subsumer (lcs) of Cy, ..., C, w.r.t.
T (lesr(Cyhy..., Cn)) iff C; Ty Cforalll < i < n, and for all L-concepts
C', C; C+C' forall1 <i<n impliesC T C'.

Thus, both the msc and the Ics generalize the input yielding the most specific
concept w.r.t. the underlying TBox; only that the msc refers to a single ABox
individual while the lcs refers to several concepts based on conccepts defined in
a TBox.

Example 8 Let us consider the Ics of the concepts FluidTank and Pipeline as
defined in the TBoz T., from Ezample 2. First, both concepts have to be un-
folded w.r.t. Toy, i.e., all names of defined conepts are replaced recursively by the
right-hand sides of their concept definitions. Next, the Ics concept of both input
concepts 1s computed. In this case we obtain:

7

lcs7., (FluidTank, Pipeline) =
Volume M (V hasConnection. Port) M
(V contains. Substance) M (3 contains. (Substance M = Solid)).

The lcs concept reflects that both input concepts are a Volume, because Volume
lies in the intersection of the concept names on top-level of both input concepts.
For the concept occurring in value restrictions, the Ics algorithm is applied recur-
swely for each role. The existential restrictions in the lcs concept are obtained
by conjoining the concepts in the existential restriction and those in their cor-
responding value restriction for each of the input concepts and then recursively
applying the lcs algorithm to the obtained conjunctions.

For the DLs introduced in Section 2, the lcs always exists. The lcs (as
well as the msc, if it exists) is uniquely determined up to equivalence. In our
research group, algorithms for the Ics have been developed for several DLs, see
[10, 5, 2, 11].

Equipped with the non-standard inferences msc and the Ics, the demand from
our application domain to construct knowledge bases in a bottom-up fashion can
be met. The knowledge engineer selects some fully specified blocks that should
form the new generic block for the repository. Then the blocks are automatically
translated into individuals in an ABox, representing the parts and properties of
each of the blocks. Next, the DL-system computes the msc of each of them and
then generalizes them into a single concept by computing the Ics. The resulting
concept is then translated back into the representation used in the modelling
environment and offered as a new block to the process engineer, see Figure 1.
Note that the domain expert is not involved in the “DL-part” of this process,
therefore our method is suitable for users with little KR expertise.

In our application, the Ics inference does not only support the bottom-up
approach for augmenting the repository. It may in addition be employed to
obtain a well-structured storage in the repository which in turn is necessary
for easily retrieving generic blocks for a possible re-use. So, if a generic block
in the repository has many specializations, say By,..., B, for a large number
n, and the process engineer searches for a building block to re-use, inspecting
all of the B;s to find a candidate may not be practical. New generic blocks
subsuming some of the B;s and thereby providing an intermediate level in the
specialization hierarchy facilitates browsing it. Such intermediate blocks can
be derived by computing the least common subsumers of some of the B;s and
adding them to the repository.

The lcs w.r.t. TBoxes has been implemented for the DL ALE. As seen in
Example 8, all input concepts have to be unfolded completely against the un-
derlying TBox before computing the actual Ics concept. It is well-known that
unfolding a concept can cause an exponential blow-up of the concept size [14].

8

Therefore, the concepts to be handled and—even worse—returned by the Ics al-
gorithm can become very large. This does not only slow down the computation
of the Ics, but also yields unreadable concepts. First empirical evaluations of our
Ics-implementation applied to TBoxes from the process engineering domain have
shown that the returned concepts fill several pages of output and are therefore
too big to be readable and comprehensible for a human reader, see [7, 16].

Thus, for assessment by domain experts, the resulting concepts have to be
represented more compactly. To this end, our research group investigates meth-
ods for finding a minimal rewriting of a concept w.r.t. the underlying TBox
[6]. In a minimal rewriting, parts of the concept are replaced by names de-
fined in the TBox. The effect of such a rewriting is somewhat inverse to un-
folding, e.g., in Example 8 the Ics can be represented in a more compact way
by using the definition in 7., and replacing the sub-term of the lcs concept
”Volume 1M (¥ contains. Substance)” by ”Container”.

For DLs with existential restrictions, the computations of a minimal rewriting
involves a high degree of non-determinism. Therefore, we have to resort to
heuristics yielding small but not always minimal rewritings. In the case of the
TBox used in our process engineering application, for instance, employing such
heuristics to concepts of size 800 yields concepts of size 10. Refer to [7, 16] for
details.

Moreover, rewritings can be used to “translate” concepts from one DL L,
into concepts from another, less expressive DL Lo by computing the best ap-
prozimation of the concept. This service is especially desirable if more inference
services are available in L,.

4 Supporting the Modification Approach

Another useful non-standard inference is matching, which was first proposed
in the DL-system CLASSIC [13, 9]. In order to define matching, we need to
introduce concept patterns.

Let £ be any of the DLs introduced in Section 2 together with the sets Ng,
Ng, and N;. Additionally, let Ny be a finite set of concept variables disjoint to
Nc U NgU Ny, L-concept patterns are L-concepts for which in addition concept
variables can be used in the place of concept names—except for the fact that the
primitive negation (=) may not occur in front of variables. A substitution o is a
mapping from N into the set of L-concepts. It is extended to concept patterns
P by replacing every occurrence of X € Ny in P by o(X). Thus, o(P) again
is an L-concept. With these preliminaries we can define matching problems as
follows:

Definition 9 (matching problems) An L-matching problem is of the form
C =" P, where C is an L-concept and P an L-concept pattern. A substitution

o is a matcher for C =" P iff C = o(P), i.e., o replaces the variables in P by
concepts in such a way that equivalence holds.

As a trivial example, consider the matching problem AMVr.B =" X MVr.Y.
An appropriate matcher would be, for instance, {X — AMVr.B,Y — B}.

Intuitively, if a concept can be matched against a pattern P, then their syntax
trees share the “upper part”, i.e., where P is fully specified, while deviations may
occur at leaves labelled with variables. Hence, the set of all concepts that can be
matched against P contains infinitely many concepts structurally similar to P to
some extent. In this sense, matching P against several concepts and returning
those which can be matched, can be seen as a search with the fully specified
part of P as search criterion.

Let us return to the process engineer designing a new generic block in a block-
oriented modelling environment as described in Section 1. For the strategy of
design by modification, the crucial step is to find a generic block in the repository
structurally similar to what the knowledge engineer intends to design. As an
example, assume a modelling task for a fluid tank equipped with a cooling system
and an equivalent backup cooling system, each with a thermostat controller. A
convenient starting point for the design could be a block comprising a fluid tank
combined with an arbitrary device controlled by some control units and a similar
backup device.

Example 10 With a matching algorithm at hand, relevant generic blocks could
be found by matching the following concept pattern against every concept in the
KB.

JhasPart.(FluidTank M JhasPart.(—BackupDevice 1 X M JhasPart.Controller)
M JhasPart.(BackupDevice M X M JhasPart.Controller))

The pattern specifies blocks consisting of at least one fluid tank equipped with at
least two equivalent components one of which is a backup device and one not.
Both components must have a controller.

The query could thus also return blocks with two or more tanks or, for
instance, with duplicate heating systems or stirring devices. Nevertheless, by
additionally retrieving a block representing a single cooling device and another
for a single thermostat control unit, the engineer is well prepared to complete
the design task efficiently. Naturally, usability issues suggest to hide the formal
construction of patterns by user-friendly query front-ends.

Note that in all admissible concepts, both occurrences of X must be replaced
by the same concept. This structural constraint cannot be expressed by simple
“wildcards” familiar from ordinary search engines.

10

Formal means exist for further refinement of such pattern-driven searches.
For the DL ALN, so-called side conditions have been proposed to restrict the
concepts a variable may be replaced with [1]. In the above example, we may
want to restrict the query to duplicate devices with, say, temperature-related
functionality. To this end, we could use a side condition of the form

X C° ThermalDevice,

thus including only those devices represented by the concept ThermalDevice.

Apart from supporting the technique of design by modification, matching can
also help to provide maintenance support for the block repository, as described in
Section 1 [8]. Matching algorithms for deciding and solving matching problems
have been proposed in the DLs ACE and ACN [3, 4]. In ALE, the decision problem
is NP-complete, whereas the computation problem is EXPTIME-complete. In
ACN, the decision and computation problem are polynomial.

5 Conclusion and Future Work

We have presented an application where non-standard inference services can
significantly enhance the usability of DL-systems. Here these services were pro-
posed to assist process engineers in their practical techniques of designing process
models. These techniques, however, are not specific to this very domain but ap-
ply to any scenario where knowledge bases are managed by domain experts with
little expertise in knowledge representation.

With the DLs presented here, not all properties of the described models can
be represented sufficiently. The demand for more expressive DLs, however, also
necessitates to adapt the existing inference services to new language constructors
such as qualified number restrictions, transitive roles, and role hierarchies.

Approaches to capture the relevant extensions by appropriate algorithms
for non-standard inferences are currently studied by our research group. Addi-
tional language constructors can further increase the computational complexity
of such algorithms. Nevertheless, experience has shown that a high worst-case
complexity often can be tolerated as long as a moderate average-case complexity
is observed in practical applications.

A promising alternative might be to realize non-standard inferences for ex-
pressive description logics by approximating the input concepts in a less expres-
sive DL, where the desired inferences can be realized more efficiently.

References

[1] F. Baader, S. Brandt, and R. Kiisters. Matching under side conditions in descrip-
tion logics In B. Nebel, editor, Proc. of IJCAI-01, 2001.

11

[2] F. Baader and R. Kiisters. Computing the least common subsumer and the most
specific concept in the presence of cyclic ALN-concept descriptions. In O. Herzog
and A. Giinter, editors, KI-98, volume 1504 of Lecture Notes in Computer Science,
pages 129-140, Bremen, Germany, 1998. Springer-Verlag.

[3] F. Baader and R. Kiisters. Matching in description logics with existential restric-
tions. In Proc. of KR2000, pp. 261-272, Morgan Kaufmann Publishers, 2000.

[4] F. Baader, R. Kiisters, A. Borgida, and D. McGuinness. Matching in description
logics. Journal of Logic and Computation, 9(3):411-447, 1999.

[5] F. Baader, R. Kiisters, and R. Molitor. Computing least common subsumer in
description logics with existential restrictions. In T. Dean, editor, Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI-99), pages 96-101, Stockholm,
Sweden, 1999. Morgan Kaufmann, Los Altos.

[6] F. Baader, R. Kiisters, and R. Molitor. Rewriting concepts using terminologies.
In A.G. Cohn, F. Giunchiglia, and B. Selman, editors, Proc. of the 7th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR-00), pages
297-308, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

[7] F. Baader and R. Molitor. Building and structuring description logic knowledge
bases using least common subsumers and concept analysis. In B. Ganter and
G. Mineau, editors, ICCS-00, volume 1867 of Lecture Notes in Artificial Intelli-
gence, pages 290-303. SV, 2000.

[8] F. Baader and P. Narendran. Unification of Concept Terms in Description Logics.
In Proceedings of ECAI-98, pp. 331-335, John Wiley & Sons Ltd., 1998.

[9] A. Borgida and D. L. McGuinness. Asking Queries about Frames. In Proceedings
of KR’96, pp. 340-349, Morgan Kaufmann Publishers, 1996.

[10] William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least common
subsumers in description logics. In William Swartout, editor, Proc. of the 10th
Nat. Conf. on Artificial Intelligence (AAAI-92), pages 754-760, San Jose, CA,
1992. AAAI Press/The MIT Press.

[11] R. Kisters and A. Borgida. What's in an attribute? Consequences for the least
common subsumer. JAIR, 14:167-203, 2001.

[12] R. Kiisters and R. Molitor. Approximating most specifc concepts in description
logics with existential restrictions. In Proc. of the 24th German Annual Conf. on
Artificial Intelligence (KI1°01), 2001. to appear.

[13] D.L. McGuinness. FEzplaining Reasoning in Description Logics. PhD thesis,
Department of Computer Science, Rutgers University, October, 1996.

[14] Bernhard Nebel. Terminological reasoning is inherently intractable. Artificial
Intelligence Journal, 43:235-249, 1990.

[15] U. Sattler. Terminological knowledge representation systems in a process engi-
neering application. PhD thesis, LuFG Theoretical Computer Science, RWTH-
Aachen, 1998

[16] A.-Y. Turhan and R. Molitor. Using lazy unfolding for the computation of least
common subsumers. In DL-2001, 2001.

12

Discourse and Application Modeling for
Dialogue Systems

Kerstin Biicher, Yves Forkl, Giinther Gorz, Martin Klarner,
and Bernd Ludwig
Computer Science Institute and FORWISS, Erlangen, Germany
eMail: goerz@informatik.uni-erlangen.de

Abstract

Spoken — and even written — language dialogue systems become of
increasing importance for various information gathering and device con-
trolling tasks. With an example taken form the EMBASSI joint project,
after a brief discussion of the linguistic processing part, we describe how
description logics are used in modeling the application domain as well as
the linguistic domain. Linking lexical semantics with application specific
concepts is a nontrivial problem, in particular in cases where there is no
direct correspondence. So, the paper ends presenting our approach to
solve this linking problem.

1 Generic Dialogue Management in EMBASSI

1.1 Application Background: The EMBASSI project

To a large extent, our research and development work in the field of dialogue
systems is done within the German joint project EMBASSI' which aims to
provide easy access for everybody to complex technical systems (A/V home
theatre, car devices and public terminals), encouraging multi-modal user input,
e.g. speech, gestures, and pointing. Besides a speech parser, our contribution
consists of, first, a dialogue manager, second, a formal ontology and third, a
generation component to communicate system utterances to the user.

In our approach to dialogue management, which features declarative mod-
eling of the system’s evolving information state rather than following a simple
FSA-based procedural strategy, a fine-grained and well-structured ontological

1 “Elektronische Multimediale Bedien- und Service-Assistenz”, sponsored by the German
Fed. Ministry of Research

hierarchy of semantic concepts is extremely important to enable logical infer-
ences on these concepts. We formalize them using Description Logics (DL)?
since they suit our needs quite well.

The novel architecture of the EMBASSI project brings up two problems to
be mastered in the domain model (based on the formal ontology): First, the
processing of user input is separated from the execution of system operations
by introducing an interface between the dialogue manager and the applications
which are controlled by so-called “assistant modules”. These operations have to
be derived from the user’s utterances by constructing and representing their se-
mantics and linking them to application concepts. To accomplish this, messages
have to be exchanged between the dialogue manager and the assistants. We
chose A-Box statements in DL (embedded in KQML statements) as a formalism
for these messages. Second, there is a great variety of application components
by different manufacturers. The EMBASSI ontology functions as a standardized
system-wide terminology encompassing the whole world of functions and objects
referred to by all applications and assistants controlling several audio/video de-
vices in the home environment. Each of their functions and objects must be
both uniquely named and given a precise semantic definition as a concept.

1.2 System Architecture and Knowledge Representation

EMBASSI is implemented as a distributed system with several autonomous mod-
ules communicating among each other in order to exchange information about
the current state of the interfaced applications. Modules make their internal
state partially available to the dialogue system as far as it is necessary in order
to continue a dialogue. The current state of the application is represented by
an A-Box containing assertions about instances which refer to objects of the
application.

For example, AvEvents® may be retrieved from a data base and assertions
about them are eventually added to the A-Box if they become relevant for the
dialogue.

In addition, the A-Box also contains instances for all actions which have been
executed up to now by some module of the (multi agent) system. All actions
which are primitive with respect to the application domain model are executed
procedurally.

If a module executes an action, a transition from one state to another is
achieved as adding the effects of the action changes the content of the A-Box
and the facts which can be inferred.

For this purpose, application modules exchange information with the dia-
logue system via KQML messages containing assertions about application ob-

2For an introduction to DL see e.g. [Don96]
3instances of the concept which describes all kinds of audio and video transmissions.

jects and actions. In particular, messages about actions to be executed and the
computed effects are communicated between the modules. In order to update
its knowledge about the application state, the dialogue system adds the content
of incoming messages to the appropriate A-Box.

In complete analogy to the description of the current application state, the
current state of the dialogue is represented as an A-Box whose assertions are
about instances from the discourse and linguistic domain. In this case, objects
are so called discourse referents representing instances of linguistic concepts as
introduced in utterances. Again, instances can assert facts about actions as well
as objects. Primitive actions in this domain are performatives like I want, I ask,
I state, I command. They are executed by the dialogue system and modify the
state a dialogue is currently in. From this point of view, the dialogue system
behaves like an application module using a different A-Box to represent the
current state of affairs.

The task of the system as a whole is to compute whether utterances from
the user are satisfiable in the given state of the application. When passed to
the dialogue system by the parser, an utterance only affects the A-Box for the
discourse domain as its semantic representation is added there. So, what is
the relationship between the two A-Boxes? The idea is that assertions in the
discourse A-Box have to be satisfiable with respect to the application A-Box
(i.e. if the state of the application allows the satisfiability directly or after a
sequence of appropriate actions in the application domain). For example, the
utterance Record the thriller this evening!” requires that the application A-Box
contains an instance of AvEvent satisfying the imposed constraints and that the
preconditions for Record are satisfiable.

In the case of a unique satisfaction of the utterance, an application assistant
executes the corresponding action and reports the status of the execution back
to the dialogue manager (DM). If the action has been executed successfully,
the result is communicated. In the case of an error, the user should be in-
formed about the possible cause. Otherwise, the result consists of a number of
different alternatives which are presented to the user. The content of the
system responses is represented in terms of A-Box statements.

2 Organisation of the Domain Model

The formal ontology structuring the domain model is organised in three domain
areas, reflecting a fundamental partitioning of the dialogue manager’s “world”:
First, the Linguistic Domain, comprising the speech parser’s linguistic knowl-
edge, especially from lexical semantics. Second, the Discourse Domain, which
contains internal concepts (independent of a specific input mode, but support-
ing poly-modal processing) of the dialogue manager. They reflect its actions

3

and the kinds of objects processed in the context of interacting with the user
and the core system. This domain, although of crucial importance for dialogue
management, will not be described here because of lacking space. Third and
most important, the Application Domain: This is the area where knowledge
about the functionality of all applications, assistants and devices is held. It
equals the “domain model” in the classical sense, i.e. a semantic description of
the functions and objects pertaining to the domain of application. In contrast
to the preceding two areas, the terminology defined here is shared among the
dialogue manager and the assistants and applications (the core system), for they
need this language to exchange commands and requests.

2.1 Modeling the Application Domain

The modeling of the application domain demands a joint effort of the ontology
creators on the one side and the application and assistant developers on the other
side, for only the latter have precise knowledge of the funcionality they offer
in their component. Any component’s function and its parameter types must
be integrated correctly in the ontology. Concepts for actions are distinguished
from those for objects — in analogy to the distinction between objects and their
methods in object-oriented programming languages.

The application situation is represented in terms of A-Box assertions; so, the
scenario is an extension of the domain model.

In order for the dialogue manager to reason with errors, any error statement
must confine to notions that have precise semantics and are part of the ontology.
Thus, the application and assistant developers must give a semantic definition
for any error type that their component may signal to the dialogue manager.

As an example, we consider a HAVi*-programmable VCR. Commands avail-
able in the HAVi class VCR may be uttered in natural language to use the VCR.
HAVi ist defined in terms of a Java class hierarchy for object and function types
which are translated automatically into a hierarchy of DL concepts. Mandatory
derivation of all classes had to start from a set of predefined ontology base classes
representing the Generic Base Model which comprises the top-level concepts for
a broad range of application domains.

Currently we translate OO-subclass relations into DL-subconcept relations.
Field members of classes are translated into forall constraints in DL, as shown
below. The signature of OO-methods is represented by embedding each method
as a subconcept of a concept of a generic base model to be chosen manually.
Parameters of of methods are represented in the DL translation as forall con-
straints. As we use CICLOP as inference tool, we translate enumeration types
and constants into primitive concepts. As a consequence, we do not need high

“HAVi stands for Home Audio Video Interoperability and represents a common, openly-
licensable specification for networking digital home entertainment products.

4

expressivity for the DL language. We are currently investigating the limits of
this approach. For feature-value formalisms it seems to be sufficient.

As an example for the derivation of a fragment of the DL domain model
consider the following class which is part of the of the HAVi VCR class:

class VCRObj{
int id;
play();
record();
variableForward(forwardSpeedLevel speed);

}

with enum forwardSpeedLevel = {fastForward5, ...} .
From the viewpoint of DL, the definition of VCRObj introduces a subconcept
of object (class) and three subconcepts of action (methods):

VCROb j := object N Vhas-id.int

VCRObj-play := action

VCRObj-record := action

VCRObj-variableForward := action (M Vhas-speed.forwardSpeedLevel

For VCRObj-variableForward, this means that it is an action, and its only
parameter has-speed has to be a forwardSpeedLevel. This is essentially the
semantics of the method definition above, but VCRObj-variableForward is per-
mitted only for objects of class VCRObj. We can account for this by refining our
definition of in the following way:

VCRObj-variableForward := action M Vhas-subject.VCRODb]
N Vhas-speed.forwardSpeedLevel

Using these concept definitions, we are now able to infer the specific oper-
ation from user utterances like “schnell vorspulen!”, the meaning of which is
represented in the A-Box by a domain-instantiated DRS. So, there is a VCRObj
[1 in our scenario asserting VCRObj(Iy).

The invocation of the method [i.variableForward(fastForward5) is as-
serted by

action(a) A has-subject(q,l;) A has-speed(q, variableForward5)

from which VCRObj-variableForward(«) is derivable.

At this point, we have to refine the domain model again. Up to now, it differ-
entiates between several concepts for objects (e.g. VCRObj, forwardSpeedLevel),
but action is the only primitive concept for actions. Therefore, all verbs in the
lexicon would have the same meaning, namely action. Consequently, whatever

verbs were used, always e.g. VCRObj-play would be inferred. To cope with this
difficulty, action has to be refined by introducing primitive subconcepts of it
that are distinct from each other in order to separate different verb meanings.
E.g. we introduce play C action, record C action and wind C action. These
(distinct) subconcepts of action would allow us create the following entries:

abspielen play
aufnehmen record aufzeichnen record
spulen wind

These lexical entries suffice to distinguish which methods are meant by a certain
verb, if we refine the definitions for the methods of the class VCRObj:

VCRObj-play = play Vhas-subject.VCRODbj
VCRObj-record := record Vhas-subject.VCRODbj
VCRObj-variableForward := wind Vhas-subject.VCRODbj

Vhas-direction.direction
Vhas-speed.forwardSpeedLevel

D JNED D D B

Generalizing the example above, we have outlined how formal DL domain
model parts may be derived from underlying class definitions for objects and
methods used in the implementation of the application assistant.

The division of the domain model in a generic upper part of primitive con-
cepts not specific for the application and a lower part of application relevant
concepts allows to reuse the generic part ([Ram97]). So, the knowledge represen-
tation task for the design of a specific dialogue system is considerably simplified.

Under quantitative aspects, our DL model for the A/V home theatre domain
currently contains 88 primitive and 24 complex concepts, whereas the car en-
tertainment domain has 12 primitive and 47 complex concepts. Both domains
taken together will soon dispose of about 500 complex concepts, due to the inte-
gration of increased application functionality and much more detailed linguistic
modeling.

2.2 Modeling the Linguistic Domain

Our ultimate aim in interpreting an user utterance is to construct one or more
hypotheses of its meaning in terms of the concept definitions from the domain
model. In order to achieve this, we have to devise a method for mapping natural
language utterances onto terms describing method invocations.

We use a lexicon for the vocabulary V specific to the domain in which each
word w refers to one or more lexical concepts which serve several purposes.
First of all, synonymous words will receive the same lexical concept. Second, it
is possible to account for polysemous words by having multiple entries, each with

a different associated lexical concept. Third, the linguistic modeling of relations
expressed in utterances can dispense of application-specific characteristics. Last
but not least: In the domain model, these lexical concepts form a hierarchy of
their own which is defined independently of the hierarchy structuring the domain
model in the narrower sense, i.e. that of the application domain. This helps avoid
those very common problems arising from the mingling of cognitive-lexical and
factual relations.

In order to model the lexical semantics in a way that is maximally indepen-
dent from any particular application, we employ a hierarchy of semantic types
which is implemented as a DL terminology. Types are represented as disjoint
atomic concepts and assigned to elements in the lexicon. For example, we have
the following assignment of surface word forms (lower case) to atomic lexical
concepts (upper case):

sehen SEHEN, anschauen ANSCHAUEN, gucken GUCKEN,
aufnehmen AUFNEHMEN, aufzeichnen AUFZEICHNEN
Krimi SPARTE

To capture the inter-chunk semantics of an utterance, i.e. the meaning of
the combination of chunks, we introduce complex concepts obtained from inter-
preting case frames which describe the syntactic and semantic relations between
chunks as concept definitions. The idea is as follows: Given an excerpt of the
case frame for “aufnehmen” (with the thematic role patiens and the accusative
case marker)

aufnehmen patiens SENDER | SENDUNG | SPARTE | TITEL
acc

we allow four different concepts that my fill the thematic role patiens of the
lexical concept of AUFNEHMEN representing the semantic type of aufnehmen. This
informal concept definition is captured precisely in terms of the following ALC
expression:

C = AUFNEHMEN A Vpatiens.(Sender V Sendung \ Sparte V Titel)

Such a concept definition can be used to determine whether two chunks can
be combined consistently with the available lexical semantics:

[den Krimi] [aufnehmen]

Analyzing the syntactic features (accusative) of the two chunks given, one
finds that [den Krimi] may potentially serve as patiens for [aufnehmen]. This
fact is validated by computing that the concept resulting from the combination
of the two chunks is consistent with the above definition:

AUFNEHMEN A Vpatiens.Sparte C C

2.3 Linking Lexical Semantics with Domain Pragmatics

For linking lexical semantics with an application specific domain model we have
to master the following tasks: First, relating application concepts with lexical
concepts. For linking notions of the application with semantic types, we first
have to cope with the usage of synonyms in natural language for a uniquely
determined application concept. And second, relating roles with thematic roles,
which means reasoning about individuals, i.e. in the A-Box.

To continue the example of [den krimi] [aufnehmen], we have a look at
the DRS constructed by the parser that makes use of the case frame shown
above:

[a k krimi W
AUFNEHMEN (a)

patiens(a, k)

SPARTE(k)

wert(k, krimi)

SPARTENWERT (krimi) |

As discussed above, the task to be carried out now is to link lexical semantics
and the application domain model in order to construct a representation for the
application specific meaning of this DRS (A-Box).

We have already mentioned that via Vlexconcept.AUFNEHMEN and
V1exconcept.SPARTE we find the application specific meaning of both lexical
concepts by inferring their descendants in a given T-Box. The issue still to be
addressed is how the roles are mapped onto the corresponding ones in the appli-
cation domain. If SENDUNG was the only patiens for AUFNEHMEN, one possibility
would be to apply a rule like following one in the A-Box as (variables z, y, u, v
are all-quantified):

patiens(z,y) A lexconcept(u,z) A SENDUNG(y) A lexconcept(v,y) —

has-avevent(z,y)
But the example shows that this is not sufficient, as

patiens(z,y) A lexconcept(u,z) A SPARTE(y) A lexconcept(v,y) —

has-avevent(z,y)

would wrongly imply y to be an AvEvent instead of a Genre. Therefore, before
letting such a rule fire one has to determine two things:

e What are concepts in the range of has-avevent, if we assume Record to
be in its domain? As we find AvEvent, but not Genre, the case frame is
admissible only, if Genre is a part of the definition for AvEvent. To state
this more precisely:

e [s it possible — by using the transitivity of roles — to construct a role that
has AvEvent in its domain and Genre in its range? Given our definition
of AvEvent we find that R := has-bibdata o has-genre is the desired
solution.

Now we are allowed to introduce new individuals of the concepts “on the
path from AvEvent to Genre”. In the example, there is only one such concept,
namely BibData. As a consequence, we get the following DRS that corresponds
a DRS in the application domain model:

[7 e b krimi
Record(r)
has-avevent(r,e)
AvEvent(e)
has-bibdata(e,b)
BibData(b)
has-genre(b, g)
Genre(g)
value(g, krimi)
GenreValue(krimi) |

2.4 Conclusion

This papers presents an DL based approach on domain modelling for natural
language dialogue systems. It devises a automatic approach to the translation
of feature-value formalisms into DL. Most domains for automatic information
services can be modelled in a very simple DL language. Therefore, the approach
serves for automatic and efficient configuration of dialogue systems. We showed
that another important point is the separation between application domain and
dialogue domain which is obtained at the cost of manually linking lexical seman-
tics with an application domain model. In this way it is much easier to reuse
linguistic resources like lexicons and grammars for the purpose of configuration.
Additionally, we can increase the robustness and naturalness of dialogue systems
in comparison with other approaches basing on keyword spotting and finite state
automata.

References

[Abn91] S. Abney, Parsing By Chunks. In: R. Berwick, S. Abney, C. Tenny
(Eds.), Principle-based Parsing. Kluwer, 1991

[KaR93] H. Kamp, U. Reyle, From Discourse to Logic. Dordrecht: Kluwer, 1993

9

[CIC99] LITA-ENSAIS, CICLOP version 1.b3 User Manual. Strasbourg, 1999.
http://massenet.u-strasbg.fr/LIIA/ciclop/ciclop.htm

[Don96] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, Reasoning in De-
scription Logics. In: G. Brewka (editor), Foundations of Knowledge
Representation. CSLI-Publications, 1996, 191-236

[Abn95] S. Abney, Chunks and Dependencies: Bringing Processing Evidence to
Bear on Syntax. In: Computational Linguistics and the Foundations of
Linguistic Theory. CSLI-Publications, 1995

[Kus96] S. Kuschert, Higher Order Dynamics: Relating Operational and Deno-
tational Semantics for \-DRT. CLAUS-Report 84, Saarbriicken, 1996

[Lit99] D. Litman, M. Walker, M. Kearns, Acquiring Knowledge of System Per-
formance for Spoken Dialogue. In: Proceedings of the IJCAI 99 Work-
shop on Knowledge and Reasoning in Practical Dialogue Systems. Stock-
holm, Sweden, 1999, 73-80

[Ram97] A. Ramsay, Does It Make Any Sense? Update Semantics as Epistemic
Reasoning. In: Proceedings of ACL 97. Morgan Kaufman Publishers,
1997

[Sut98] S. Sutton et al., Universal speech tools: The CSLU toolkit. In: Proceed-
ings of the 5th International Conference on Spoken Language Processing
(ICSLP’98). Volume 7, Sydney, Australia, 1998, 3221-24

[Tra94] D. Traum, A Computational Theory of Grounding in Natural Language
Conversation. Ph.D. Thesis, Computer Science Dept., University of
Rochester, 1994

10

An Optimized Tableau Structure for Explicit
Representation of Disjunction

Francois de Bertrand de Beuvron, Martina Kullmann
and Francois Rousselot

Laboratoire d’Informatique et d’Intelligence Artificielle,
ENSAIS, FRANCE
beuvron@liia.u-strasbg.fr

Abstract

Recent DL reasoners (Ciclop [1], DLP [8],iFact [5], RACER [2]) have
proven their practical efficiency for concept expression satisfiability check-
ing (TBox Reasonning) within expressive DLs. Typically, such reasoners
explore one branch of disjunction (alternatives introduced by OR con-
struct) at a time, backtracking when necessary. We present in this paper
a new tableau structure that efficiently keep track of proof states for more
than one alternative. We claim that such structure called Alt-Tableau is
well suited for reasoning within ABoxes and so-called Concrete Domains
[7]. We also present a decision procedure for the satisfiability of ALC-
concept within Alt-Tableau .

1 Informal Presentation and Motivations

The idea presented in this paper is orthogonal to expressivity, and can be ap-
plied to any logic that allow for general disjunction. However, if allowing cyclic
TBoxes and/or high expressivity as SHIQ [5] we cannot rely on the finite tree
model property, and tableau algorithm for these logics have to include some
kind of so-called blocking mechanism. Intuitively, blocking technics try to find
if an already existing individual can be used instead of creating a new individ-
ual while processing individual-introducing construction such as 3R.C'. We think
that we can take advantage of the structure, designed for disjunction represen-
tation, presented in this paper to deal also with this problem by designing a
rule like choose an existing individual from a set of candidate blockers, and try
to associate it with the individual to be created. If none such association leads
to satisfiability, create a mew individual. The choice within candidates can be

{}
x:(AvB)Cv-B)

x:(AvB)Cv-B) x:(AvB)
x:(AvB) x: (Cv-B)
x: (Cv-B) — & T~
{ol:bl} {ol:b2} {02:b1} {02:b2}
x:A x:B x:C x: B
\/
{ol:b2, 02:b

o

Figure 1: OR-tree and Alt-DAG for ALC-concept (AU B) M (C'U—-B)

seen as a specific disjunction. Unfortunately, the formalization of this idea is
still under study, and we will therefore restrict ourself to ALC with acyclic TBox
(where satisfiablility can be reduced to ALC-concept satisfiability by unfolding)
in this paper.

Now consider the simple ALC-concept (AU B) M (C U —=B). Three distinct
tableaux can be obtained depending of the branches of ORs we choose. The
fourth possibility lead to a clash. These tableaux can be represented by two
OR-Trees (the first beeing given in figure 1 depending of the OR we choose
to expand first. Note that this OR-Tree structure is effectively used in many
reasoners although implicitely : only one branch of the OR-Tree is expanded at a
given time, some backtracking being applied if the current branch lead to a clash.
Nevertheless, it is easy to see that this is not optimal : in the first tree, two nodes
correspond to the same expression C. Suppose that C'is now some complex sub-
expression, it will be expanded twice. Note that the x : C' constraint cannot be
straightforwardly expanded once and used for both branches since this expansion
may interact with the constraints x : A and/or z : B. To avoid such redundancy
in the structure proposed here, we create a single node (called BranchNode) for
each branch of all disjunctions at a given level. If and only if there is some kind
of interaction between branches introduced by distinct ORs, we create a new
node (called MergeNode) representing the situation where both branches have
been chosen. The resulting structure presented in figure 1, is no more a tree but
an Acyclic Directed Graph we call AIt-DAG . This representation has two main
advantages:

e cach constraint is represented only once and will be expanded only once
eventually producing new MergeNodes if it interact with other constraints
in distinct alternatives.

e more than one alternative can be efficiently stored in the structure. Fur-
thermore, it can be efficiently used in subsequent proofs allowing enhanced
caching strategies. Also, this structure is well suited for designing parallel
solvers.

We claim therefore that AIt-DAG representation is particularly well suited for
the following tasks (see [6] for a detailed presentation):

e using heuristics to guide the proof : Some expansion rules are computa-
tionally more expansive than others. It may be effective to define heuris-
tics to guide the proof. This is possible only if more than one alternative
can be represented within the tableau, effectively allowing to switch from
an alternative to another while keeping track of the proof state in each
alternative. Although, please note that such improvement can only be
obtained if more than one alternative is satisfiable. In particular, if the
expression we are checking is inconsistent, all the alternatives have to be
checked, and the computational overhead of the structure presented here
may be an handicap in such situation. However, the advantages of the
single expansion of constraints, and of potential for parallelization, still
hold.

e ABox consistency checking :

— many disjunction in distinct individuals are expected to be unrelated :
suppose a library database with persons and books. As usual, persons
can be men or women, and books may be real books or articles.
Wether a person is man or woman do not interfere with it’s hiring
of books or articles. In this case, allowing for some kind of local
disjunction representation, while ensuring that interactions will be
correctly taken into account when needed should prove very effective.

— without specific caching strategy, checking ABox consistency will be-
come more and more computationally intensive as the number of indi-
viduals increase. DL systems incorporating ABoxes generally provide
some caching strategy to deal with this problem. However, without
explicit representation of disjunction, these caches are often limited
to some deterministic subset of individual’s descriptions.

— inconsistency is uncommon and often correspond to user’s miscon-
ception.

e reasoning with concrete domains : the use of heuristics and the single ex-
pansion of constraints may become more important if one want to deal
with so-called concrete domains : various concrete domains (numeric con-
straints, time constraint, string constraint...) will have various complexity,

3

both theoretically and practically. Choosing a proof that minimize the calls
to the most demanding concrete reasoners may greatly reduce the overall
proof time.

2 ALC tableau algorithm

ALC-concept are defined as usual from a set CN of concept names and a set
RN of role names. We denote by sub(C) the set of subconcept in C' and by
|C|| the size of an ALC-concept C' (see fig. 2).

syntax semantics subconcepts size
AcCN | AT CA? {A} 1

T AT {T} 1

-D AT — DT {=D} U sub(D) | D + 1
DNE DInE? {DNE}YUsub(D)Usub(E) | |D|| + || E|
DUE DT U E? {DUE}Usub(D)Usub(E) | ||D|| + || E|
3R.D {d e AT : RE(d)nD* # 0} | {3R.D} U sub(D) D] +1
VR.D {d e AT : R*(d) C D} {VR.D} U sub(D) |D|| +1

Figure 2: ALC-concept

In the rest of this presentation, we will assume that ALC-concept are finite
and are in Negation Normal Form (NNF) in which negation apply only to con-
cept names. The transformation of a ALC-concept to a equivalent ALC-concept
in NNF is quite straightforward, and will be skipped in this paper.

2.1 Alt-Tableau

As foreseen in fig. 1, wee need to identify each expansion of disjunction. We will
call Orlds these idendificators, and denote by O the set of Orlds. An alternative
is a partial function from O to {0, 1} identifying the branches of the disjunctions
that have been expanded. We denote by A C 20*{%1} the set of alternatives. An
alternative a is said to be complete iff domain(a) = O. Two alternatives a; and
ay are compatibles noted a1 ®as iff Yo € domain(ai)Ndomain(as),ai(o) = as(0).
Note that if two alternatives a; and as are compatibles, then the relation a; Uas
is also a partial function from O to {0,1} and so an alternative.

A pre-Alt-Tableau for an ALC-concept Cy is a quintuple [S,0,C,LP,¢E]
where S is the set of individuals, O is the set of Orlds, C C A is the set
of clashed alternatives, LP C A x S x sub(Cy) keep track of the constraints
associated with individuals, and £ C Ax S x S x RN keep track of the relations
between individuals. An Alt-Tableau is a sextuple [S,O,C,LP,E,a.], where
[S,0,C,LP,E] is a pre-Alt-Tableau and a, € A is a complete alternative. A

4

pre-Alt-Tableau must verify properties A1-A7 of figure 3. An Alt-Tableau must
also verify property AS.

Id | name property definition

Al | Cpin model | 3[0,s,Co] € LP

A—| = coherence | if [a1,s,D] € £ and [ag,s,~D] € L and a1 © as

then a1 Uay € C

ArM | M coherence | if [a1,s, DM E] € L and a; ¢ C

then das, ag € A with as C a7 and ag C a3

such that [a2,s, D] € £ and [a3, s, E] € £

AU | U coherence | if [a1,s, DUE] € L and a1 ¢ C

then Vas € A with ay complete and a1 C as

Jdas C ag such that [a3,s, D] € L or [as, s, E] € L

AV | V coherence | if [a1,s1,VR.D] € L and [ag,s1,S2,R] € D and a; ©® ay and
a; ¢ Cand as ¢ C

then Jas € A with ag C a; U ag such that [a3, s2, D] € L
A3 | 3 coherence | if [a1,s1,IR.D] € L and a1 ¢ C

then das, ag € A with as C a1 and ag C a;

such that [ag, s2, D] € £ and [as, 51,52, R| € €

AT | clashes Vai,as € A,a1 €CANay Cag = as €C

A8 | satisfiable a. ¢ C

Figure 3: Alt-Tableau properties

Id | name property definition

Bl | Cpin model | ds € S such that C € Ly(s)

B— | — coherence | if D € Ly(s) then =D ¢ Ly(s)

BM | M coherence | if DM E € Ly(s) then D € Ly(s) and E € Lp(s)

BU | M coherence | if DU E € Ly(s) then D € Ly(s) or E € Ly(s)

BY | V coherence | if VR.D € Ly(s1) and [s1, s2] € & then D € Ly(s2)

B3 | 3 coherence | if 3R.D € Ly(s1) then dsy € S such that D € Ly(s2) and
[s1,52] € &

Figure 4: Basic-Tableau properties

Lemma 2.1 An ALC-concept Cy is satisfiable iff there exists an Alt-Tableau
for Cy

A tableau structure was introduced in [3] for ALCgr+. Such a tableau called
here Basic-Tableau to avoid confusion with Alt-Tableau is a triple [Sy, Ly, &
where S, is the set of individuals, £, : Sy — 2°“0(€0) keep track of the constraints

associated with individuals, and &, : RN — 2% keep track of the relations
between individuals. A Basic-Tableau must verify the properties given in figure
4. It is proven in [3] that an ALCg+-concept Cj is satisfiable iff there is a
Basic-Tableau for Cy. For proving lemma 2.1, we can prove that an Alt-Tableau
exists for Cy iff a Basic-Tableau exists for Cj.

Given an Alt-Tableau 7 = [S,0,C, L, £, a.], we create a Basic-Tableau 7, =
[Sy, Ls, &) with S, = S, Ly(s) = {D € sub(Cy) such that J[a, s, C] € L for some
a C a.} and &(R) = {[s1,s2] € S x S such that J[a, s1,s9, R] € &€ for some
a C a,}. Assuming that 7 verifies properties A1-A8 (fig 3) of Alt-Tableau , we
prove below that 7, verifies properties B1-B3 (fig 4) of Basic-Tableau :

B1: obvious from Al

B-: D € Ly(s) = Ja; C a, such that [ay,s,D] € L
—D € Ly(s) = FJas C a, such that [ag, s, = D] € L
since a; U as C a, then (A=) a; Uas € C so (A7) a, €C
impossible by (A8). Hence D € Ly(s) = =D & Ly(s)

Br: if DN E € Ly(s) then (£, def.) Ja; C a, such that [ay,s, DM E] € £ and
(A7,A8) aq ¢ C
so (AM) Jas € a; C a, and a3 C a; C a, such that [as,s, D] € L and
las, s, E] € L. Hence (L, def.) D € Ly(s) and E € Ly(s)

BU: if DU FE € L£y(s) then (L def.) Ja; C a, such that [a;,s, DU E] € L and
(A7,A8) aq ¢ C
so (AU + a, complete) Jaz C a, such that [az, s, D] € L or [as, s, E] € L.
Hence (L, def.) D € Ly(s) or E € Ly(s)

BV,Bd: same kind of proof as B

For the converse, we construct an Alt-Tableau from a Basic-Tableau with S =
Sp, O =0,C =0, L ={[0sD] € AxS xsub(Cy); D € Lp(s)}, &€ =
{[0,s1,82,R] € Ax S xS xRN, [s1,0) € E&(R)}, and a, = (). This tableau
verifies properties A1-A8 (fig 3) :

A1: obvious from (B1) and () C a,
A—: obvious from (B—) : the condition is never met
AM,AV,A3: obvious from (Br,BY,B3) : simply rewrite with a; = ()

ALl if [ay, s, DUE] € L then a; = () and DU E € Ly(s) so (D € Ly(s) and
0,s,D] € L) or (E € Ly(s) and [, s, E] € L). since Va,) C a AU is
trivially verified.

A8,AT: trivial since C =)

2.2 Alt-Tableau Algorithm

The tableau algorithm presented below work on ProofContext . A ProofContext
is a sextuple [S,O,C, LP,E,P| where S, O, C, LP, and & are the same as for a
pre-Alt-Tableau but without properties A1-A7, and P C A x S x sub(Cy) will
contains the set of already expanded Or constraint (see rule RU). To check the
satisfiability of an ALC-concept Cy, we apply the expansion rules of figure 5 to
the initial ProofContext defined by : S = {so}, O =0, C =0, L = {[0, so, Co]}
(meaning individual sy must satisfy Cy for the root alternative, and so for all
alternatives), & =0, P = ().

A ProofContext is complete when none of the rules is applicable. Then, the
algorithm return ”C is satisfiable” if) € C, and ”C is unsatisfiable” otherwise.

Lemma 2.2 (termination) for every ALC-concept Cy, the Alt-Tableau algo-
rithm terminate

This is ensured by the following properties of the Alt-Tableau algorithm :

T1 each constraint in £ can trigger at most one rule expansion for rules R,
RU, and Rd. Each pair of constraints in £ x £ can trigger at most one
rule expansion for rule RV. This is ensured by conditions (2) on each rule.

T2 each rule expansion add at least one new element in £, £, or C.

T3 S is given a tree structure by &, since for all s € S, s # s¢ there is an unique
sp € S such that [a, sp, s, R] € £ (see R3)

We denote by S™ the subset of S of depth n within the tree induced by &.
S™ is recursively defined by : S° = {so}, S = {s € S;3a,s,,s,R] € &
with s, € S'}. By analogy, we also define £' = {[a,s,C] € L;s € S'}, & =
{la, s1,82,R] € ;81 € S}, A" = {a € A;Ta,s,C] € L'}, O ={o € O;Fa €
A? such that [0,0] € a or [0,1] € a}.

T4 expansion of constraints [ay, s1,C1] by rules RM, RU, RV, and R3 can only
produce new constraints [ag, s2, Co] with ||Cy|| < ||Cy| — 1.

T5 Constraints in £° can only be introduced by constraints in £ by rules Rl
and RL, constraints in £:~! by rule R3, and constraints in £~! and £i~!
by rule RY. Constraints in £° can only be introduced by constraints in
L1 by rule R3.

T6 from (T4,T5), it is easy to see that

max [[C][< max [|[Cfand max JC| <||Coll
[a1,81,0]6£2+1 [GQ,SQ,C]ELZ [a1,51,C}€EO

Since only ALC-concept of size at least two (FR.C') can produce new in-
dividuals, the depth of the tree is at most ||Cyl|| — 1.

7

Id | name | rule definition
R—| clash | 1-if [a1,s, D] € £ and [ag,s,—~D] € L and a1 ©® ay
creation 2- if a3 Uay ¢ C
then C — C U {ay Uasy}
RMA| M- 1- if [a1,s, DT E] € L and a; ¢ C
Rule 2- if not das,a3 € A with a; C a; and as3 C a; such that
las, s, D] € L and [as, s, E] € L
then £ — LU {[ay,s, D], a1, s, E]}
RU| L- 1-if [a;,s, DU E] € L and a; ¢ C
Rule | 2a- if not (
la1,s, DUE] € P
or Jas € A with as C a; such that [ag, s, D] € £
or Jas € A with as C a; such that [as, s, F] € £
) then
P — PU{[ai,s, DU E|}
create a new Orld o,, O — O U {o,}
L — LU {[a1U{[on, 0]}, s, DI} U {[a1 U {[on, 0]}, s, E]}
RV | V- 1- if [a1, s1,u] € LP with C/u = VR.D and [aq, s1, 82, R] € €
Rule and a; ® as
2- if not Jaz € A with ag C ay U ay such that [ag, s2, D] € L
then LP — LP U {[a; Uag, s2,u @ [1]]}
R3| 3- 1- if [ay, s1,u] € LP with C/u =3R.D
Rule 2- if not das,a3 € A with as C a; and a3 C a; such that
las, 81,82, R] € € and [as, s9, D] € L
then create a new individual ns, S — S U {ns},
LP — LPU{[a1,ns,u® [1]]}, € — EU{[a1,s1,ns, R|}
R6 | clash 1- if day, as € C such that
propa- | Jag € A,do € O such that
gation | a; = az U {[o,0]} and as = a3z U {[o, 1]}
CP1 |2 ifa;¢C
then C — C U {as}
R7 | CP2 1- if Ja; € C such that Jday € A such that a; C as

2- if a9 ¢C
then C — C U {az}

Figure 5: Expansion Rules for Alt-Tableau

T7 We denote by nbrl(c) the maximum number of individuals that can be
created in S by a constraint ¢ = [a,s,C] € L. By recurrence on C' we
can prove that nbri([a,s,C]) < ||C]] :

AeCN — nbrl(c)=0
DMNE — nbri(c)=nbri([a,s,D])+ nbri(la,s, E])
(note that | DI| + [|E[| < [[C])
DUFE nbri(c) = nbri([a,s, D)) + nbri([a,s, E])
VR.D nbrI(c) = 0 since RY only create new constraints in £+

JR.D — nbrl(c) < 1 since constraints on D are in £

l

!

Defining nbrO(c) as the maximum number of Orlds that can be cre-

ated by a constraint c, one can also prove by a similar argument that
nbrO(la, s, C) < [|C].

T8 From (T5), constraints created in £ from £ have the form [a, s, D] €
A" x ST x sub(Ch). There is at most | AY.|S™|.||Co|| such constraints.
From (T7) the expansion of each such constraints can create at most ||Cy||
new individuals in S and also at most ||Cy|| new Orlds in O, Hence,
|ST2| < |AYLISTHH|Co||? and O] < O + |AY].|ST.||Co||?. From the
initialization, and (T7) it is easy to see that |S°| = 1, |O°| < ||Cy||, and
|S1| < ||Col|- Since the depth of the tree is finite (by T6), the sets O and
S are finite, hence the sets A, C, £, £ and P.

The maximum number of elements in a ProofContext is finite (T8). Each rule
application adds at least one element in the ProofContext (T2). Hence the
algorithm terminate.

Lemma 2.3 when the algorithm terminates, the ProofContext is a pre-Alt-
Tableau

This is quite obvious since properties A—,AM,AV,A3 can be proven from the
corresponding expansion rules. Property Al is ensured by the initialisation of
the ProofContext . Finally, property A7 is straightforwardly deduced from R—.
Property AU is deduced from rule RIM as follow :

ALl if [a1,s, DU E] € £ and ay ¢ C then either

e [a1,s,D U E] € P, so the rule has been expanded, and o € O
such that [a; U {[0,0]},s, D] € £ and [a; U{]o,1]},s,D] € L. Then
for a complete as such that a; C ag, either a; U {[0,0]} C ay or
a; U{[o,1]} C ay

e [a1,5,D U E] ¢ P, then from rule RU (Jas € A with a; C a; and
las, s, D] € L) or (Jay € A with ay C ay and [ag, s, E] € L£). For all
complete a3 € A, a1 C a3 = ay C a3.

9

Lemma 2.4 In a complete ProofContext , if) ¢ C then there is a complete
alternative a, such that a, ¢ C

from rule RG, it is easy to prove that if Va; € A with card(a;) = n, a; € C then
Vay € A with card(ay) =n—1, as € C: given a with card(a) =n—1 < card(O),
suppose o € O such that [0,0] ¢ a and [0, 1] ¢ a then

Jday,as € A with card(a;) = card(az) = n such that a; = a U {[o,0]} and
a; = a U {[o,1]}. Since aj,as € C by hypothesis, a € C by rule R6. So (by
recurrence on n), if all complete alternatives are in C, the empty alternative is
also in C.

Lemma 2.5 (Soundness) When the algorithm terminate, if O ¢ C then the
ProofContext is an Alt-Tableau .

Direct consequence of lemma 2.3 and 2.4

Lemma 2.6 (Completeness) If the ALC-concept Cy has an Basic-Tableau 7Ty,
the ProofContext P constructed by the algorithm is an Alt-Tableau .

By lemma 2.3 P is in fact a pre-Alt-Tableau . In order to find a not clashing
complete alternative a, in P, we can map the individuals in P to individuals
in 7 in such a way (following the method given in [4]) that the constraints on
individuals in P are a subset of the constraints on the mapped individuals in 7.
We construct an alternative a, and a function 7 : .S — Sy such that :

(%) Viai,s,C| € L with ay ® ay : D € Ly(n(s))
Vlay, s1, $2, R] € € with ay ® ay : [7(s1),7(s2)] € &

The (*) property can be preserved when applying expansion rules :

RY if [a1,s, DN E] € £ and a1 ® ay, then DN E € Ly(7(s)) then (BM) D €
Ly(m(s)) and E € Ly(m(s)). Applying rule RM produce [aq,s, D] and
[az, s, E], so property (*) is not violated.

RLU if [a1,s, DU E] € £ and a1 ® a4, then DU E € Ly(m(s)) then (BU) D €
Ly(m(s))(1) or E € Ly(m(s))(2). Suppose RM is applied, producing [a; U
{lon, 0]}, s, D] and [a; U {[o,, 1]}, s, E].

Suppose (1) hold, then by setting a;, «— ay U {[o,,0]} property (*) is
preserved since a; U {[o,, 1]} is not compatible with a,, hence only D
is required in Ly(7(s)). Note also that all constraints with alternative
a compatible with the old value of a, are still compatible with the new
value since o, is a fresh Orld. Also, all constraints with alternative a not
compatible with the old value of a, are obviously not compatible with the
new value. So modifying a in the way above do not affect property (*)
for previously expanded constraints.

Suppose (2) old, setting ay < ay U {[o,, 1]} preserves property (*) by a
similar argument.

10

R3 if [a1,s,3R.D] € L and a; ® a4, then IR.D € Ly(n(s)) then (BI) Jy € S,
such that [7(s),y] € & and D € Ly(y).
Applying R3 generates a new variable t € S and the constraints [aq,t, D] €
L and [ay, s,t, R] € €. Setting m « 7 U [t, y| yields a function satisfying

property (*)

RY if [a1,s,VR.D] € £ and a1 ® ay, then VR.D € Ly(n(s)). If [ag,s,t,R] € €
and ag ® ay, then 7(s),7(t)] € &. Hence, by rule (BY), D € Ly(n(t)).
Hence applying RV, producing [a; U as, t, D], do not violate property (*).

(
Initialy, we set ay = (), and © = {[sg, zo]} for some xy € S, with Cy € Ly(z0)
(x¢ exists since 7, is a Basic-Tableau). Property (*) is verified.
When the algorithm terminate, suppose a, € C then, since an alternative
can only produce clashes (by rule R—, R6, R7) in compatible alternatives :

ay € C = day,as such that a; ® as and ay; ® ay and ay ® ay and
[ai, s, A] € L and [ag,s,mA] € L
= (since a1 ® ay and as ® ay)A € Ly(w(s)) and = A € Ly(7(s))

This is impossible since 7, is a Basic-Tableau . So a; ¢ C. By R6,R7 (see lemma
2.4) Ja, such that a, is complete and a4 C a, and a, ¢ C

Theorem 2.1 The algorithm on Alt-Tableau presented in this paper is a deci-
sion procedure for the satisfiability of ALC-concept

This theorem is a direct consequence of lemma 2.1, 2.2, 2.5, and 2.6.

3 Conclusion

We have presented a new tableau structure and proved its applicability to DL by
providing a sound and complete algorithm for ALC-concept satisfiability check-
ing relying on such structure. Obviously, many extensions are still to be defined
to demonstrate the claims that it will be well suited for proof optimization, in
particular with ABoxes and Concrete Domains. Nevertheless, this Alt-Tableau
algorithm has been implemented in the CICLOP reasoner, and preliminary tests
with toy examples are promising. An in-depth study with both constructed and
real TBoxes and ABoxes have still to be carried out.

References

[1] F. de Beuvron, M. Kullmann, D. Rudloff, M. Schlick, and F. Rousselot.
The description logic reasoner ciclop (version 2.0). In Proceedings of the Tth
Workshop on Automated Reasoning, London, Great Britain, 2000.

11

2]

Volker Haarslev and Ralf Mller. Description of the racer system and its
applications. In Proceedubgs International Workshop on Description Logics
(DL-2001), Stanford, USA, 2001.

. Horrocks. Optimising Tableaur Decision Procedures for Description Logics.
PhD thesis, University of Manchester, 1997.

I. Horrocks and U. Sattler. A description logic with transitive and converse
roles and role hierarchies. In Proceedings of the International Workshop on
Description Logics, Povo - Trento, Italy, 1998. IRST.

[an Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for
expressive description logics. In Harald Ganzinger, David McAllester, and
Andrei Voronkov, editors, Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99), number 1705
in Lecture Notes in Artificial Intelligence, pages 161-180. Springer-Verlag,
September 1999.

Martina Kullmann. Description Logic Models for Supporting Decision Mak-
ing. PhD thesis, Université Louis Pasteur, France, 2001.

C. Lutz. Nexptime-complete description logics with concrete domains. In
Proceedings of the International Joint Conference on Automated Reasoning,
LNAI, Siena, Italy, 2001. Springer Verlag.

P. F. Patel-Schneider. Dlp system description. In E. Franconi, G. De Gi-
acomo, R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani, edi-
tors, Collected Papers from the International Description Logics Workshop

(DL’98), pages 87-89, 1998.

12

A Knowledge Based System for
Person-to-Person E-Commerce

Eugenio Di Sciascio, Francesco M.Donini, Marina Mongiello,
Giacomo Piscitelli
Dipartimento di Elettrotecnica ed Elettronica

Politecnico di Bari
Via Re David, 200 — 70125 BARI, Italy
e-mail: {disciascio,donini,mongiello,piscitel }@poliba.it

Abstract

Short-term peer-to-peer (or person-to-person) e-commerce calls for an
infrastructure treating in a uniform way supply and demand, which should
base the matchings on a common ontology for describing both supply and
demand.

Knowledge representation — in particular description logics — can
deal with this uniform treatment of knowledge from vendors and cus-
tomers, by modelling both as generic concepts to be matched.

We propose a logical approach to supply-demand matching in person-
to-person e-commerce, which is deployed in a prototype system imple-
mented for a particular case study but easily generalizable and is based
on Classic, a well known knowledge representation system. Limits and
advantages are analyzed and discussed.

1 Introduction

Electronic commerce differs from traditional commerce primarily in the
way that information is exchanged and processed. Personal contacts,
or at most contacts mediated through the phone or postal system, are
or should be, substituted by information exchanged between computers
flowing along digital networks. E-commerce can anyway mean several
things.

In this paper we focus on what is known as Consumer-to-consumer
e-commerce. This category, which we are more likely to call person-
oriented or Person-to-Person (P2P) in accordance with the proposal in
[4], is emerging slowly, as it is not backed up by the interests of large

companies, but we believe it has great potentials for widespread diffu-
sion. We basically consider the P2P scenario an electronic marketplace,
or better an agord', where peer consumers may propose their goods and
products and dynamically deal with counteroffers or further specifications.

Our research tries to fit an existing gap in present deployment of P2P
e-commerce, by extending the technology of search and of descriptions of
searched items, in order to ease and improve the free play of demand and
supply.

Most of current consumer or person oriented e-commerce strives to
reproduce, with limited success, the usual commercial interaction taking
place in physical stores. On one hand, consumers are reached by blind
advertising on store products, and brand names — which are built out
of massive economic investments — fill customers’ lack of information.
On the other hand, (virtual) stores are visited by those consumers who
are interested in buying a product they think is available at that store.
Portals reproduce specialized catalogues and consumer magazines.

We believe that this situation is not the necessary picture of e-commerce;
it depends on the available technology for publishing and searching on the
web.

Publishing on the Web is in fact a form of blind advertising of prod-
ucts. Although not as intrusive as spamming, the publisher has no precise
idea of who is going to access the published information. Producers rely
on keywords, and on indexing on prominent search engines, to be found
by potential customers. Keywords are affected by the wide-experienced
problems of both synonyms, and polysemic words. Categorization by
prominent index sites may help some producers to be effectively found by
potential customers; however, on the customer side, relying on indexes
may result in a loss of useful information about small-size producers, or
short-time suppliers. This is particularly relevant for agricultural prod-
ucts: supplies tend to have a seasonal time window, and different produc-
ers may alternate on the market, each one without the sufficient economic
strength to put up a long-term, visible and reliable site.

On the customer side, there is no way to reach a product but by ac-
tive search using the available technology, which penalizes P2P in favor
of B2C. The use of main portals and indexes to speed up search tends to
favor long-term renowed brands, in comparison with short-term supplies
by small producers. This may result in a loss of competitive offers, which
could have been economically more convenient just because of either geo-
graphical proximity, or smaller advertising overhead on the overall price.

One may be tempted to solve the problem of P2P by resorting to presently
available Database technology. A site specialized in particular products

TAgord: An assembly; hence, the place of assembly, especially the market place, in an
ancient Greek city.

— ——
| ——] §
SUFFLY! [; ——
DEMANT HOLEE-
CLIENT HTTP EMOWLEDE
d===F| cERVER = BASE
= : SERVLET WEQCLASSIC
ML
FARSIE e i

Figure 1: Three-tier architecture of the prototype system.

may help suppliers to dynamically insert and delete offers for definite
time slots. The site could help also customers to issue queries regarding
particular products, probably with the help of some interface to formulate
queries that can be actually answered — using the right vocabulary, the
right level of abstraction. To clarify with an example, an interface may
help a user wondering, ”Can I ask about ‘merlot grapes’, or should I use
‘red grapes’, or just ‘grapes’, and scrutinize retrieved answers after?”. In
a nutshell, the interface for queries should clarify to the user the Database
Ontology (names and relations in the Database schema).

However, such a database technology solution captures only half of the
matching of supply and demand in P2P e-commerce. In fact, it captures
the request of a customer as a query, to be answered in a web-based
database of offers by suppliers. But on the other hand, also the offer of a
supplier can be treated as a query for interested customers in a database
of customer requests, or even personal profiles. The choice of which is the
data, and which is the query, depends here just on a point of view, and
maybe, on who is more interested in actively finding the answer — and
that is not necessarily the customer.

Summarizing, we believe that in small-size, short-term P2P commerce
there is the need of an infrastructure treating in a uniform way suppliers
and demanders, which should base the matchings on a common ontology
for describing both supplies and demands.

Knowledge representation — in particular description logics — can
deal with this uniform treatment of knowledge from suppliers and cus-
tomers, by modelling both as generic concepts to be matched. The match-
ing could be accomplished by a classification on the hierarchy of concepts,
that forms the common ontology. Both supplier offers and customer re-
quests could be classified, leading to exact match when they describe
the same concept, and to partial match (still meaningful) when one is
a subconcept of the other or concepts are compatible. For instance, an
offer of ‘red grapes’ partially matches a request for ‘merlot grapes’. The

3

partial match can then be further investigated, still with the help of the
infrastructure.

In fact, the logical approach — which Description Logics are based
upon — allows for an open-world assumption. Incomplete information
is allowed (and can be filled after a selection of possible matches), and
absence of information can be distinguished from negative information,
allowing to discard offers/requests without the necessary properties, and
to ask for missing information in the potential matches.

Here we propose an approach to P2P e-commerce based on Description
Logics and describe its implementation in a prototype system for a virtual
brokering agency for apartments rental. Limits and possibilities are also
addressed.

2 A logical approach to matching in P2P
e-cominerce

We now apply the framework of Description Logics to supply-demand
matching in P2P e-commerce marketplaces. We suppose for simplicity a
basic P2P e-commerce setting, in which every transaction involves just
one supplier and one customer.

We formalize both supplies and demands as concept names (of two
distinct alphabets), which share concepts and roles of a common product
ontology. Hence, we assume the existence of two disjoint alphabets of
supply names C = {C1,...,Cy}, and demand names D = {D1,..., Dy, }.
Moreover, we assume that the domain of interest is modeled with concepts
and roles as in a generic Description Logic.

E.g., proposing the supply of an apartment in Brooklyn Heights, NY,
could be described by

(1 = apartment M Jlocation.Brooklyn-Heights (> 2 rooms)
while two demands in the same domain could be described by

D; = apartment N Joptions.Back-Yard-Garden
Dy = apartment (< 1 rooms)

The interpretation of supply and demand concepts is on a single, com-
mon domain of possible transactions; the set of transactions compatible
with them. When a transaction involves a single traded good — such as
apartments — supplies and demands can be interpreted directly as sets of
goods that can be exchanged. However, we prefer to interpret concepts as
transactions since there are exchanges involving continuous goods, such
as fruits, oil, etc.

Definition 1 An offer C' and a request D are [inJcompatible iff the con-
cept CM D is [un/satisfiable.

* . a3 @ & HF I oo X 4l
L) R s i e s B s B I
L L =11 — 5] e
Cmsam &) al] e o
al
L TR R R TR T v T
Lsariari el
FET]
A R 4 L R w e TR e
[ETT T [T =y
Iy re e pEsere B o ol e e ol roim o ETiTE
C=T L]
oy - b= e
g i e i
e
S R A e |
T S e ST I I
Irfeamarianl gul progi e & opess
Cagmara u s prapreeea |
B A e
Femaads | bk |
M == —

Figure 2: The form specifies the basic features usually requested to describe an
apartment, such as price, number of rooms and so on. Further features/concepts,
originally not foreseen and now part of the system knowledge, can be selected
from the scrollable window. New concepts can be inserted in the textfields to
extend the description of the apartment. After the insertion, the knowledge base
is automatically updated. The new concepts appear in the list of features in the
scrollable window and are available for further searches or insertions.

For the above examples, D; is compatible with C7, and further in-
quiries could be issued to both parts to see if the transaction can be
concluded. Instead, C1 is incompatible with Do, so this matching can be
discarded in a first filtering phase.

There are cases, however, in which we can establish from known data
that the transaction is already possible: e.g., a demand of exotic fruits is
fulfilled by a supply of bananas. Obviously, to establish this conclusion
the system must have knowledge (through an inclusion assertion) that
bananas are exotic fruits.

Definition 2 A demand D is fulfilled by a supply C' in a TBox T if C
is subsumed by D in T.

Unmatched demands and supplies can be “stored” as new concepts, and
classified accordingly in the TBox. As soon as a matching supply/demand
enters the system, the old request can be reexamined. In this sense, the
approach based on Description Logics is balanced between supply and
demand, and much different from usual B2C portals where a customer

B Bl ek Gesed Mo] &
L 3 o o F 8 ~* ¥ A
Fipoed Finpoech 2 Il Sgra Elernsa Precdends Suocomenn Fbaca
Da rargalciinoba ¢
Dt e 1 bugho 2004 11114
A woaregualclT kb ©
Oggetia: AOEIAHAMENTO CAT) APPRRTSMEINTD
] =
Bunngom
ssla mail, imaata slnman camants gl saner dallagandavimiak: ha ko soopo o
peirneiters Fagoiomanmantc dai dad sul DG appamamants. Par fascrs acosd allg
saguante pagina Wab in ol B sana posta una semplce Jomanda
=

Figure 3: The text of an e-mail automatically sent to the owner of an apartment.
The message points to a URL where the owner is asked to answer about the
presence of features not included in the original description.

has to make active efforts to find the goods s/he looks for, and if she does
not find them now, s/he has to re-enter data next week.

3 A case study: renting apartments to
students

3.1 Scenario

Differently from most other countries, Italian universities do not have
dormitories for their students, which are only provided to a minimum
percentage of them. Also, often faculties are spread in different parts of
towns and not concentrated in campuses.

This situation leads to a flourishing activity of privately owned apart-
ments rental. Furthermore largest part of students do not rent an entire
apartment or house, instead they are more likely to ask for a room and
often for just a bed within a room.

Supply and demand are extremely dynamic and currently there are
no brokering agencies, at least in most italian towns. Therefore, although
there is a noteworthy aggregate turnover, typically supply meets demand
in naive ways, e.g., advertisements pinpointed on show-cases, word passed
round, etc.

This business scenario can hence be considered an ideal candidate
for a web-based system designed for person-to-person small business e-

6

commerce whose objective is becoming a virtual brokering agency en-
dowed of innovative services able to ease use and interaction, and closer
to user needs than most of business-to-consumer e-malls are.

Main services we considered objective of our case study are:

1. Support to the user in the data insertion and query submission.
The user is incrementally guided in the definition of a query or an
offer. We remark here that though we distinguish for simplicity the
supplier and the demander they are treated in a uniform way by the
system.

2. Automatic construction and verification of satisfiability of the query.

3. Deduction of new knowledge on the basis of available data. As an
example, the system automatically detects apartments available in
a convenient area once the faculty has been entered.

4. Ability to provide conceptually approximate answers in the presence
of unsatisfiable queries. Notice that this the way a human clerk
behaves: when a request can not be satisfied he/she will propose
the closest alternatives to the client, will not answer "no match”.

5. Ability to manage incomplete queries and possibility to ask for un-
foreseen (hence not immediately available) services and features to
the supplier.

6. Storage of satisfiable queries/demands that were still unmatched,
with automatic reexamination when new supplies are provided, and
notification on succesful match between supply and demand. The
same service is available for unmatched supplies.

The remaining of this section describes main features of the imple-
mented system. It is anyway noteworthy that, though the system has
been actually designed as a virtual brokering acengy for apartments rental,
similar issues exist in several other business scenarios. A nice property of
our approach is in fact that reverting to other scenarios is quite simple,
provided that basic concepts and a simple ontology are available. The
system will extend its knowledge as more information becomes available
without having to modify the structure of the system.

3.2 The virtual brokering agency

The proposed prototype system is based on a NeoClassic engine inter-
faced to the web via Java servlet technology. Classic is a member of the
KL-ONE family of knowledge representation languages [2]. NeoClassic,
a Classic implementation, is basically a knowledge server to build, man-
age, infer about, and query a classification hierarchy. NeoClassic is a
frame-based knowledge representation system that differentiates between

7

B [on e Tsmd [om Doy [W |
E-r- A2 A Al w2E-A

A i e | sl B L T e . AL b o
- &l LI iy B i i [e dhuda

AT e AR T TR L R =

larmmir adrr,

Ln wmama ol g pog e el 8 @ g b et gaee @l rbenea s s sppamseaes. b s s flerme

v ek e g Pt ewvraiat Jgmat e g iy T i by o o gl L

Frrmmis g e rasns sl el s s wapher desaads (sl s gl g o Oa

EhT nddlafa i PR R TV R,

Tiraihr prr bn dma reilnbers e,

I¥ T opperiunisaro & dulite. o perscing, fo st caratiensla o
e oo pivciag ¢ dennrr
“H T nE
Praprirey & dwo codice idearicamos, ¢ prees d dearo
T T

Inwia Is napoets

Figure 4: The form specifies a new feature, requested by an interested demander,
not available in the apartment description. The owner can answer the question
by clicking on the radiobutton and fill the textfield for the authentication pro-
cedure with his password.

terminological and assertional aspects of knowledge representation, and
which focuses on the key inferences of subsumption and classification,
typical of description logics.

Figure 1 shows the three-tier architecture of our prototype system.
The web server passes requests to a Java servlet that communicates with
the NeoClassic engine running as a daemon in the background. The main
user interface for both supply and demand submission is a Java applet.
Classic output is parsed in XML; the system is also interfaced to a mailer
and to a SMS (Small Message System) server for automatic news notifi-
cation.

Submission of a new query or offer is carried out incrementally. The
user can introduce basic elements, such as price, type of the apartment,
number of rooms, etc. A distinguishing aspect is the possibility to ask
for new services or features not foreseen at the design stage. The system
extends its knowledge and new concepts are added to the knowledge base.
Figure 2 shows the form that includes a text area for specification of new
concepts. The scrollable window in the upper part of the figure shows
other concepts added and consequently part of the system knowledge. The
system includes a small thesaurus and a predictive text input mechanism
to avoid repeated insertion of similar concepts.

Our basic service is the matching of compatible descriptions. A query

8

that matches a description will also subsume all other descriptions that
in the system hierarchy are classified below the first matched description.
Supplying a new apartment is also a description matching. The position
of the new supply in the system hierarchy is determined considering all the
descriptions that the new description is subsumed by. Once the position
has been found, a reclassification takes place to determine the descriptions
that satisfy it, which are then tied in the system hierarchy.

Each request, a supply or a demand, is given a unique code for infor-
mation tracking. A supply is always an apartment, which can be rented as
a whole or room by room or also on a "bed” basis. A demand can be any
of the above. Test functions allow several deduction services including:
reachable faculties given the address of an apartment and vice versa; com-
putation of prices per room or per ”bed” given the cost of an apartment;
computation of spare rooms or spare beds. It is noteworthy that when
a new concept is introduced by a user looking for a new service/feature,
the system automatically contacts owners of apartments that fulfill all
other user requirements but the new one through an e-mail or a SMS, see
Figure 3 for an example.

The message points the owner to a web page where the question on
the newly requested feature is posed, as it is shown in Figure 4. If he/she
confirms the availability of the requested service/feature the system stores
the new information and consequently informs, with the same procedure
(an e-mail or a SMS), the demander about the fulfillment of his/her re-
quest.

The system also correctly handles requests that cannot be fulfilled
for lack of apartments offers satisfying all needs expressed. The system
answers declaring the reason why the query could not be completely sat-
isfied, so that the user may eventually release the constraint, that is,
turning to the hierarchical structure of the knowledge base, raise towards
a less specified description.

It also proposes those apartments whose description, though not per-
fectly matched by the request are closer to it. We remark that this is the
way we believe a human clerk would behave: he/she would propose some-
thing that, though not exactly in agreement with the customer request is
close enough to be of interest. As an example Figure 5 shows the system
answer, with the negative answer (and the reason for it) and alternative
solutions.

If a user refuses alternatives his/her request is not lost. The system
stores it; on insertion of new supplies matching the query the system
automatically informs the user that a new offer is available satisfying
his/her requests.

S —— ™) u| A=

Calmpars " al A 8] P v fubuien nite ek, rvies i
r

Risultati della ricerca

Sy e, o el el ey T R
e alarvin, apy s rlavas, sa s kil p [Py E—— hat
amems alraas ran asda o, e s w by 1 "
AR A e

SAAUTERC P AT
AFTAR a0 LA THE W1 RO i RS 0
3 Ek

S Ir A L R A SR L TR Bl
ST BOCHOEE bSO T B R T UG DN A O S R T TR
BT JFTIETY s e & CNOC-JO Fr e e (000 S PR S

CansaEvohe deilagvimamcan,
T E RSP T ESA P TE 3 7
P e

e T e e
Ete E o e

il o

Figure 5: Response to a query not completely matched. In the upper part the
system provides information about the requirements not fulfilled. It points out
that one requirement, "balcone con veranda” (i.e. porch), could not be fulfilled
by any available supply. It also proposes in the lower part apartments that fulfill
all other requirements of the query.

4 Conclusion and discussion

We have proposed the application of the Description Logics framework
to supply-demand matching in a P2P scenario, modelling both as generic
concepts to be matched. We have also presented as a realistic case study
a prototype of system that implements a virtual brokering agency for
apartments rental. The system is fully functional and is currently in
alpha test stage.

Our conclusion is that Description Logics can be almost an ideal can-
didate for scenarios where peer entities interact for supply-demand match-
ing, providing a level of interaction with user-information needs which is
not available with current database technology. We end the paper dis-
cussing some pros and cons of our choices.

We had several reasons that led us to choose Classic instead of other
implementations of Description Logics. First, since we are working on a
years-long project, we need to rely on a stable system. Second, we need
system functions like “list all roles attached to this concept”, or “list the
derived subsumers of this concept”.

Moreover, we need a language escape for requirements that are not
expressible in the Description Logic. Although weak as a reasoner, one of
the strongholds of Classic is exactly the possibility to use computed fillers
and test functions in the host language.

10

Third reason, but not less important, there is a large documentation on
Classic, which is not just the system manual, but also tutorial-like papers
[2] that allow newcomers to grasp very rapidly the system capabilities,
and how to exploit them.

Nevertheless, we experienced also some problems in using Classic, such
as the fact that computed fillers required almost continuous recompilation
of the code. Also, Classic appears to have some strange behavior in the
removal of “told” information, which requires a careful handling. Fur-
thermore, lack of the disjunction operator (OR), and qualified existential
quantification (“an apartment with a single room”) required some work
to simulate their behavior. We also needed small computing capabilities
to express things as “an apartment with five rooms, three of which are
rented, is an apartment with two free rooms”.

To circumvent this problem in Classic, we had to code in concept
names all combinations of available and rented rooms, and use rules; this
appears a somewhat cumbersome compilation of subtraction.

Finally, we would have find useful some epistemic capabilities to ex-
press that, e.g., to enter a new apartment in the system, its location must
be entered too, or that the owner already told that smokers are allowed.

Acknowledgements

We wish to acknowledge help of our former students P. Bacco and M.
Ranieri, and of P.F. Patel-Schneider who clarified various points of Neo-
Clagsic implementation.

This work has been supported by project MURST-CLUSTER22 sub-
cluster ”"Monitoraggio ambiente e territorio”, workpackage: "Sistema in-
formativo per il collocamento dei prodotti ortofrutticoli pugliesi” and by
EU-POP project ”Negotiation Agents for the Electronic Marktplace”.

References

[1] Alexander Borgida. Description logics in data management. [EEFE
Transactions on Knowledge and Data Engineering, 7(5):671-682,
1995.

[2] R.J. Brachman et al. Living with CLASSIC: When and how to use a
KIL-ONE-like language. In John Sowa, editor, Principles of Semantic
Networks: Fxplorations in the representation of knowledge, pages 401—
456. Morgan Kaufmann, 1991.

[3] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On
the decidability of query containment under constraints. In Proceed-
ings of the Seventeenth ACM SIGACT SIGMOD SIGART Symposium
on Principles of Database Systems (PODS’98), pages 149-158, 1998.

11

[4]

[5]

P. Devambu, S.G. Stubblebine, and M. Uschold. The next revolution:
Free, Full, Open Person-2-Person (P2P) E-commerce. In Proc. of DL
2000 Workshop, 2000.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in description logics. In Gerhard Brewka, editor,
Principles of Knowledge Representation, Studies in Logic, Language
and Information, pages 193-238. CSLI Publications, 1996.

Manfred Schmidt-Schauffi and Gert Smolka. Attributive concept de-
scriptions with complements. Artificial Intelligence, 48(1):1-26, 1991.

William A. Woods and James G. Schmolze. The KL-ONE family. In
F. W. Lehmann, editor, Semantic Networks in Artificial Intelligence,
pages 133—-178. Pergamon Press, 1992. Published as a special issue
of Computers & Mathematics with Applications, Volume 23, Number
2-9.

12

Building a Text Adventure on Description Logic

Malte Gabsdil, Alexander Koller, Kristina Striegnitz
Dept. of Computational Linguistics
Saarland University, Saarbriicken, Germany
{gabsdil|koller |kris}@coli.uni-sb.de

Abstract

We describe an engine for a computer game which employs techniques
from computational linguistics and theorem proving based on description
logic. We show how we represent a world model as a DL knowledge base
and then illustrate how we use it in the computational linguistics modules
with the examples of analyzing and generating referring expressions.

1 Introduction

In this paper, we describe an engine for text adventures which employs tech-
niques from computational linguistics and theorem proving based on description
logic. The system is being developed at Saarland University as a student project.
Its purpose is twofold: Players should be able to interact more naturally with the
game, and we envisage a use as a testbed for computational linguistics modules.

Text adventures are a classical form of computer games which were most
popular in the eighties. The player interacts with the game world (e.g. the rooms
and objects in a space station) by typing natural-language commands and the
computer provides feedback in the form of natural-language descriptions of the
world and of the results of the player’s actions. Typically, the user has to solve
puzzles to win the game; an example interaction is shown in Fig. 1.

Text adventures have since gone somewhat out of fashion. One reason for
this was the advent of more powerful graphics hardware, but another is that
even the most advanced games of the eighties, which accepted input that went
well beyond simple two-word sentences, suffered from some irritating limitations.
Maybe most striking is what we call the identification problem: Sometimes the
game does not allow the user to refer to an object with the exact same words
that the game itself used for it (Fig. 2, taken from [3]). This is unsurprising,
since the output of the game is hard-coded and elaborate, whereas the input has
to be analyzed by a very simple parser.

Observation Lounge

This is where the station staff and visitors come to relax. There
are a lot of tables and chairs here, a large observation window,

and a plush carpet. In the corner you can see an AstroCola dispenser.
A tube leads up to the station’s main corridor.

>put my galakmid coin into the dispenser
Click.
The dispenser display now reads "Credit = 1.00".

>push diet astrocola button
You hear a rumbling noise in the dispenser, but nothing appears in the
tray.

>kick dispenser
A can drops into the tray. Amazing! The oldest trick in the book, and
it actually worked.

Figure 1: An example interaction with a text adventure, taken from [7].

Cupboard

When you aren’t lying on the bed, you usually stay in here, snug and
safe with your friends atop the warm pile of clothes. Your warm

winter jacket is here, which may be just as well, it’s a little chilly.

>take the warm winter jacket
You can’t see any such thing.

>take the winter jacket
You can’t see any such thing.

>look at the jacket
A smart green jacket with big pockets, teddy bear sized.

>take the smart green jacket
You can’t see any such thing.

>take the jacket with big pockets
I only understood you as far as wanting to take the green jacket.

>take the green jacket
Taken.

Figure 2: The identification problem.

Realization

Resolution

Content
Determination

A-Box: World Model A-Box: User Knowledge

‘ T-Box

Figure 3: Architecture

Our system attempts to overcome this and other limitations by employing
state-of-the-art techniques from computational linguistics, such as a real parser
for English and a component for the automatic generation of the system’s an-
swers. Underlying the system is a world model based on description logic, which
is used by almost every component of the NLP system. In our implementation
we use the RACER system [5] because it provides support for A-Box reasoning,
which is essential for us.

The paper is organized as follows: We will first sketch the general architecture
of the system and its components (Section 2) and describe the DL world model
(Section 3). Then we will briefly illustrate how we make use of DL inferences
in the NLP modules by first showing how to analyze the meaning of referring
expressions (Section 4), and then how to generate such referring expressions
(Section 5). Section 6 concludes the paper and presents some ideas for future
work.

2 Architecture

The general architecture of the game engine is shown in Fig. 3. The user’s input
is first parsed — that is, its syntactic structure is determined, using an efficient
parser for dependency grammar [2]. Next, referring expressions (such as the
toolbox) in the input are resolved to objects in the world. The result is a ground
term that indicates the action the user wants to take.

This term is used to retrieve action descriptions from a database; the entry
for “open” is shown in Fig. 4. Action descriptions are STRIPS-like operators
defining preconditions and effects of the action. In addition, they specify in the
‘uk’ slot how the user knowledge has to be updated when the action is performed.

open(pat:X)
pre: closed(X), unlocked(X)
effects: add: open(X)
delete: closed(X)
uk: add: open(X), describe(X)
delete: closed(X)

Figure 4: The operator for the “open” action.

The term that was produced by the resolution component is matched with the
head of the operator, binding the variables in the action description.

If the preconditions are satisfied, the world model is updated according to the
‘effects’ slot, and the instantiated contents of the ‘uk’ slot are passed on to the
content determination component, which computes what information has to be
verbalized by the generation module. This verbalization process is then carried
out by a realization component based on Lexicalized Tree Adjoining Grammar
[6, 10], which produces English text.

3 The World Model

The world model of the game engine is encoded as a DL, knowledge base. The T-
Box specifies the concepts and roles which are available in the world and defines
complex concepts used e.g. by the resolution module (see below). The A-Boxes
state which concepts and roles hold of the individuals in the world.

In the system, we use two different A-Boxes. One stores the current state
of the world; it is used to determine whether the preconditions of an action are
satisfied in the world, and, if this is the case, is updated with the action’s effects.
The function of the other A-Box is to keep track of the player’s knowledge. It
is used in the language-processing modules — for instance, referring expressions
must be evaluated with respect to the user’s knowledge —, and is updated by the
content determination when it has determined what new information should be
verbalized. The two A-Boxes share the same T-Box, but will typically be differ-
ent. For instance, the world A-Box will usually contain more individuals than
the user A-Box because the player will not have explored the world completely
and will therefore not have seen all the individuals. On the other hand, it can
be useful to deliberately hide effects of an action from the user, e.g. if pushing
a button has an effect in a room that the player cannot see.

A fragment of the A-Box describing the state of the world is shown in Fig. 5.
The T-Box specifies that the world is partitioned into three parts: rooms, ob-
jects, and players. The individual ‘myself’ is the only instance that we ever define
of the concept ‘player’. Individuals are connected to their locations (i.e. rooms,

4

room (scooter-bridge) toolbox(t1)

hammer(h1) player(myself)
saw(sl) silver(t1)

closed(t1) unlocked(t1)
has-location(t1, scooter-bridge) has-location(h1, t1)

has-location(myself, scooter-bridge) has-location(sl, t1)

Figure 5: A fragment of the world A-Box.

container objects, or players) via the ‘has-location’ role; the A-Box also specifies
what kind of object an individual is (e.g. ‘toolbox’) and what properties it has
(‘closed’; ‘silver’). The T-Box then contains axioms such as ‘toolbox C object’,
‘silver C colour’, etc., which establish a taxonomy among concepts.

These definitions allow us to add axioms to the T-Box which define more
complex concepts. One is the concept ‘here’, which contains the room in which
the player currently is — that is, every individual which can be reached over a
has-location role from a player object.

here = Jhas-location™".player

Another useful concept is ‘accessible’, which contains all individuals which the
player can manipulate.

accessible = Vhas-location.here L Vhas-location. (accessible M open)

All objects in the same room as the player are accessible; if such an object
is an open container, its contents are also accessible. As the player itself is by
definition ‘open’, this includes the player’s inventory.

Finally, we should mention that inside the action processing module, we
create multiple temporary A-Boxes to allow for a more benevolent handling of
ambiguity. Imagine the player types an ambiguous sentence, such as “put the
apple in the box on the table”. We will explain below how the resolution module
can sometimes filter out some readings of such an ambiguity, but in this case,
let’s assume that it cannot decide whether the user meant putting “the apple”
into “the box on the table”, or “the apple in the box” onto “the table”. It will
hand both alternatives down to the action processing component.

Here we pursue all possible meanings of the sentence in parallel. For each
reading, we create a copy of the current world A-Box, and then attempt to
perform the action on the copy. This can be nontrivial because it may be
possible to express sequences of actions with a single sentence, and these have
to be performed one after another. If it turns out that we can only successfully
perform the actions in one of the readings (e.g. because the player does not

hold the apple in the box), we can commit to this reading without the user ever
noticing that we had trouble understanding what he meant. Otherwise, we have
to report an error.

4 Resolution of Referring Expressions

Referring expressions, such as the toolboz, it, or a hammer, link linguistic forms
to objects in the world (the referents of the referring expressions). The player in
our application will typically use definite descriptions (the toolboz) or pronouns
(it) to refer to the objects on which he wants to perform an action. It is therefore
essential to resolve these expressions to the actual individuals in the player-
knowledge A-Box. As an example reconsider the A-Box in Fig. 5: We first have
to resolve the toolbor to the RACER individual t1 before any action on this
object can be carried out.

Resolving Definite Descriptions Definite descriptions of the form the tool-
box, the green apple, or the hammer in the toolbox refer to an object that matches
their restriction (toolbozx, green apple, etc.). In a first approximation, we also take
them to refer uniquely: That is, there must be exactly one object in the world
that matches the restriction [9]. For the toolboz, this restriction is simply the
concept ‘toolbox’. We furthermore assume that the player will only try to re-
fer to ‘accessible’ objects. This avoids confusion with other objects that would
match the same description but are not in the same room as the player, i.e. ob-
jects that are not locationally salient. Thus we can retrieve a list of all potential
referents for the toolbox by evoking the RACER query

(concept-instances toolbox M accessible)

Assuming that t1 is actually already present in the player A-Box, this re-
turns the list (t1). As it contains exactly one element, the reference succeeds;
otherwise we would have rejected the command with an error message. Note
that we always interpret reference with respect to the player’s knowledge: The
presence of toolboxes unknown to the player does not lead to an ambiguous
reference.

More complicated definites are simply translated into more complex con-
cepts. Our general strategy here is to push as much of the work into the DL
inference problems and let RACER’s optimizations work for us. For example,
the hammer in the toolbox translates to the query

(concept-instances hammer M accessible M Jhas-location.toolbox)

The fact that definite references may fail (i.e. no referent in the world model
can be found that matches the restriction) can be very helpful when we are faced

6

with more than one possible syntactic derivation for an input. For example, the
sentence Unlock the toolbox with the key is ambiguous: The key could either
be an instrument used in the unlocking, or it could modify the toolbox, as in
the toolbox with the red handle. In this example, we will not be able to find a
referent for the constituent the toolbox with the key in the second parse, and will
therefore only pass on the (resolved) first reading to the actions module.

Resolving Pronouns Unlike definite descriptions, pronouns do not provide
much information about the object they refer to. However, the linguistic restric-
tions on which objects can be referred to by pronouns are much stricter.

We make use of a discourse model inspired by Strube’s S-list [12] to determine
the objects pronouns might refer to (their antecedents). The idea behind the S-
list is to keep an ordered record of salient objects that have been introduced
during a discourse and which are therefore most likely to be antecedents for
pronouns. We associate every element in the S-list with agreement features
(gender and number), its information status and text position (both needed to
determine list-order; see [12]), as well as the RACER individual it refers to in
the player A-Box. Resolving a pronoun then comes down to a lookup in the
S-list: We simply take the first element that matches the pronoun’s agreement
restrictions.

The discourse model is updated incrementally and can be accessed by both
the resolution and the generation module (see below). We can therefore resolve
inter-sentential pronouns like Take the apple and eat it as well as simple cases
of cross-speaker anaphora [4] as in the following short dialogue:

GAME: There is an apple on the table.
PLAYER: Tuke it.

5 Generation of Referring Expressions

The purpose of the generation module is to describe the environment the player
is in and how his actions affect the game world. As is common practice in
natural language generation systems, it consists of the two submodules content
determination and realization (see e.g. [13]). Content determination assembles
the information that has to be communicated to the player, and then passes it
on to the realization module to cast it into a text.

The information that should be communicated to the user is essentially the
value of the ‘uk’ slot of the instantiated action schema, with two notable dif-
ferences. First, individuals can of course not be called by their internal names
(such as t1), so we must again generate a referring expression that names them.
Second, special atoms like ‘describe(tl)’ are taken as requests to generate a
description of t1.

ds: 11, 12
new: 11:open(t1), 12:contains(t1,[h1,s1]), hammer(h1l), saw(s1)
old instances: t1

Figure 6: Output of Content Determination (Example: Open the toolbox)

Fig. 6 shows an example output of the content determination module for the
action open the toolbox, as specified in Fig. 4. Tt tells the realization component
to generate two sentences, called internally ‘11" and ‘12’: one expresses the fact
that the toolbox t1 is open now, and the other one introduces the objects that
are contained in the toolbox. Depending on contextual factors, a possible output
could be The toolbox is now open. It contains a hammer and a saw.

Referring to Objects Reference to old individuals, i.e. individuals the player
already knows about, is mainly taken care of by the realization module (see
below) as there is interaction with the surface form that is chosen for the referring
expression.

In case the action schema asserts a fact about an individual r the player
has not encountered before, this object will be introduced to the player by a
mini-description stating the most obvious properties of the object — e.g., its
(most specific) type, such as ‘toolbox’, and its colour. We can find out whether
the individual is new to the player by checking whether it is an instance of the
universal concept T in the player A-Box.

Suppose we want to generate a mini-description for the toolbox t1 in Fig. 5.
The query

(individual-direct-types t1)

will return the list (toolbox silver). Using concept subsumption checks,
we can find out that ‘toolbox’ is the type of t1, and ‘silver’ is its colour; so both
concepts go into the mini-description. (Subsumption checks are inexpensive
because we can completely classify the T-Box when we start the system.) The
realization component can use this information later to generate the expression
like a silver toolboz.

Describing Objects There are two main situations in which object descrip-
tions have to be produced. First, the player may ask explicitly for a description,
for instance by saying look at the toolbox. In this case, a full detailed description
of the object is required. Therefore, all (most specific) concepts of which the ob-
ject is an individual as well as all role assertions in which the concept takes part
are retrieved from the world model. Mini-descriptions (as above) are provided
for the objects introduced through role assertions.

The second type of object description is intended for situations in which
an action has changed the world in such a way that new information becomes

S: (1) semantics: open(tl)

YN

NPJ: (t1) VP

A /7 \
- V' Adj
b open
NP: (t1)
/ N\
Det N |- (t1)
| A,
the ’

N: (t1) ~ semantics: toolbox(t1)

toolbox

Figure 7: Realizing ‘open(t1)’

accessible to the player. An example is the ‘open’ action, which makes the
objects in the opened container visible. In this case, only new information, i.e.
facts about the object that can be retrieved from the world model but don’t
follow from the user knowledge, should be contained in the description. At the
moment, we derive this information from the specific action types. In the case
of an ‘open’ action, not all role assertions are retrieved, but only those ‘has-
location’ relations which point to objects included in the container. We aim to
arrive at a more general solution eventually.

Realization The realization component produces a text to communicate the
information assembled by the content determination to the player. In order for
the text to be smooth and for the player to be able to correctly resolve references
to objects, it is important that appropriate expressions are used for referring.
For example, we want to refer to objects the player knows about with definite
descriptions (the toolbor) and to new objects with indefinites (a toolboz). For
new objects, we simply verbalize the concepts in the mini-description.

The correct verbalization of old objects is handled inside the main realization
algorithm, which is based on [10]. In this framework realization comes down to
assembling a sentence from the partial parse trees of a lexicalized tree-adjoining
grammar [6]. Fig. 7 shows how The toolboz is open is built from fragments of
syntax trees. The lexicon entries are associated not only with semantic infor-
mation — which connects e.g. the word toolbox with the concept ‘toolbox’ —, but
also with pragmatic information. This allows us to specify in the lexicon entry
for the that definite descriptions must refer uniquely with respect to the player’s
knowledge. The resulting sentence (or little text) has to convey the information
that content determination selected, it has to be syntactically viable (there must
not be any holes in the result) and pragmatically appropriate.

To realize a reference to an old individual, we first compute the individual-

direct-types of the individual again; then we successively add the members
of this list to the definite until the reference is unique, which we can check
by computing the number of concept-instances as in Section 4. We follow
standard practice in generation systems [1] by adding these concepts according
to a predefined order of salience; first the type, then the colour, etc.

6 Conclusion and Outlook

In this paper, we have sketched the components of a text adventure engine
which employs techniques from computational linguistics to make a more nat-
ural interaction with the game possible. The state of the world and the player
knowledge are represented as description logic knowledge bases, and almost all
language-processing modules utilize (A-Box and T-Box) inferences over these
knowledge bases. We have looked more closely at the components for resolving
and generating referring expressions, which solve the identification problem.

We are currently implementing the system; we hope to finish a prototype
by September. The implementation is being done in the concurrent constraint
programming language Oz [8], which allows us to reuse existing modules for
parsing and realization [2, 11]. We communicate with the standalone version of
RACER via sockets.

The system has much room for improvement, and indeed is designed in a
modular fashion that will allow to replace specific components by more sophis-
ticated ones. One line of future work could be to improve the part that re-
solves referring expressions; likewise, their generation is currently a very active
research field in computational semantics, and new ideas could easily be incor-
porated into the system. One straightforward improvement of the realization
component would be to add lexical entries that contain larger chunks of text,
which could make the output more interesting to read.

Beyond these local changes, one can imagine many additions to the system’s
functionality. For instance, one could add speech recognition and generation
components. In addition, it would be interesting to allow multiple instances of
‘player’ and make the game multi-user, or to model the world more realistically
e.g. by replacing the room concept by coordinates in the world. But we believe
that even the first version as it stands offers an interesting setup for exploring
the use of description logic in computational linguistics.

Acknowledgments. We are grateful first of all to our students, without whose
enthusiasm in implementing the system the game would have remained an idea.
We are indebted to Ralph Debusmann for his contributions to the parsing com-
ponent and the syntax-semantics interface. Carlos Areces introduced us to the
new world of efficient DL provers, and Volker Haarslev and Ralf Moller were won-
derfully responsive in providing technical support for RACER. Special thanks go

10

to Gerd Fliedner, in a discussion with whom the idea for employing techniques
of computational linguistics in a text adventure engine came up first.

References

1]

(6]

7]

8]

9]
[10]

[11]

[12]

[13]

Robert Dale and Ehud Reiter. Computational interpretations of the gricean
maxims in the generation of referring expressions. Cognitive Science,
18:233-263, 1995.

Denys Duchier and Ralph Debusmann. Topological dependency trees: A
constraint-based account of linear precedence. In Proceedings of the 39th
ACL, Toulouse, France, 2001.

David Dyte. A Bear’s Night Out. Text adventure. Available at http:
//www .covehurst.net/ddyte/abno/, 1997.

Nissim Francez and Jonathan Berg. A Multi-Agent Extension of DRT.
In H. Bunt, R. Muskens, and G. Rentier, editors, Proceeding of the 1%
International Workshop on Computational Semantics, pages 81-90, 1994.

Volker Haarslev and Ralf Moller. RACER. System Description. In Proceed-
ings of IJCAR-01, Siena, 2001.

Aravind Joshi and Yves Schabes. Tree-Adjoining Grammars. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Languages, chapter 2,
pages 69-123. Springer-Verlag, Berlin, 1997.

David Ledgard. Space Station. Text adventure, modelled after a sam-
ple transcript of Infocom’s Planetfall game. Available at http://members.
tripod.com/~infoscripts/planetfa.htm, 1999.

Mozart Consortium. The Mozart Programming System web pages. http:
//www .mozart-oz.org/, 1999.

Bertrand Russell. On Denoting. Mind, 14:479-493, 1905.

Matthew Stone and Christine Doran. Sentence planning as description using
tree adjoining grammar. In Proceedings of ACL, pages 198-205, 1997.

Kristina Striegnitz. Model Checking for Contextual Reasoning in NLG. In
P. Blackburn and M. Kohlhase, editors, Proceedings of ICOS-3, Siena, 2001.

Michael Strube. Never Look Back: An Alternative to Centering. In
COLING-ACL, pages 1251-1257, 1998.

H.S. Thompson. Strategy and Tactics in language production. In Papers
from the 13th Regional Meeting of the Chicago Linguistic Society. 1977.

11

Description Logics for Matchmaking of Services.

Javier Gonzalez-Castillo, David Trastour*and Claudio Bartolini
HP-Labs, Bristol, UK
Email: javgon@hplb.hpl.hp.com, david_trastour@hp.com,
claudio_bartolini@hp.com

Abstract

Matchmaking is an important aspect of E-Commerce interactions.
The current trend in B2B E-Commerce automation is towards complex
interactions for service provision. In this context, matchmaking services
require rich and flexible metadata as well as matching algorithms. The
Semantic Web initiative at W3C is gaining momentum and generating
suitable technologies and tools to cover both the metadata and the al-
gorithmic aspects. In this paper we describe our experience in build-
ing a matchmaking prototype. We choose to base our prototype on a
Description Logic (DL) reasoner, operating on service descriptions in
DAML+4OIL. We report on our investigation of DAML+OIL to express
service descriptions and on our experience on existing DL reasoners, in
particular assessing RACER and FACT.

1 Introduction

The automation side of E-Commerce transactions brings many advantages to
businesses in dealing with their partners, customers, and suppliers. The in-
creased efficiency and fewer errors in computations make possible higher through-
put and further reach, and therefore open up the possibility of interacting with a
far greater number of potential counterparts. But with the enlarged possibilities
comes the problem of having to select the best among the multitude of available
counterparts. Such selection must happen based on various aspects of the busi-
ness offers that providers make available and requestors seek for. Matchmaking
is the process of pruning the space of possible matches among compatible offers
and requests.

*Please consider David Trastour as the main contact.

There are two factors that play in making matchmaking in B2B E-Commerce
a difficult problem. On one hand, service provision interactions evolve to be
ever more complex. This requires that the language for service descriptions for
matchmaking be expressive enough to deal with this complexity. On the other
hand the sheer number of potential solutions heavily constrains the efficiency
that is achievable. This, united with a requirement for accuracy in reporting
matching offers and requests, makes the problem barely tractable with tradi-
tional techniques.

Because Semantic Web technologies promise to transform the information
on the web from human-readable to machine-understandable [14], we think that
the application of these technologies may be valuable to our aim. In particular,
we have studied DAML-+OIL as we believe that a subset of it could be used
to describe service parameters. Because DAML~+OIL is heavily influenced by
Description Logics, it seems natural to use a DL reasoner as the heart of the
engine that calculates the matches.

The remainder of this paper is structured as follows. Section 2 describes
matchmaking in detail. In section 3 we analyze how DL could be a solution for
matchmaking and we describe a matching algorithm based on the subsumption
tree given by a DL reasoner. In section 4 we describe our experience with
different DL reasoners and list some requirements we would like to see for future
DL reasoners. Section 5 talks about future work and we conclude in section 6.

2 Matchmaker

With the proliferation of offers comes the problem of finding and selecting po-
tential counterparts for service provision/consumption. The sole presence of
many potential buyers and sellers on the web is not a sufficient condition for
them doing business together. Through the mediation of the matchmaker, which
matches service offers with service requests, potential counterparts will be able
to find each other.

2.1 Service Description Language

Service description is a very broad term subject to different interpretations. For
example, WSDL (Web Service Description Language) [8] descriptions focus on
the behavioral aspects of a service. UDDI (Universal Descripition, Discovery
and integration of Business for the Web) [5] descriptions are based on three
different types of information: contacting details — white pages —, classification
with respect to a certain taxonomy — yellow pages —, and technical information
— green pages.

The purpose of our work is to embrace and extend Web Services descriptions,

taking a more general approach while providing the expressiveness and flexibil-
ity that we require. Our approach is based on expressing service descriptions
through a set of complex parameters. These parameters are used to express a va-
riety of aspects of the service and the entities involved. Our framework must be
flexible enough to accommodate descriptions with various levels of complexity,
from the simple sale of a good to a complex business interaction.

2.1.1 Requirements

Previous investigations [17] on the application of RDF/RDFS [14, 6] to service
description in the context of matchmaking lead us to he following requirements:

e High degree of flexibility and expressiveness. The advertiser must
have total freedom to compose the service description. Different advertis-
ers will want to describe their services with different degrees of complexity
and completeness, and our language must be adaptable to these needs.
An advertisement may be very descriptive in some points, but leave others
less specified and open for negotiation a posteriori. Therefore, ability to
express semi-structured data is required.

e Support for Types and Subsumption. We do not want to restrict
matching to be based on simple string comparison. A type system with
subsumption relationships is required, so more complex matches can be
provided based in these relationships.

e Support for Datatypes. Attributes such as quantities, prices, or dates
will be part of the service descriptions. The best way to express and
compare this information is by means of datatypes. As a starting point,
we will deal with datatypes such as real, date, string etc.

e Express Restrictions and Constrains. Whether it is an offer or a re-
quest, it is often the case that what is expressed is not a single instance
of a service but rather a conceptual definition of the acceptable instances.
A natural way of describing this is by expressing constraints over the pa-
rameters of the service.

e Semantic level of Agreement. In order to compare descriptions, they
need to share the same semantics.

e Appropriate syntax for the Web. The matchmaker must be com-
patible with Web technologies and the information must be in a format
appropriate for the Web.

2.1.2 DAML Approach

DAML+OIL is one of the most promising technology of the Semantic Web ac-
tivity. This ontology mark-up language for web resources developed by DARPA
provides a richer set of modeling primitives than other ontology languages such
as RDF/RDFS. In its last specification [18] it has been extended with arbitrary
datatypes from XML Schema [4].

To fulfill our requirements, we are proposing to represent the concepts in a
service description as DAML4OIL classes. The service description is defined
as the boolean combination of a set of restrictions over datatype and abstract
properties. These restrictions are expressed either through DAML+OIL restric-
tions or XML Schema restrictions. It is worth noting that service description
ontologies and domain-specific ontologies also have an important role to play
in order to achieve the semantic level of agreement between the various par-
ties. The example service description ontology we have developed uses the class
srcv:ServiceDescription to denote the root of a service description.

myServiceDescription ST iceD ipti srevideliveryService

daml:intersectionOf daml:subClassOf
damlsubClassOf - myDeliveryService daml:Restriction xsdistring ‘
daml.subClassOf daml-intersectionOf daml; subClassOf J’ darnl-anProperty [SIEvlverAl | rdrvalue “Biristal" |
—‘ daml:subClagsOf daml hasValue ‘ non.
dami:subClassOf || laml:Restricti xad.restriction| xsd:base sd:date
darml:onProperty [STeedslverDE xsd: mininclusive "2001-06-15"
s maxinelusive "2001-06-20"

T mySalePriceRange

mySaleService

damlintersectionOf daml:subClassOf
daml:subClassOf

daml onProperty | siovprice r xsd:restriction| xsd:base [icsd: positivelnteger
damlhasClass [#sd maxExcluded] 30000

daml:subClassOf daml:Restriction

-
darml:subClassOf —‘ daml onProperty [ISTCW UATTINY sd:positivelnteger

daml:subClassOf daml-hasValue | rdfvalue 15
daml:Restriction daml:Restriction
daml: orProperty [Srewtem daml-onProperty |ISIEVITER
damitoClass | "‘ daml:minCardinal| 1
" srcw:productDescripti daml:Restricti myMemoryRange
myDesiredProduct tanml:onProperty | eleg hashtemory xsd:restriction | xsd:base usd:positivelnteger
daml:intersectionOf daml:subClassOf eleg:computer daml:cardinality@ 1 usd:rininclusive 256
daml:subClassOf darml hasClassQ daml:Restriction
daml:subClassOf daml:Restriction daml:onProperty elsg:hasDvD
darmnl:subClassOf
A’ suhl ass daml:onProperty | eleg:hasPrinter daml cardinalityQ 1
daml:subClassOf daml-cardinality 1 daml:hasClassQ
damnl subClass0f
dF daml:Restriction daml:Class hpon:DVDWriter3001i
—= rifiresource q
damlonPropenty | eleghasCD darnl:unionOf | hpon:CD9900ci
] Starting point of the service description | damlhasClass hpon:CD9600si
[Part of the description related to the delivery service Described in an specific HP ontology about its products
1 Part of the descripiton related to the sale service (includes orangegraph) Described in an el ig Equif domain logy
Description of the product Described in a yeneral Service Description ontology

Figure 1: Example: Description of a service

Let us consider an example of a composite service of sale and delivery of
computers. For the sole purpose of this example, we have defined a service
description ontology and some electronic equipment related ontologies. We want
to emphasis on how DAML+OIL is used to describe services requests and offers.
Figure 1 represents the service of sale of 15 items. These items must be of type

4

eleq:computer and must satisfy the following constraints: has at least 2566 MB
of RAM memory; has a printer — any make —; has a DVD unit, model HP
DVDWriter 3001i; and has a CD unit, HP-CD9900ci or HP-CD9600si. There is
an additional restriction on this service of sale stating that the price must be less
than 30,000. The service of delivery has the following constraints: the goods
must be addressed to ”Bristol” any day between 15-06-2001 and 20-06-2001
included.

In order to construct this description we make use of different classes and
properties. Some of them have been previously defined in some domain specific
ontologies written by third parties - boxes filled with different colors -, while
others such as myServiceDescription, mySaleService, myDeliveryService
and myDesiredProduct are defined here in terms of restrictions over properties.
All boxes in the figure named daml:Restriction represent these restrictions.
Depending on the slots inside these boxes, we can distingish different types
of restrictions such as: existential restrictions, value restrictions or cardinality
restrictions.

2.2 Concept of match

Different approaches to matching can be taken. Existing solutions like UDDI
or ebXML! (Electronic Business XML) manage to give accurate results at
the expense of expressiveness by having a rigid format for descriptions and by
restricting the query mechanism. Based on real-life examples like yellow pages
directories, advertisement newspapers or bulletin boards, we would rather be
able to compare descriptions with different levels of specificity and complexity
than use an approach based on exact matching. For instance a general de-
scription for the sale of PCs, without any restrictions, should match the above
example. More specific descriptions should also be matched. Finally, descrip-
tions that are neither more specific or more general but that describe services
that would be compatible with our example should also match.

Definition 1 A service description is a self-consistent collection of restrictions
over named properties of a service.

Definition 2 A service description D1 is a match for a service description D2
iof there is no contradiction between all of the restrictions in D1 and D2.

In the following section, we look at how DL reasoners can help us find matches
among DAML+OIL based service descriptions.

1Suite of specifications that enables enterprises to conduct business over the Internet.

3 Description Logics

Description Logics are a family of knowledge representation formalisms. They
are based on the notion of concepts and roles, and are mainly characterised
by constructors that allow complex concepts and roles to be built from atomic
ones [11]. The main benefit from these knowledge languages is that sound and
complete algorithms for the subsumption and satisfiability problems often exist.
A DL reasoner solves the problems of equivalence, satisfiability and subsumption.

3.1 DL and DAML+OIL

Because DAML+OIL has been influenced by DL, it appears natural to apply
DL techniques to classsify our service descriptions.

As we will see in the following section, none of the DL variants for which
there exists an implementation of a reasoner possesses enough expressiveness to
deal with the whole set of constructors that form the DAML+OIL language.
If we want to adopt a DL solution for implementing the matchmaker, we must
restrict the descriptions to a subset of DAML-+OIL.

At the moment, the most advanced available reasoners are for the SHZQ
DL. This DL supports most of the DAML+OIL language, but its main drawback
is that it cannot deal with individuals or datatypes in the definition of concepts.
From our list of requirements this is too restrictive.

SHOQ(D) is more expressive than SHZQ as it adds individuals and datatypes
support — even though it does not allow for inverse role?. Not having the in-
verse role property does not cause us any major concern while individuals and
concrete datatypes are quite essential to our application. A complete algorithm
for solving the subsumption and satisfiability problem for SHOQ(D) exists [12],
but we do not know of any implementation available.

3.2 DL for Matchmaking

In this section we are describing the functionalities of a matchmaking service
and a DL based matching algorithm needed to provide them.

3.2.1 Matchmaker functionalities

Our matchmaking service provides three basic functionalities [17]:

Advertising is the act of publishing a service description, or advertisement,
to a matchmaking service. Before an advertisement is included in the

2Reasoning with both concrete domains or individuals plus inverse roles is known to be
difficult and/or highly intractable [12].

knowledge base of the matchmaker, the satisfiability of all its concepts
must checked because the realization of a non satisfiable service is not
possible. When accepted, an advertisement becomes a set of new concepts
within the subsumption tree. One of these concepts, the one under the
serviceDescription branch, represents the whole advertisement.

Querying is similar to advertising except that the description submitted to
the matchmaker is not persistent. The algorithm in the next section let
us calculate the matches with a DL reasoner.

Browsing allows parties to find out about published advertisements. Brows-
ing parties can make use of this information to tune the advertisement
or queries that they submit in turn, so as to maximize the likelihood of
matching. Browsing is based on navigating the subsumption tree through
the branches provided by our service description ontology.

3.2.2 Matchmaking Algorithm

SERVICE-DESCRIFTION

CDas00c]

compter
=1 hashemory OWER256

CDOs00s!
computer

3 he=CDlor 990021 960030

SERE

x COMmpLter
@ 3 hasCD.CDIO0C)

computer

SERV? ¢ =1 hashemory OVER2SE
=1 hasPrinter

3 hasCD.(or 9900C1 950051

computer
=1 hasMemory OWER25E
=1 hasPrinter

computer
3 hasCD.CDIE00S!

computer

=1 hasPrinter

=1 hasDWD DYD-30011
3 hasCD.COIE00S]

COmpLter

=1 hasMemory OVER256

=1 hasPrinter

=1 hazD%D DYD-30011

3 hasCh for 9900CI 960051

computer

=1 hashiemory OVER2SE
=1 hasPrinter

=1 hasDWvD DYD-30011
3 hazCD.CDIG00S]

Figure 2: Service description branch of the subsumption tree

Definition 3 The matches for service description S are:

7

e cquivalent concepts to S;
e sub-concepts of S;
e super-concepts of S that are subsumed by the serviceDescription concept;

e sub-concepts of any direct super-concept of S whose intersection with S is
satisfiable.

The algorithm is a translation in DL terms of the ideas exposed in the pre-
vious section.

To understand the algorithm in more detail, we are applying it to the ex-
ample depicted in Figure 2. This figure shows the serviceDescription branch of
the subsumption tree in the matchmaker at the moment of the query. Nine ad-
vertisements of sale and delivery of computers and two of sale of CD units have
been published. We are considering a party interested in finding a computer
which has a CD unit CD9600Si. Her query is denoted as SERV5 in the figure
(filled node).

We evaluate sequentially the four propositions of the algorithm. In our ex-
ample, there is no equivalent concept to SERV5. SERV4 and SERV1 are sub-
concepts of SERV5 and as such are marked as matches. The third step is to
look for super-concepts of SERV5 — up to the serviceDescription node. Hence,
SERVY is marked as a match. Finally, the last step of the algorithm gives us
the nodes SERV6 and SERV7. While these nodes are neither super or sub con-
cepts, they are compatible to the SERV5 query®, in that the restrictions over
the properties that appear in them and SERV5 are not inconsistent.

The problem of presenting results back to the user in a way that make sense
to her (i.e. any ordering based on preferences) is beyond the scope of our current
work.

4 Practical Approach

In this section we report on our experience on existing DL reasoners, in particular
assessing RACER and FACT. We also list a set of requirements for future DL
reasoner suitable for our application.

4.1 Experiences with existing DL Reasoners
4.1.1 FaCT Reasoner

The FaCT [13] system is a DL classifier being developed by Ian Horrocks from the
Department of Computer Science at the University of Manchester. It includes

3Even though SERVS is a sub-concept of SERV9 — which is a match —, it is not given as
result because it contradicts the SERVS query.

two reasoners for TBoxes, one of them for the SHZQ logic. Therefore, it cannot
deal with individuals or concrete datatype domains, and a description such as
the one in Figure 1 can not be processed with it.

To cope with the limitation of SHZ Q, we tried to model nominals, datatypes,
and datatype values as atomic concepts but this can lead to incorrect inferences
[12], not to mention the need to model one atomic concept for each integer.

DAML+OIL uses namespaces and import statements to provide extensibility
and to deal with the distributed nature of the Web. The support in the reasoner
for multiple interconnected TBoxes would solve this problem as we would model
each DAML+OIL ontology in a different TBox. Because FaCT does not support
multiple TBoxes we are using fully qualified names in a single TBox.

Moreover, the knowledge base of the matchmaker will change over time by
addition of new advertisements as well as deletion or modification of existing
ones. FaCT deals with the addition of new classes over time, even after classifi-
cation has been done, but doesn’t provide a mechanism for removing classes in
the classification. This is a requirement for our application.

One of the main benefits of this system is its CORBA interface [3] that
makes the reasoner available as a service for other applications to use. It also
provides XML syntax for the definition of ontologies. To load our descriptions
in the reasoner, we are translating DAML+OIL descriptions to the FaCT XML
syntax.

4.1.2 RACER Reasoner

RACER [9, 10] is the first reasoner for TBox and ABox for the SHZQ logic. It is
developed at the Computer Science Department of the University of Hamburg.

Like FaCT, it only provides part of the expressiveness that we need for
our application. It is able to deal with multiple TBoxes, but they are not
interconnected. It does not let us define a concept in a TBox in terms of concepts
or roles from other Thoxes.

RACER does not provide support for a dynamic knowledge base as it is not
possible to add or remove concepts once the classification has been done.

Another interesting feature of RACER is its ability to reason about ABoxes.
With our approach to matchmaking this capability is not strictly necessary, as
we only need to reason about concepts, for which TBoxes provide the neces-
sary abstraction. However, the ability to reason about ABoxes may prove useful
when extending our framework to cover phases of E-Commerce transaction be-
yond matchmaking. For example, an agreement struck between two parties
following matchmaking and automated negotiation [2], needs full instantiation
of the parameters that originally appeared in the service descriptions. Support
for ABoxes would enable compliance check of the agreement with the negotiation
proposals and with the original service descriptions in turn.

RACER provides a Java API and allows access to the reasoner remotely.

4.2 Requirements for a DL reasoner for matchmaking

From our experience, we have gathered the following requirements for a DL
reasoner that would satisfy our needs:

e SHOQ(D) is the minimum expressiveness required;

e Dynamic. Advertisements will be added, removed and modified and the
concepts within the knowledge base will need to be re-classified.

e Ability to deal with multiple interconnected Tboxes. We want
to use different ontologies, and define concepts based on other external
concepts and roles.

e Scalability. The reasoner needs to be able to cope with large amounts of
information in an efficient way.

e Persistency. Storage of the advertisements is needed. The reasoner needs
to be integrated with some form of persistent store in a way that maintains
data consistency.

e Support for DAML+OIL syntax would avoid unnecessary transla-
tions.

5 Future Work

Our two prototype implementations of a matchmaker are fairly similar in terms
of functionalities and are both incomplete. To go further into the development,
we are lacking a DL reasoner with the properties mentioned above. The main re-
quirement would be the support for the right level of expressiveness: SHOQ(D).

On the service description side, we realize that the model we are proposing
restricts the description of the service to a set of parameters. While this ap-
proach fits well with simple services like catalog-based solutions for the sale of
goods, we recognize the need for a behavioural description for complex services.
While all the examples of this paper only exposed buyer-seller relationships, we
need to envisage a world where parties want to interact though complex busi-
ness processes. The matchmaking of potential counterparts would then need
to consider not only the service parameters, but also the compatibility between
the various roles and behaviours. We want to include this work with another
activity we are carring out on cooperative business processes [15].

Recently the DAML community has announced and release a first version of
DAML-S, the Web Service Mark-up Language [7]. DAML-S is a Web service

10

ontology which will allow software agents to discover, invoke, compose and mon-
itor the execution of Web Services. To validate our ideas we have developed a
primitive service description ontology. Our work could only benefit from using a
full-fledged service description ontology. We will try to leverage from DAML-S
as much as we can.

We are tracking what the Semantic Web community is producing in terms of
tools but more specifically persistent stores for RDF and DAML. In particular
we find the work on RQL [1] very promising. We need to envisage how to
integrate DL reasoners with a persistent store.

6 Conclusions

Our experience in prototyping a DL based matchmaking service made us realize
that there is a gap between what standard technologies for E-Commerce provide
today and what could be achieved through the use of Semantic Web technologies.
We believe that in the near future automated matchmaking and negotiation will
achieve results at a level of complexity far beyond what is possible today. In
particular the use DAML+OIL and of the evolution of DL reasoners like FaCT
or RACER will play a primary role in making that happen.

References

[1] V. Alexaki; et al. The ICS-FORTH RDFSuite: Managing Volumi-
nous RDF Description Bases, Proceedings of the Second Interna-
tional Workshop on the Semantic Web. SemWeb’2001. May 2001.

[2] C. Bartolini and C. Preist A Framework for Automated Negotia-
tion. 2001. HP Labs Technical Report.

[3] S. Bechhofer, I. Horrocks and S. Tessaris. CORBA interface for a
DL Classifier. March 1999.

[4] P.V. Biron, A. Malhotra. XML Schema Part 2: Datatypes. W3C
Recommendation 02 May 2001.

[5] T. Boubez; et al. UDDI Data Structure Reference V1.0. September
2000.

[6] D. Brickley and R.V. Guha. Resource Description Framework
(RDF) Schema Specification 1.0. W3C Candidate Recommenda-
tion 27 March 2000.

11

[7] M. Burstein et al. DAML-S: Semantic Markup for Web Services.
Part of the DAML-S Draft Release (May 2001).

[8] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana. Web
Services Description Langauge (WSDL) 1.1. January 2001.

[9] V. Haarslev and R. Moéller. RACER User’s Guide and Reference
Manual Version 1.5.6. April 2001.

[10] V. Haarslev and R. Mdéller. RACER System Description. To ap-
pear in: International Joint Conference on Automated Reasoning,
IJCAR’2001, June 18-23, 2001, Siena, Italy.

[11] I. Horrocks, U.Sattler and S. Tobies. Practical reasoning for ex-
pressive description logics.In H. Ganzinger, D. McAllester, and A.
Voronkov, editors, Proceedings of LPAR’99, vol. 1705 of LNAI,
pages 161-180. Springer, 1999.

[12] I. Horrocks. Ontology Reasoning for the Semantic Web. Network
Inference 2001.

[13] I. Horrocks. FaCT Reference Manual Version 1.6. August 1998.

[14] O. Lassila and R. Swick. Resource Description Framework (RDF)
Model and Syntax specification. W3C Recommendation 22 Febru-
ary 1999.

[15] G. Picinelli and L. Mokrushin. Dynamic Service Aggregation in
Electronic Marketplaces. 2001. HP Labs Technical Report.

[16] U. Sattler. A concept language extended with different kinds of
transitive roles. In 20. Deutsche Jahrestagung fur KI, LNAT 1137.

[17] D. Trastour, C. Bartolini and J. Gonzalez. A semantic Web Ap-
proach to Service Description for Matchmaking of Services. Seman-
tic Web Workshop Symposium 2001. To appear.

[18] F. van Harmelen, P.F. Patel-Schneider and I. Horrocks Reference
description of the DAML+OIL (March 2001) ontology markup lan-
guage. March 2001.

12

Modeling X.509 Certificate Policies
Using Description Logics

Stephan Grill
Institute for Applied Information Processing and Communications
Graz University of Technology, Austria
Email: stephan.grill @plusultra.at

Abstract

Public Key Infrastructures are gaining importance in today's IT
environment for managing certificates and keys. It is recognized, that the
quality and trustworthiness of certificates depend to alarge extend on the
practices and procedures a certification authority applies when issuing
certificates. These procedures are documented in certificate policies,
which are generally text-based documents and therefore cannot be
processed by machines. This paper describes a framework based on
description logics that addresses this situation. Subsumption will be used
to compare policies. Based on a case study of modeling real policies
some features of this framework will be described. Learnings and an
outlook of future work conclude this paper.

1 Introduction

Public Key Infrastructures (PKI) are emerging as an important cornerstone of today's
communications systems. They are envisioned to enable a wealth of services ranging
from electronic id cards, digital signature, authorization schemes, etc. and are already
increasingly used in web-applications, e-mail, e-payment.

Processes and protocols to manage and use private keys and certificates are well
understood and corresponding standards [1] are currently in the process of being
defined.

The basic concept of a PKI isthat participants use key pairs consisting of a private
and a public key. The private key never leaves the trusted environment of the user
and might for example be used for signing a document, whereas the public key is
published for others to verify the signature created with the corresponding private
key. To associate a person with a public key a trusted third party issues certificates,
which express this association.

A trusted third party (also called certification authority CA) can issue certificates
according to different policies. Policies define practices followed by the CA in
authenticating the subject, the users obligations in protecting the private key, the
legal obligations of a CA, etc. Different policies represent different security levels.
For example, a policy might state that certificates are issued for public keys whose
corresponding private keys are generated and stored on a smart card and a certificate
requestor has to be authenticated in person using an id card, whereas a different
policy might state that the private key is stored on a PC and only the existence of the
e-mail address of the requestor has been verified. Obviously, information contained
in a certificate issued according to the first policy is much more reliable and the
certificate is therefore more secure than a certificate issued according to the latter
policy. Consequently, the trustworthiness of signatures depends on the security level
of the associated certificate and users verifying signatures have to make sure they are
aware of the associated policies.

However, these policies are currently represented in textual form and therefore
hardly ever inspected! This paper describes how description logics can be applied to
represent certificate policiesin a structured manner and to make them comparable.

2 Requirementsfor the Representation of a Policy

To define requirements for a policy representation, cases for using these models will
be discussed first:

- Users should be enabled to retrieve specific parts of a certificate policy (e.g. they
want to check where the associated private key of a certificate is generated and
stored)

- Users might want to specify properties a certificate policy must match in order
to be accepted (e.g. they want to specify that only certificates are accepted, if
the associated private key is generated and stored on a smart-card).

- These comparisons might be based on equality comparisons but also other
comparison operators must be supported which might be applicable for the
quality of certificates (a policy might indicate that associated certificates are
more trustworthy than certificates issues according to another policy).

From these possible use cases a set of requirements can be derived:

- Current text-based policies describe complex objects and complex practices. A
formal model must support this complexity. The representation has to support
<attribute, value> pairs, which might be organized in a hierarchical structure,
and where value by itsalf might be a complex object.

- The representation must allow to define a metric and/or classification scheme to
support not just equality comparisons, but also additional relational operators.

- The representation must be declarative (opposed to a procedural representation)
in order to support operations on this representation.

3 Proposed Solution

A two-phased approach was chosen to address this problem. In the first phase a
possible semantic representation is investigated, and in the second phase the
syntactical representation of the defined semantics is defined.

Description logic was chosen for the semantic model because it provides an
expressive data model and the required operators [3].

Currently an investigation is ongoing to identify a suitable syntactic representation.
Likely candidates are the Resource Description Framework RDF [5] of the W3C or
DAML+OIL [9].

Certificate policies are modeled in process consisting of three-steps:
1. definition of the semantics of the taxonomy
2. definition of areference ontology
3. definition of individual policies

3.1 Definition of the Semantics of the Taxonomy

The objective of using a classification based knowledge representation mechanism is
to automatically induce an order relationship in the concept space. For modeling
policies, the taxonomy is used to represent information related to security aspects:

if concept C1 subsumes concept C2 then C1 is less secure than C2 — i.e.
concepts higher up in the concept taxonomy will be considered less secure
than concepts further down in the hierarchy

This decision is basically an arbitrary, but a meaningful one. Concepts higher in the
taxonomy are less detailed specified as concepts further down. From a security point
of view concepts with a more detailed specification are preferred to concepts with a
less detailed specification. This is the case because the more information is given
about a concept the less ambiguity is possible.

Other definitions are possible as well; however it is not alowed to mix taxonomies,
which represent different semantics, within a specification of a single policy.

3.2 Definition of a Reference Ontology

The objective of defining a reference ontology isto
- define a common and re-usable terminology,
3

- create definitions that make individual policies comparable

- optionaly define a primitive taxonomy explicitly
It defines concepts and individuals, which can be refined and combined by subsequent
policy descriptions using specidization and the definition of new concepts
respectively. These concepts and individuals define a core terminology, which ought
to be accepted as a common framework. It will be possible that several of such
reference frameworks will be developed and these frameworks can be combined.

3.3 Definition of an Individual Policy

Finally concepts will be defined to create certificate policies. These concepts use the
reference ontology and therefore are based on the order relationship created through
the definition of the taxonomy of the reference ontology.

4 Case Study

To verify the applicability of this approach a reference ontology using the framework
defined in RFC 2527 [2] and two actual policies have been modeled using the DL-
system NEOCLASSIC [4]. The chosen policies are

- Certificate Policies for the Government of Canada (GoC) Public Key

Infrastructure [6]

- Swedish SEIS Certificate Policy [7]
The GoC PKI Policies actually define policies representing different assurance levels:
rudimentary (1), basic (2), medium (3), high (4). In the following examples policies
for signature certificates will be identified with the prefixes GocSi gn[1234] .

The reason for choosing these policies was, that al are based on the framework
suggested in RFC 2527 - and therefore provide a possbility to make them
comparable.

The following examples will show this approach more specifically.

4.1 Key Sizes

The first example is rather simple; it is using the predefined properties of the build-in
concept | nt eger .

The core terminology based on RFC 2527 requires describing the minimal length
of the used keys:

(createConcept Rfc2527Asymmetri cKeySi zes
(all keyLength Integer))

Concept Rf c2527Asymmet ri cKeySi zes has one role named keyLengt h, which
isof typel nt eger (abuilt-in NEOCLASSIC concept).

The Government of Canada PKI policy defines the following restrictions on the
above concept:

(createConcept GocSignlAsynmetri cKeySi zes
(and Rfc2527Asymetri cKeySi zes
(all keyLength (minimm 512))))

Concept GocSi gnlAsymetri cKeySi zes is a sub-class of Rf c2527Asym
met ri cKeySi zes with the additional restrictions that all values of the attribute
keyLengt h must be greater-equal 512. Similar restrictions apply for the remaining
assurance levels:

(createConcept GocSi gn2Asynmetri cKeySi zes
(and Rfc2527Asymetri cKeySi zes
(all keyLength (mininmm 1024))))

(createConcept GocSi gn3Asynmetri cKeySi zes
(and Rfc2527Asymmetri cKeySi zes
(all keyLength (mininmm 1024))))

(createConcept GocSi gnd4Asynmmetri cKeySi zes
(and Rfc2527Asymmetri cKeySi zes
(all keyLength (mininmm2048))))

The SEIS policy is denoted as:

(createConcept SeisAsymretricKeySizes
(and Rfc2527Asymetri cKeySi zes
(all keyLength (mininmum 1024))))

Using the built-in properties of NEOCLASSIC's type | nt eger an ordering scheme is
predefined: Rf c2527Asymet ri cKeySi zes defines a class of instances with the
attribute keyLength, which may take dl integers as vaue
GocSi gnlAsymmet ri cKeySi zes restricts the values to greater equal 512
GocSi gn[23] Asymmet ri cKeySi zes restricts the values to greater equal 1024;
GocSi gnd4Asymmet ri cKeySi zes restricts the values to greater equal 2048.
Because of the properties of | nt eger the application of the subsumption reasoning
service results in the following ordering:

- Rfc2527Asymret ri cKeySi zes subsumes
GocSi gnlAsynmetri cKeySi zes

- whichin turn subsumes Goc Si gn[23] Asymet ri cKeySi zes
- whichin turn subsumes Goc Si gn4Asymet ri cKeySi zes

Given the defined semantics of the taxonomy end users can conclude that certificates
issued under security policy GocSi gn4Asynmmet ri cKeySi zes can be relied on
most.

NEOCLASSIC aso automatically determines that

5

- GocSign[23] Asymmet ri cKeySi zes is equivalent to Sei sAsynmetri c-
KeySi zes

If the only requirement would be to compare numeric values the general subsumption
mechanism would not be necessary - PICS [8] does something similar. However, not
all properties described in a policy can be represented by numeric values, which can
be seen in the next examples.

4.2 Key Pair Generation

In order to support comparison operations it is necessary to define an order
relationship amongst newly defined concepts.

Example: a key pair generated in hardware might be more trustworthy than a key
pair generated in software.

(createConcept Rfc2527Sw Rf c2527Modul eTypes)
(createConcept Rfc2527HMOr Sw Rf ¢2527Sw)
(createConcept Rfc2527Hw Rf c2527HWOr Sw)

Above statements define that

- Rf c2527Hw, Rf c2527HwWOr Sw, Rf ¢2527 Sw are sub-classes of
Rf c2527Modul eTypes

- Rf ¢2527Swsubsumes Rf c2527HwOr Sw
- Rf c2527HwWOr Sw subsumes Rf 2527 Hw.

This taxonomy is now associated with a security related semantic: module types
whose concept descriptions subsume others are less trustworthy than the module
types associated with the subsumed concepts.

Using this taxonomy Rf c2527KeyGener ati on is defined with two attributes:
caKeyGen and eeKeyGen (generation of keys for CA operations and generation of
keys for end user operations respectively). Both of which require values that belong
to the concept Rf c2527Mbdul eTypes.

(createConcept Rfc2527KeyCeneration
(and (all caKeyGen Rfc2527Modul eTypes)
(all eeKeyGen Rfc2527Modul eTypes)))

The Government of Canada policy can be specified as:

(createConcept GocSi gn2KeyGenerati on
(and Rfc2527KeyCeneration
(all caKeyGen Rfc2527HwWOr Sw)
(all eeKeyGen Rfc2527HWOrSw)))

(createConcept GocSi gn3KeyGenerati on
(and Rfc2527KeyGCenerati on
(all caKeyGen Rfc2527Hw)
(all eeKeyGen Rfc2527HWOrSw)))

6

(createConcept GocSi gndKeyGenerati on
(and Rfc2527KeyCenerati on
(all caKeyGen Rfc2527Hw)
(all eeKeyGen Rfc2527Hw)))

NEOCLASSIC will determine that GocSi gn2KeyGeneration subsumes
GocSi gn3KeyGener at i on, which subsumes GocSi gn4KeyGener ati on. This
can then in turn be interpreted in such a way that certificates associated with policy
GocSi gn4 are more secure than certificates associated with policy GocSi gn2.

The SEIS policy can be described as:

(createConcept Sei skeyCGeneration
(and Rfc2527KeyCeneration
(all caKeyGen Rfc2527HWOr Sw)
(all eeKeyGen Rfc2527HWOrSw)))

NEOCLASSIC will recognize Sei sKeyGeneration as being equivaent to
GocSi gn2KeyGener at i on.

S5 Summary

This paper shows how description logics can be used to represent certificate policy
information. It has been discussed how subsumption can be used in order to compare
the quality and trustworthiness of certificates.

Performing the case study of modeling different policy the following observations
have been made:

- The definition of a core terminology in form of an ontology is necessary.
RFC 2527 actually provides some kind of framework that can be followed to
specify such a reference terminology.

- It dso became apparent that policies that follow RFC 2527 are difficult to
compare because this framework leaves too much room for interpretation and
expressing different aspects.

- This shows that users who want to compare the quality of certificates actually do
face amajor problem, as existing policies are difficult to compare.

Planned future work comprises the investigation on the use of more expressive DL-
systems and how a DL -based language can best be syntactically represented.

While performing this work it also became apparent that different domains are
using varying semantic data models to represent authorizations, capabilities, rights,
etc. These different representations in turn require domain-specific processing
algorithms. It seems promising to study how a DL-based system can be used as a
unifying scheme for a generic policy specification.

6 References

1. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key
Infrastructure: Certificate and CRL Profile, IETF RFC 2459, 1999.

2. Chokhani, S., Ford, W.: Internet X.509 Public Key Infrastructure: Certificate
Policy and Certification Practices Framework, IETF RFC 2527 (1999)

3. Donini, F. M., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in Description
Logics, CLSlI Publications, Principles of Knowledge Representation and
Reasoning, (1994) 193-238

4. Borgida, A., Patel-Schneider, P. F.. A Semantics and Complete Algorithm for
Subsumption in the CLASSIC Description Logic, Journal of Artificia Intelligence
Research 1, (1994) 277-308

5. Lassila, O., Swick, R.: Resource Description Framework (RDF): Model and
Syntax Specification, W3C Recommendation, (1999)

6. Treasury Board of Canada, Secretariat: Digita Signature and Confidentiality
Certificate Policies for the Government of Canada Public Key Infrastructure®,
Version 3.02 (1999)

7. Secured Electronic Information in Society: SEIS Certificate Policy SeisS10-1: 1.0,
High assurance general ID-certificate with private key protected in an electronic
ID-card, Version 1.0 (1998)

8. Krauskopf, T., Miller, J., Resnick, P., Treese, W.: PICS Label Distribution Label
Syntax and Communication Protocols, W3C Recommendation (1996)

9. Harmelen, F. van, Patel-Schneider, P., Horrocks, I., “ Reference description of the
DAML+OIL (March 2001) ontology markup language”,
http://www.daml.org/2001/03/reference.html, March 2001

A hybrid approach to extend DL-based
reasoning with concrete domains

Bo Hu! Ernesto Compatangelo? Ines Arana!

! School of Computer and Mathematical Sciences,
The Robert Gordon University, Aberdeen, UK

2 Department of Computing Science, University of Aberdeen, UK

29th August 2001

Abstract

We propose a new hybrid approach which extends the expressive power
of DL languages by incorporating concrete domains. Without modifying
the DL inference algorithms, our approach uses the results of other non-
DL inferential engines to reason about terminological knowledge. Con-
straints involving concrete domains are reasoned and replaced with equiv-
alent concept restrictions exclusively based on the expressive power of the
DL languages selected as the DL-based inferential engines. Meanwhile, We
outline a system architecture that can support such an approach, which
involves a homogeneous knowledge representation and hybrid reasoning.

1 Extending existing DL-based system

Description Logics (DLs) are a well-known family of knowledge representation
and reasoning formalisms [6]. They are featured by the ability of building up
complex knowledge from basic notion of concepts (unary predicates) and roles
(binary relations). Various DL-based systems are also available to provide infer-
ences on such complex knowledge. Ever since they were introduced two decades
ago, DLs have always been characterised by a reasonable trade-off between ex-
pressive power and computational complexity. However, this trade-off has not
prevented the development of inferential engines based on expressive concept
languages, such as SHZQ [10].

So far, the major effort in extending the expressive power of DL systems
has been put in the enhancement or optimisation of the inference algorithms.
Various extensions have been proposed or implemented in the last decade. For
instance, concrete domains have been introduced into DLs which are normally

used to capture abstract domains [2]. A very expressive language which provides
reasoning services on individuals and limited concrete knowledge (concrete data
types) has also been introduced [5]. Despite their diversity, virtually all of the
above approaches, which are based on the ALC language [13], extend the original
ALC tableau inference algorithm in different ways [3].

Modifying the inference algorithm normally results in a well-performed new
system with new or improved underlying inference capabilities. However, such
approach is not very good at handling situations where knowledge engineers want
to use the existing DL systems without touching anything “inside”, enhancing
them with proper extensions in a task-specific way. These situations provide
reasonable motivations for the introduction of our approach.

In this paper, we neither introduce a revised DL-based modelling language
nor a new inference algorithm, but a formal scheme which can be applied to
existing DL systems. In another word, we focus on a top-up system which can
be easily implemented and tailored to a particular application. Meanwhile, we
intend to use such a system as the workbench to explore the role of hybrid
approach in extending the expressive power of DLs.

Since we intend to keep our approach as portable and generic as possible, we
deliberately do not use certain features provided by some DL systems. For in-
stance, the CLASSIC Terminological Knowledge Representation and Reasoning
System (TKRRS) [4] allows users to query the domain of a particular role while
other TKRRS, such as FaCT [9] do not implement such mechanisms. Therefore,
we have decided to avoid using them.

2 Representing concrete domains

The abstract characters of DLs make it difficult to naturally model the knowl-
edge on concrete domains such as arithmetic ones while in certain applications,
modelling on the concrete characters such as age, size, weight, etc is necessary.

Including concrete domains into DLs is always a very interesting issue. Previ-
ous efforts such as ALC (D) [2| and ALCRP (D) [8] allow concrete properties to
be referred through functional role chains. For instance, if we want to constrain
that the service time of an apprentice is no more than 5 years, we can de-
fined “apprentice” as Apprentice = Human M Jemployer M 5year(len-of-serv), where
len-of-sev is the functional role. The predicate 5year is defined using functions
written in the host programming languages. One way to implement it can be:
Syear(z) = x > 5. The approach of ALC (D) provides DLs a perfect means to
describe the constraints on concrete domains, however, with high computational
complexity [11]. Such situation inspired us to contrive a systems with limited
increment on the complexity while obtain the similar expressive power, i.e. in
our case, the expressive power of the concrete properties.

In this paper, we focus on concrete domains which are formally defined as
followings:
A concrete domain D is a pair D =(Ap, ®p), where

1. Ap is a set called domain,
2. ®p is a set of predicates;

3. Fach predicate P € ®p is associated with an arity n and an n-ary predicate
PP C AL

For the sack of simplicity, we will restrict the predicates to those arithmetic
and comparison ones and the domain Ap to a finite one. Nevertheless, we are
quite aware that Boolean operators can be introduced easily to form more com-
plex expressions (e.g. meta-constraints). Furthermore, other concrete domains
will be considered in successive research.

In this section, we will give the syntax and semantics of our conceptual
modelling language. Since we are not restricted to a particular DL, here and in
the following, we take ALC for the demonstration purpose. Nevertheless, such
approach can be applied to virtually any DL systems.

‘ Constructor ‘ Syntax ‘ Semantics (Interpretation)
Top (Universe) T A*
Bottom (Nothing) 1 0
Atomic Concept A AT C AT
Atomic Role R R* C AT x AT
Conjunction cCnD ct npt
Disjunction cub ct up?
Negation -C AT\ D*
Universal quantification | YR.C | {c€ AT |Vde AT : (¢, d)eR wdeCt}
Existential quantification | IR.C | {ce€ AT |3de AT : (¢, d)eR AdeCT}

Table 1: ALC syntax and semantics

Let R be a role, H the constrained element, P the defined predicate name. In
addition to the syntaz of ALC [13] (Table 1),

1. YR.H in a concept, where H acts as the bridge between the abstract and the
concrete domains;

2. P(Hy, .. , H,) specifies the constraint on Hy, .. , Hy; and CE(Hy, .. , H,)
15 the constraint expression which collects all the constraints on Hy, .. |
H,, or a subset of them;

H; (i<n) which are referred to as Hybrid Concepts are defined by giving
each of them a unique name and mapping it to a subset of Ap.

In order to associate abstract and concrete domains, we introduce an as-
signment function A : A% — Ap, i.e. A(H?) C Ap which maps every Hybrid
Concept to a subset of Ap. Thus, the semantics is given as

Let -* be the interpretation function, A(-) the assignment, and AT a non-
empty domain which is disjoint from Ap. In addition to the semantics of ALC
[15] (Table 1),

1. (VRH)?T = {z € AT |Vy.(x, y) e R — yec H};
2. P(Hy, ..., H,) is satisfied iff

Vs1 € AM(HY),...,Vs, € M(HE).P(s1 ... sp);

3. CE(Hy, ..., Hy,) is satisfied iff

Vs, € M(HY),...,Vs, € A\(H}).
(VP € CE(Hy, ..., Hy).P(sy ... sn)).

By introducing the assignment function between abstract and concrete do-
mains, we are able to embed concrete knowledge into so-called “Hybrid Con-
cepts”. Such embedding has non-trivial consequences, as referring to concrete
knowledge in concept definitions is no longer required. More specifically, those
inference algorithms which are designed to tackle with concrete domains become
unnecessary, in that “wrapper concepts” (please refer to Section 3) which are the
“incarnations” of Hybrid Conceptsin DLs are introduced as atomic concepts and
treated exactly the same way as normal concepts. In stead of reasoning with
Hybrid Concepts, system replaces each of them with the wrapper concept. Mean-
while, the responsibility of reasoning with the concrete knowledge represented
by Hybrid Concepts is delivered to the reasoning systems other than DL ones.
For instance, in the above example the apprentice’s length-of-service can be
modelled as Hybrid Concepts represented using universal quantification in the
hybrid concept definitions.

Thus, we have apprentices defined as

Apprentice = Human 1 Jemployer M VIen—of—serv.YearApp,

where YearApp is Hybrid Concept. Moreover, we can specify slightly intricate
facts by putting constraints on Year App- For instance, a specialist is defined as

specialist = Human 1 Jdemployer M VIen-of-serv.YearSp|.

4

Note that: at current stage, we do not restrict the Hybrid Concepts to be succes-
sors of functional roles (features), but we require that the role value restriction
(V) is used instead of the role existence restriction (3). Ignoring the latter is
motivated by pragmatic considerations. To simulate partial constrained role
values, array-type variables may be required. However, partial orders among
arrays are not straightforward.

The specifications and restrictions on the Hybrid Concepts are given sepa-
rately as the conjunction of non-DL expressions:

YearApp <HA YearSp| > YearApp + 10.

In such an approach, more complex constraints than min and max can be spec-
ified. However, such constraints have to be global restrictions which hold uni-
versally. In another word, the constraints have to hold on a concept as a group
rather than considering each of its instance individually. For instance, as long as
one restricts the diameter of a certain type of cylinder, its cross-sectional area is
constrained. Also, if we restrict the age of pupils and the average age difference
between them and their parents, we constrain the age of the latter to a certain
range. Of course, such difference can exist in a much more complex way than
“20 years older”. Specifying the universal constraints separately, we are granted
the freedom to add, delete, change and satisfy them in a batch job.

Apparently, if we want to avoid the complex interaction between DL and non-
DL expressions, no available DL system can properly handle such expressions.
However, we can hide the actual inferences on the concrete domains from DL
systems. More specifically, we allow conceptual hierarchies to be simulated by
partial orders which are more general than subsumption relationships between
concepts. In our case, with the help of formal numeric systems, we can create
hierarchies of Hybrid Concepts (more detailed examples can be found in the
next section). As a result, DL system is informed of such hierarchies through
the subsumption relationship between the wrapper concepts. It then classifies
the concepts (such as Apprentice, Specialist) which are built using the wrapper
concepts.

Here and in the following, we will use Constraint Programming Languages
(CPLs, also referred to as Constraint Solvers, CSs for short, in certain cases) for
illustration purposes. Nevertheless, we notice that the actual applications are
not restricted to such reasoning engines.

3 Tackling with the “wrapper concepts”

For the sake of simplicity and integrity, we use hybrid concept definitions to cap-
ture both abstract and concrete knowledge. However, as pointed in the previous

section, the latter has to be wrapped in order to be properly manipulated. Con-
cepts which contains wrapped concrete knowledge are referred to as normalised
concepts. They are defined in a broader sense as followings:

A normalised heterogeneous concept definition (normalised concept,
for short) is the result of a normalisation process that for every oc-

currence of Hybrid Concepts an atomic concept will be introduced

with which the former will be replaced. Such atomic concepts are

referred to as “wrapper concepts”.

Hybrid concept definitions contained in a Hybrid Knowledge Base (HKB) are
first analysed and processed by a parser which normalises the definitions and
generates three sets of statements. These three sets are defined as followings:

e a set of DL-oriented statements which do not exceed the expressive power
of the external DL system (warnings will be generated otherwise),

e a set of non-DL statements which express all the concrete knowledge,

e a set of Hybrid Concepts which connect DL and non-DL statements.

The hybrid characteristic of our approach is evident in the “polymorphism” of
Hybrid Concepts. More specifically, Hybrid Concepts are represented by wrapper
concepts in DL inferential engines while act as legal objects in non-DL reasoning
systems, (e.g. constrained variables in CPLs).

For instance, let us suppose that in certain state X married persons are
required to be 22-year-old or older. We define concept Married as those “legally
married people”, Golden-Couples as “people who have already celebrated their
golden (50th) anniversary”, and Senior-Citizen as “people who are 70 and older”.
Together with other necessary concepts, we have

Married =Human 11 (Jhas-spouse.Human) 11 (Vage.Agep,,)
Golden-Couples =Human M (Jhas-spouse.Human) 1 (Vmarried-year.Year50)
M (Vage.Agego|)
Senior-Citizen =Human ' (Vage.Agegq,)

Meanwhile, the restrictions on all the Hybrid Concepts are given as

Agepmar = 22
Year50 = 50 (2)
AgeSen > 70

Because the actual constraint exists between two sets of values, rather than
write an inequality, we use the relation between sets instead:

Agegol — Year50 C Agepay (3)

Now, by normalising the knowledge base we split the above definitions and
restrictions into three parts. First, we replace all the Hybrid Concepts with
“wrapper concepts” and adding new atomic concepts, Agenjar, ABEGols ABESen:
and Year50 into the DL part. Second, all “ages” acting as constrained vari-
ables are stored in the non-DL part together with their default domain [0..100]*
and the constraints defined in (2). Assuming that domain() is the assignment
function, we can specify for each Hybrid Concepts:

non-DL part:
domain(Agep4,) = [0..100]
domain(Ageg,|) = [0..100] (4)
domain(Ageg,p,) = [0..100]

Hybrid Concepts are also stored separately in the so-called “Link Pool”, (see
Figure 2 for the “Link Pool”).

The above statements are translated into the underlying modelling languages
of the external inferential engines. Such translations are carried out so as to
keep our approach portable and implementation-independent. Subsequently,
translated statements are loaded into external DL and CPL inferential engines.
According to the results provided by these different engines, a reasoning co-
ordinator (see Figure 3) creates hierarchical structures of Hybrid Concepts, which
are then introduced into DL definitions through the “wrapper concepts”.

In our example, after loading the non-DL part (2)+(3)+(4) into an exter-
nal constraint solver, we obtain the reduced domains (e.g. domain(Agec,|) =
[72..100]). Using the results from both DL and non-DL inferential engines, we
create a new partial order among “ages” e.g. domain(Age,|) € domain(Agegq,)-
Therefore, the corresponding subsumption relationships can be specified between
wrapper concepts (e.g. Agegol C Agegep)- Sending such information back to
join the original DL definitions contained in the DL part in (1), we can con-
clude that, among other conclusions, in the state X, people who have already
celebrated their 50th anniversary are all senior citizens, i.e.

Golden-Couples T Senior-Citizen.

I'We assume that human can not live out 100.

Thinking globally, such conclusion is evident in the sense that although people
get married and celebrate their Golden Anniversary (if there is one) in different
ages, the ages of golden couples will always fall into the given range.

domain(Age-Gol)
8 Link-Pool < domain(Age-Sen)

==

Human
Age-Gol:[72..100]
DL) Age-Sen non-DL | Age-Sen:[70..100]
Senior \arried
-Citizen

' ’ Age-Gol

Golden-Couples

Figure 1: Reasoning with of “ages”

An obvious result of the above reasoning process is that, by satisfying the
constraints, we explicitly express some knowledge which otherwise, remains im-
plicit. In our case, by satisfying the constraints, our system can answer the query
that “Is Golden-Couples a Senior-Citizen”. Although the above “ages” example is
a relatively simple one, more complex hybrid knowledge can be represented and
processed using the same approach.

4 System Architecture

Since the heterogeneous knowledge used in our approach is evenly split into two
separate “homogeneous” components, we use a hybrid architecture to provide
the overall inference services. In our system (see Figure 2), the external DL
inferential engine and the non-DL one (e.g. a constraint solver in our case) are
used in a “peer to peer” way, i.e. neither of them acts as a client or a server with
regard to the other one.

However, several points need to be remarked. First, to ensure the portability
of our system, we introduce a decoupling between the DL and non-DL repre-
sentations on one side and the actual inferential engines on the other. More
specifically, the transformation process from a hybrid description to the one ac-
cepted by the selected DL or non-DL system is divided in two stages. During
a first stage, the hybrid language is split into its two homogeneous DL and
non-DL components. During a second stage, the two resulting components is
actually expressed in an implementation-independent “intermediate” language.

non-DL \

part

-

Users r — Reson
Z-ﬁj Resoning L g
‘» -

;

HKB
~—"
DL
part /
Front-end

Figure 2: Hybrid architecture

Each of the two intermediate descriptions are subsequently transformed into
the ones accepted by the adopted inferential engines. In this way, we decou-
ple our system from the reasoners, thus allowing their modular replacement if
necessary. Second, a link pool is created to store related data about each newly
created “wrapper concept”, such as name, position, and so on. This informa-
tion can be used when “wrapper concepts” must be reclassified according to
the results provided by the external inferential engines. Third, various systems
can be used as external inferential engines. In this paper, we only analyse the
situation where CPLs are selected to reason with numeric restrictions (such as
AgeGol — Years0 C Ageppg, in our example) for the demonstration purposes.

translatorl ‘
= | + dictionary to ext-CS

translator2 : to ext-DL
=) | + dictionary |

Figure 3: Reasoning Co-ordinator

5 Conclusions

We give an overview of a novel approach to extend the expressive power of
existing DLs. This approach is based on a hybrid reasoning process. Thus, we
also propose an architecture to support it.

The advantages of a hybrid system are system portability, extensibility, and
robustness. Although similar approaches have been already proposed in the past
(e.g. TexLog [1]), our approach benefits from the heterogeneous characteristics
of Hybrid Concepts, which have a consistent semantics on both DL and non-DL
(e.g. CPLs) sides. Such a bridging facility also differentiates our approach from
other apparently similar ones.

At current stage, we haven’t examined the complexity issue thoroughly. Nev-
ertheless, there is great potential to optimized our system by tailoring the DL
and CPLs inferential engines to particular applications. Such character is en-
hanced by selecting the external inferential engine with the right expressive
power. In practice, the overall performance of our system can be considered
separately. On the one hand, since we do not introduce any new constructors—
only new concepts, we expect that the complexity of the DL inference will be in
the same class as the original system. Moreover, we avoid the complex interac-
tion between abstract and concrete domains by introducing the latter through
“wrapper concepts”. On the other hand, the Finite Constraint Satisfaction Prob-
lems (FCSPs) are NP-complete as a general class [12]. Pragmatic results shows
that the performance varies from system to system [7]. However, selecting the
suitable CPLs is not the concern of this paper.

Because of the adopted hybrid approach, the overall performance of our
system could be influenced by the various translation and interfacing processes.
This might be particularly evident if several different protocols must be used to
link each of them to the other as well as to the controller. This drawback may
not be a serious problem in all those cases which are not time-critical and in
which reasoning with heterogeneous knowledge is necessary. However, further
analysis on this issue is necessary.

References

[1] Andreas Abecker and Holger Wache. A layer architecture for the integration
of rules, inheritance, and constraints. In ICLP Workshop: Integration of
Declarative Paradigms, pages 12-22, 1994.

[2] F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In J. Mylopoulos and R. Reiter, editors, Proceedings of
the Twelfth International Joint Conference on Artificial Intelligence IJCAI-
91, pages 452-457. Morgan Kaufmann Publ. Inc., San Mateo, CA, 1991.

10

3]

4]

5]

(6]

17l

8]

19]

[10]

[11]

[12]

[13]

F. Baader and U. Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 2001. To appear.

Ronald J. Brachman, D. L. McGuinness, P. F. Patel-Schneider, and
A. Borgida. “Reducing” CLASSIC to practice: Knowledge representation
theory meets reality. Artificial Intelligence 114, pages 203-237, 1999.

J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and
I. Horrocks. Enabling knowledge representation on the web by extend-
ing RDF schema. In Proceedings of the tenth World Wide Web conference
WWWW’10, 2001. To appear.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea
Schaerf. Reasoning in description logics. In Gerhard Brewka, editor, Foun-
dation of Knowledge Representation, pages 191-236. CSLI-Publications,
1996.

A. Fernindez and P. M. Hill. A comparative study of eight constraint
programming languages over the Boolean and finite domains. Journal of
Constraints, 5:275-301, 2000.

Volker Haarslev, Carsten Lutz, and Ralf Moller. A description logic with
concrete domains and role-forming predicates. Journal of Logic and Com-
putation, 9(3), 1999.

I[. Horrocks. FaCT and iFaCT. In Proc. of the Int. Workshop on Description
Logics (DL’99), pages 133-135, 1999.

I. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Expressive
Description Logics. In Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99), number 1705
in Lecture Notes in Artificial Intelligence, pages 161-180. Springer-Verlag,
1999.

C. Lutz. NExpTime-complete description logics with concrete domains. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of
the International Joint Conference on Automated Reasoning, number 2083
in Lecture Notes in Artifical Intelligence, pages 45-60, Siena, Italy, 2001.
Springer Verlag.

Alan K. Mackworth and Eugene C. Freuder. The complexity of constraint
satisfaction revisited. Artificial Intelligence, 59(1-2):57-62, 1993.

M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1-26, 1991.

11

POSITION PAPER
Some Requirements for Practical Modeling in
Dialogue Systems

Michael Knorr, Bernd Ludwig, Giinther Gorz
Computer Science Institute and FORWISS, Erlangen, Germany
Email: goerzQinformatik.uni-erlangen.de

Abstract

The goal of this paper is to stimulate a discussion between description
logic system developers and users of description logic systems with an
emphasis on applications in the field of dialogue systems. It consists of two
parts: The first part is a report on experiences in temporal representation
and calendrical reasoning with description logics from which we derive
requirements on decription logics as a useful modelling tool.

The second part which is more speculative in nature complements
these considerations with further modelling tasks and corresponding ex-
pressive means modelling languages should meet to deal with them in a
satisfactory way.

1 Experiences from using Description Logic for
Time Representation

1.1 Introduction

Our research group has been involved in the development of speech dialogue
systems for many years. These include EVAR [8], a system for train informa-
tion, and EMBASSI! an application for interacting with home entertainment
systems. A common feature of these and many other domains is that the ex-
change of temporal information is an essential part of the dialogue, be it the
departure time of a train or the start time of a TV programme. Therefore we
decided to investigate the syntax and semantics of German temporal expressions
independently of a specific domain.

1See the contribution by Biicher et al. in this volume

Nearly all working speech dialogue systems, including the aforementioned
EVAR, model dialogues with some kind of finite state machine. An evaluation
of dialogues from the EVAR system showed, that such systems lack the flexibility
to deal with “meta-dialogues”, like corrections or changes in the dialogue goal.
As a consequence we decided that the understanding of utterances should rely
on well-defined inference procedures to reason about the meaning of utterances
and the dynamic evolution of the dialogue structure. In order to obtain the
semantics of natural language utterances one should rely on a domain model,
defining the actions and objects salient to the application. We decided to use
Description Logics (DL) for the construction of the domain model[18].

This leads to the need to represent the semantics of temporal expressions
in Description Logics. When we started this work in 1999 we investigated the
suitability of four DL-systems, namely CICLOP [17], CLASSIC [19], FaCT [13],
and RACE [10] for the representation of temporal information. At this time
only CLASSIC fulfilled our requirements. In the following sections we describe
the representation of temporal information in our application and discuss what
requirements for DL systems arise from it. Implementors of DL-systems might
use them to consider what features their systems need to be useful for this
domain. Users wishing to employ DL-systems for tasks similar to ours, might
consider how far similar requirements apply to their own applications.

1.2 Representing Temporal Information

In this section we give a short description of our semantic model for temporal
expressions. The words in our lexicon correspond to concepts in the T-Box of
the DL system. When an utterance is parsed an individual is created in the
A-Box of the DL system for every word encountered in the expression. The
application of a grammar rule leads to either

e the creation of a new individiual, representing the whole phrase, with the
individuals representing its parts used as role fillers.

e the selection of a specific individual and its connection to the other indi-
viduals in the expression by roles.

e or the mergence of the individuals representing the parts of the expression.

In many cases this triggers (forward-chaining) rules to move information or
perform calculations whose results are added to the appropriate individuals.

The top concepts of our concept hierarchy are TimePoint, TimeInterval,
Duration and TimeUnit. Most temporal expressions describe a point in time.
They are represented by merging individuals of Clocktime (defining minute and
hour), Part0fDay, Date (defining day, month and year) and ISO-Date (defining

day of week and week). These concepts are therefore subsumed by TimePoint.
Duration represents the length of an interval and the distance between two time
points; intervals are represented by TimeInterval. The individuals representing
time units, such as minute, hour, day, are of concept TimeUnit. Details of the
representation can be found in [14].

1.3 Examples of Temporal Expressions

We now show in detail how the representation for a temporal expression is con-
structed. As example we take: am siebzehnten dritten zweitausend um dreiviertel
vier nachmittags (on the 17 March 2000 at quarter to four in the afternoon).
This expressions consists of three chunks, that could appear in any order. The
semantics of the chunks can also be constructed and merged in arbitrary order.

The construction of the semantic representation starts when the word siebzehn-
ten is parsed. An individual of concept Date is constructed and the attribute
has-day is filled with 17. In the next steps the attributes has-month and
has-year are set to 3 and 2000. Now a test function (cf. [5]) checks that 17
March 2000 is indeed a valid date in the Gregorian Calendar. Additionally a
rule is triggered and calculates the day of week and the ISO week number. If
later a day of week would be added which is different from the calculated one,
the system would detect that the expression is inconsistent.

The individual now contains the following information:

(AND TimePoint (FILLS has-year 2000)
(FILLS has-month 3)
(FILLS has-week 11)
(FILLS has-dow 5)
(FILLS has-day 17))

The representation of the clocktime phrase starts with the construction of the
individuals for dreiviertel and vier. Dreiviertel is represented as SpecialMinutesFrom
with has-timedistance 15 Minutes and has-direction -1. Vier is mapped
onto TraditionalClocktime with has-traditional-hour 4 and has-minute
0. A rule then derives that has-hour is (ONE-OF 4 16). To represent the
combination of dreiviertel and wier, the individual for the latter is filled in the
has-basetime-attribute of the former. This triggers more information process-
ing rules. The resulting representation is:

(AND SpecialMinutesFrom (ALL has-hour (ONE-OF 3 15))
(FILLS has-traditional-hour 3)
(FILLS has-minute 45)
(FILLS has-timedistance 15)
(FILLS has-direction -1)

(FILLS has-basetime OtherIndividual)
(SAME-AS (has-basevalue)
(has-basetime has-traditional-hour)))

With OtherIndividual:

(AND TwentyfourClocktime TraditionalClocktime (ALL has-hour (ONE-OF 4 16))
(FILLS has-traditional-hour 4)
(FILLS has-minute 0))

The adverb nachmittags (in the afternoon) leads to the creation of an indi-
vidual of concept Afternoon. This places the constraint (ALL has-hour (MIN
12) (MAX 18)) on the has-hour-role.

When the individual chunks are processed the individuals representing them
are merged. The system can now infer that the hour is 15. The individual
representing the complete expression is (only an extract is displayed):

(AND SpecialMinutesFrom (FILLS has-year 2000)
(FILLS has-month 3)
(FILLS has-week 11)
(FILLS has-day 17)
(FILLS has-dow 5)
(FILLS has-hour 15)
(FILLS has-minute 45)
(FILLS has-traditional-hour 3)
(FILLS has-basetime OtherIndividual))

This is still a fairly simple expression in terms of processing. Some very
complex expressions look rather peaceful on the surface, consider drei Tage vor
Christi Himmelfahrt (three days before Ascension Day). First we need to know
the date of Ascension Day in a given year, than we need an algorithm that
subtracts three days from it, taking care of month boundaries. To get the date
of the holiday we either have to access an external calendar or add 39 days to
the date of Easter. There are a number of algorithms to calculate the date of
Easter, but they are all mathematically complex. We solved the problem by
using an external library for calendrical calculations]|7].

1.4 Requirements for a Description Logic for Time Rep-
resentation

From our experience there are three main requirements for a DL-system to be
used for time representation. First it needs to be able to deal with numbers. All
information neccessary to represent time can be given using natural numbers.

4

For some expressions it would be useful to be able to use fractions (think of
quarter to for example). In CLASSIC it is possible, to integrate objects of the
host language, in this case LISP, in the Description Logic. Such host concepts
can for example be strings or numbers. We used a number of host concepts
based on LISP numbers.

Second we do not only want to represent natural numbers but also restrict
their range and use them in simple calculations. Individuals of the concept
hour, for instance, can be values between 0 and 24. It does not matter, from the
applicational point of view, if the range check is applied on roles or concepts.
An example for a simple calculation occurs, when we encounter dreiviertel vier.
Here we have to set the role has-hour to 3, decrementing 4 by 1.

Third we either need external function calls or we have to be able to do more
complex calculations within the DL-system. This starts with rather simple ex-
amples like testing if a date is valid and ends with very complex calculations for
example to find the date of Easter in a given year. As mentioned above, test
concepts as they have been introduced in CLASSIC, provide an appropriate ex-
tensible interface for reasoning with individuals. Intensional reasoning however
requires an extension of subsumption for test concepts.

In order to perform reasoning with time intervals, there are two possibilities
in principle, for both of which we are not aware of an operational implementa-
tion: Temporal Description Logics like 7L — ALCF (cf. e.g. [3]) or a temporal
concrete domain based on Allen’s interval algebra [2] as proposed e.g. by Kull-
mann [15].

A description logic allowing the use of concrete domains is ALC(D)[4]. A well
known problem of this logic is that it can become undecidable when transitive
roles and role hierarchies are allowed (cf. e.g. [12]). However none of these are
necessary in our application. According to [11] the RACER-system will soon
offer ACCOHZg, (D) . A constraint of this logic is, that it does not allow to
use feature chains. We have not investigated yet if we can dispense with them
in all cases; probably not for simulating feature unification (sse below).

With respect to the use of concrete domains, an analogous situation exists
with spatial reasoning, for which there is also a need in a variety of applications.
Considerable research work has been done in this field, cf. [9], to quote at least
one prominent example. We had the opportunity to try out an experimental
implementation done by the Hamburg group, based on CLASSIC. In a project
in the field of historical cartography, modelling the Behaim Globe of 1492, we
implemented an extension to CLASSIC, based on test concepts, for topological
and directional reasoning [6]. However, a spatial reasoning service in a more
expressive DL system like RACE is an important desideratum.

2 Modelling Tasks and Further Requirements
for Expressive Means of Modelling Languages

2.1 Access and Debugging

A Description Logic system that is used in real applications should also fulfill
two further requirements. First, the knowledge assembled in the A-Box of the
DL system should be easily accessible from the outside. We might, for example,
wish to use the temporal information we collected in the system in a database
query. For this we need to access the role-fillers of the individual containing
the information. In CLASSIC this can be accomplished easily with the function
(cl-fillers @i{Individualname} ’Rolename).

Second, a system should contain functions that allow easy debugging of the
knowledge base. In a complex knowledge base it is not always easy to see where
errors in the inference process arise. It is therefore useful to have functions that
print traces of the inference process and to be able to access the full informa-
tion collected for an A-Box individual at intermediate states of its assembly. In
CLASSIC this is facilated by the function (cl-ind-expr @i{Individualname}).

2.2 Simulating Feature Structure Unification

In parsing with unification grammars constraints are expressed as path equa-
tions. Instead of representing feature structures in a separate formalism, they
can as well be expressed in DL. As a small experiment using CLASSIC showed,
the unification of feature structures can then be achieved by means of the same-
as construct. The experiment however was too small for a comparison of per-
formance times.

In the context of a complex computational linguistics application?, of course
one might debate whether the use of a uniform representation formalism ranging
over several processing levels is preferable as opposed to level-specific streamlined
representation formalisms. In the latter case, processing might be more efficient,
but at the cost of translating the resulting representations between levels. In
our particular case, on the semantic, application and discourse pragmatic levels,
DL is used anyway. So, it makes sense to consider whether the genuine feature
structure representation on the syntactic level could be replaced by a DL rep-
resentation, in particular, because syntactic analysis and semantic construction
with linguistic chunks are closely interlocked in an incremental fashion.

2¢f. our contribution on a dialogue system application in this volume

2.3 A-Box Reasoning

Resolution of ambiguities, in particular on the semantic and pragmatic levels
as well as the completion of partial information — e.g. by means of clarification
subdialogues — is a central task in dialogue systems. The linguistic analysis
module of the dialogue system constructs semantic representations in the form
of Discourse Representation structures (DRSs) which are then being refined to
application specific DRSs using a formal domain ontology. These instantiated
DRSs are the A-Box items on which various reasoning steps must be applied to
solve the mentioned resolution and completion tasks. This means that beyond
the standard DL reasoning services application domain specific rules are to be
applied. Whereas some cases may be covered by forward-chaining rules as e.g.
provided by CLASSIC, the general case is to complete subgoals generated by
general dialogue goals. In other words, we need additional expressive means
for dialogue (step) planning. From an abstract point of view, a language like
Reiter’s GOLOG language, which has been implemented on top of PROLOG,
would provide sufficient means for this purpose. This in turn would lead to the
requirement of an A-Box reasoning facility on the basis of Horn rules (cf. CARIN
[16]).

As a framework for processing partial information, we found out that FIL [1]
meets all our requirements. We started with the implementation of a prover for
a Horn clause subset of FIL in Prolog technology, which has later been replaced
by a tableau-based reasoner, operating as a separate module. Whether such a
service can be integrated as a kind of augmented A-Box reasoner with a DL
system is an open question we pose to the DL community.

References
[1] N. Abdallah, The Logic of Partial Information. New York: Springer, 1995

2] J.F. Allen, Maintaining Knowledge about Temporal Reference. CACM Vol.
26 Nr. 11, 832-843, 1983

(3] A. Artale, E. Franconi, Temporal Description Logics, 1998. To appear in:
Handbook of Time and Temporal Reasoning in Artificial Intelligence.

[4] F. Baader, P. Hanschke, A Scheme for Integrating Concrete Domains into
Concept Languages. Proceedings of the 12th International Joint Conference
on Artificial Intelligence, IJCAI-91, 452-457, Sydney, 1991.

[5] A. Borgida, C.L. Isbell, D.L. McGuinness, Reasoning with Black Boxes:
Handling Test Concepts in CLASSIC'. Proceedings of the Description Log-
ics Workshop, 1996

(6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

D.M. Deang, Geometrical and Logical Modelling of Cartographic Objects.
Master Thesis in Computational Engineering, Computer Science Institute,
University of Erlangen-Nuremberg, 2000

N. Dershowitz, E.M. Reingold, Calendrical Calculations. Cambridge Uni-
versity Press, 1997

F. Gallwitz et al., The Erlangen Spoken Dialogue System EVAR: A State-of-
the-Art Information Retrieval System. In: Proceedings of 1998 International
Symposium on Spoken Dialogue - ISSD’98. Sydney, 1998, 19-26

V. Haarslev, R. Mdéller, Spatioterminological Resoning: Subsumption Based
on Geometrical Inferences. Proceedings of the Description Logics Work-
shop, 1997, 74-78

V. Haarslev, R. Moller, RACE User’s Guide and Reference Manual Version
1.1. Memo-HH-M-289/99, Computer Science Dept., University of Ham-
burg, 1999

V. Haarslev, R. Moller, Description of the RACER System and its Appli-
cations. To appear in: Proceedings International Workshop on Description
Logics (DL-2001), Stanford, 2001.

V. Haarslev, R. Moller, M. Wessel, The Description Logic ALCNHR+ Ez-
tended with Concrete Domains: A Practically Motivated Approach. Inter-
national Joint Conference on Automated Reasoning, IJCAR’2001, Siena.
Berlin: Springer, 2001

I. Horrocks, FaCT Reference Manual Version 1.6. Computer Science Dept.,
University of Manchester, 1998

M. Knorr, Sprachliche und logische Zeitreprasentation fur Dialogsysteme.
Studienarbeit, Universitat Erlangen-Niirnberg, 2000

M. Kullmann, Applying Description Logics to Decision Support. Ph.D. the-
sis, LITA-ENAIS, Strasbourg, 2001

AY. Levy, M.-C. Rousset, Combining Horn rules and description logics in
CARIN. Artificial Intelligence Journal, Vol. 104, 1998, 165-209

LITA-ENSAIS, Usermanual for CICLOP Version 1.3b. Strasbourg, 1999

B. Ludwig, G. Gorz, H. Niemann, An Inference-Based Approach to the
Interpretation of Discourse. First Workshop on Inference in Computational
Semantics (ICoS-1), Amsterdam. Jl. of Language and Computation, Vol. 1,
No. 2 (2000), 241-258

[19] L.A. Resnick et al., CLASSIC Description and Reference Manual for the
COMMON LISP Implementation: Version 2.3. Al Principles Research De-
partment, AT&T Bell Laboratories, 1995

Interpolation based Assertion Mining

Stefan Schlobach*
Department of Computer Science, King’s College London, Strand
London WC2R 2LS, UK
Email: schlobac@dcs.kcl.ac.uk

Abstract

In this paper we describe a new method for learning terminological
knowledge from assertions in description logic based knowledge bases. We
present assertion mining as the search for generalised decision concepts
(GDC) which can be used to conceptually define classes of ABox individ-
uals. We show that GDCs can be constructed from ABox interpolants
and present tableau based algorithms.

In the recent past learning and knowledge discovery using description logics
(DL) have attracted much research. Least common subsumer (lcs)-learning has
been the most popular approach [3, 1]. les-learner construct minimal descrip-
tions for the common properties of a set of positively classified objects in the
ABox which do not instantiate any negative example. Unfortunately it is not al-
ways possible to construct such a minimal description, it can easily be seen that
the most specific concept does not exist in DLs with existential quantification
and many authors discuss approximations of the knowledge about individuals
in knowledge base of different expressivity [8].

In this paper we present assertion mining for ALC knowledge bases as an
alternative learning method which shifts the focus from learning of common
properties of a set of positive examples towards the construction of discerning
concepts which separate positive from negative examples.An advantage of such
an approach is that these discerning concepts exist for ALC even if the most
specific concept does not. As in lcs-learning we consider a supervised learning
scenario: the ABox of a DL knowledge base contains a number of objects which
are classified into positive and negative examples. For each of these classes
(which we call decisions) we try to find terminological definitions which can be
used to classify new data using instance checking. A concept which preserves the

*This research has been supported by EPSRC grant GR/L91818.

classification properties of a decision will be called generalised decision concept
(GDC).

GDCs can be constructed from ABox interpolants for the positive and neg-
ative examples. An ABox interpolant is a concept which discerns two elements
a and b in a knowledge base ¥, i.e. a concept for which a is an instance of, and
for the negation of which b is. We define tableau based algorithms to calculate
ABox interpolants for positive and negative examples. It can be shown that if
such concepts exist in ALC, they can effectively be calculated even if the most
specific concepts do not exist.

Consider the following scenario: A hybrid knowledge base ¥*™ contains infor-
mation about patients suffering from cardiac arrhythmia. A patient record might
include general assertions about gender, age or habits and family information,
e.g. PAT;: MALE M -SMOKER 1 —=OLD M JHASRELATIVE.ARRHYTHMIA, but also
technical details about ECG measures such as (PAT{,PW):HAS_PWAVE; PW:—=OK;
PAT,:VHAS_PWAVE.OK, and additional knowledge describing the patients’ condi-
tions as diagnosed by some medical experts: PAT;:TACHYCARDIC; PATy: HEALTHY.
Assertion mining is the search for terminological axioms which formally define
a medical condition and possible diagnostic criteria for these conditions.

We assume familiarity with description logic representation and reasoning
and will only briefly introduce ALC. For concepts, which are interpreted as
subsets of a universe U, we will usually use the letters C' and D, furthermore
R for roles, which are interpreted as binary relations over U. The constructors
conjunction C'M D, disjunction C'LI D, negation —=C' and existential (IR.C') and
universal (VR.C) quantification have the usual set theoretic interpretation. An
ABox A is a finite collection of role ((a,b) : R) or concept (a : C') assertions,
where a and b denote individual objects of U. A TBox T is a set of axioms
C=D or CLD. A knowledge base ¥ is now defined as the pair (7,.4). The
reasoning services which we use in this paper are subsumption ¥ = C T D
and instance checking a €y C which semantically correspond to the subset
and element relation. In ALC, both subsumption and instance checking can
be reduced to ABox inconsistency ¥ = A = L. Example 1 describes an ALC
knowledge base ¥*" with some standard reasoning.

1 Assertion Mining

We will briefly define the main terminology for assertion mining, but refer to
a detailed discussion in [12]. We assume that the ABox of a knowledge base'
consists of a significant amount of possibly noisy information about individuals, a
description of the knowledge about the concrete elements in the world. Assertion
mining is the search for useful information in this data which is going to be
represented as terminological knowledge.

!To simplify the presentation we assume from now on that 7 is empty or unfoldable.

Example 1 A knowledge base ¥*" for arrhythmia diseases

For the knowledge base ¥** = (T,.,A,.) there are some simple but non-trivial
examples of the reasoning processes:

A... ={ PAT;: MALE M -SMOKER 1 VHASRELATIVE. TACHYCARDIC,
(PAT{,PAT;):HASRELATIVE, PAT;:VHAS_PWAVE.OK
(PAT2,PW):HAS_PWAVE, PW:—OK, PAT2: ARRHYTHMIA }

T.e = { TACHYCARDIC C ARRHYTHMIA 1 —“LOWHEARTRATE,
HYPERTROPHIC= ARRHYTHMIA 1 JHAS_PWAVE.-OK }

1. ABoz consistency: ¥ = A # L but ¥** |= AU{PAT{:7"ARRHYTHMIA}=1.

2. Subs.: ¥*" = VHASRELATIVE. TACHYCARDICL VHASRELATIVE.LOWHEARTRATE.

3. Instance checking: PAT| €xar ARRHYTHMIA

For this purpose we consider a supervised learning approach on data which
is classified into decision classes. Here classification corresponds to instance
checking with respect to a set D = {Dy,...,D,} of concepts (which we call
decisions). Each object o in an ABox .4 which is an instance of at least one (but
possibly more) decisions o €x, D; in A is called classifiable. Let class(.A) denote
the set of all classifiable objects in A. In ¥** the ABox objects PAT; and PAT,
are classifiable w.r.t. D,,, ={TACHYCARDIC, HYPERTROPHIC}, PW is not.

ABox mining is now the search for a formal definition for each of the decisions
in D which might eventually be added to the TBox after being evaluated and
assessed. In the process of the generalisation of a decision D;, we will call the
instances of D; in A the positive ezamples and all instances of the remaining
decisions negative examples.

Learning Criteria: Generalised Decision Concepts Whether a learned
concept Lp can be used as a formal definition of a decision D depends on the
knowledge which is represented in the ABox A, the TBox 7 and on some addi-
tional learning criteria. The primary criterion we identified in [12] is exclusive-
ness. A concept Lp is exclusive w.r.t. a decision D if for all objects a in class(A):
a Zx, D = a €x, ~Lp. Exclusiveness implies “correctness” of classification w.r.t.
the original decision, i.e. Va €x, Lp = a €x, D, a condition traditionally known
as covering. Furthermore, exclusiveness garanties coveredness even for the case
that more information about elements in the ABox become available. Given the
Open World Assumption which usually underlies description logic based knowl-
edge representation, this seems to be a crucial requirement. Based on Rough Set
theory [10] we also show in [12] that exclusiveness provides a theoretical notion
of safe data which ensures good properties w.r.t. noisy data.

A learned concept Lp should also be supported by the fact that there is
at least one example in the ABox, which is an instance of Lp and we define a
witness for Lp as an individual a € D in class(A) such that a €y, Lp.

Definition 1.1 A generalised decision concept (GDC) for a decision D with
respect to a knowledge base X = (T, A) and a set of decisions D is a concept,
which is exclusive w.r.t. D and D and for which a witness exists in A.

Given the definition of exclusiveness, the set of all GDCs for a decision D; is:

G(D;))={CeDL| Joe A:0€x C and
VaEA:aggDii‘v’k#DkED(aeng:>a€g—|C).

There are several GDCs for the decision TACHYCARDIC w.r.t. ¥** among
them VHAS_PWAVE.OK and VHAS_ PWAVE.OK LI =ARRHYTHMIA.

Since there is still a possibly infinite number of GDCs we need to identify
an inductive bias to be able to formally define the necessary restriction of the
hypothesis space.

Inductive Bias: Common Vocabulary and Polarity. There are different
aspects related to the choice of the inductive bias underlying our approach and
we will discuss them briefly.

OBJECT ABSTRACTION. We use the fact that DLs have language features
(quantification) to reason about objects in an abstract way, generalising from
particular examples to more general facts (e.g. existence of a role successor).

COMMON LANGUAGE WITH DISCERNING POLARITY. We take the designer
of the knowledge base and the witnesses they provided seriously, and relate the
learned concepts to the vocabulary of each example. The GDCs should consist
of the vocabulary which is both used in the examples and the counterexamples
and which is used in the same way (i.e. with the same polarity) as it was in the
examples. Consider the GDCs for TAcHYCARDIC as given above. The second
one contains the negated atomic concept ARRHYTHMIA. But there is no reason
to assume that people without arrhythmia are likely to have a Tachycardic
condition. Since we know on the other hand that all of PAT’s p_waves are o.k
as opposed to PATy’s it seems to be a legitimate inductive leap to assume that
VHAS_PWAVE.OK is a good GDC for the decision TAcHYCcARDIC. This bias is
usually not discussed in the learning literature, because it automatically applies
to most learning methods or is enforced using algorithms for missing attribute
values.

MAXIMALITY. In addition to these syntactical restrictions we have to dis-
cuss the semantical choice of GDCs according to the subsumption ordering. In
assertion mining the search space for possible learned concepts is defined by
comparison of examples with counterexamples which is then restricted through
the syntactical bias as described above. Since the learned concepts are defined
explicitely as to exclude the counterexamples it seems appropriate to choose the
maximal such concepts. This is a more or less arbitrary choice? which is related

2The choice is arbitrary because you can either minimise the description of the positive or of
the negative examples. The first choice corresponds to the least common subsumer approach,

4

to ongoing research to deconstruct GDCs into sub-GDCs as an evaluation pro-
cedure. Such subconcepts of the GDCs will simplify the constructed GDCs and
can be used to fine-tune the required level of generalisation.

It has to be mentioned that the algorithms presented in this paper do not
calculate maximal GDCs w.r.t. the subsumption hierarchy. For technical reasons
related to the definition of the common language of two examples we calculate
big but not mazimal concepts. For a more detailed discussion we refer to [12].

In the remaining sections we will introduce interpolation for hybrid knowl-
edge representation systems and show how to use algorithms for interpolation
to calculate such big GDCs with common vocabulary.

2 Interpolation Methods for Assertion Mining

Having defined learning targets and an inductive bias to restrict the hypothesis
space it remains to provide effective algorithms to find some of these GDCs. We
sketch the mining process from input (a knowledge base and a set of decisions)
to the final output of new terminological axioms in the following section. This
process is based on ABox interpolation. Vaguely speaking, interpolants are
intermediate formulas semantically linking two other formulas using common
vocabulary. We extend this notion to incorporate implicit knowledge about
objects and polarity. The idea for the definition of the common language is
based on the traditional notion of Lyndon interpolation for first order logic [9].

The language occ(C) is a set of concept names occurring in C, labelled with
the quantifier depth. A concept name A has positive (negative) polarity if it is
embedded in an even (odd) number of negations. The quantifier depth describes
the sequence of roles the concept is quantified over. oce(C') is a dual notion in
the sense that occ(C') = occ(—C'). Formally:

oce(C) = {(A,+)°}, oce(C)* = {(A,—)*} if C = A and A is an atom.
oce(C)* = ote ()%, ote(C)* = occ(D)? if ¢ =-D

occ(C)* = oce(Ch)* U oce(Cy)* if C=0CNCy0rC=0CUC,
oce(C)* = oce(Ch)* U oce(Cy)* if C=0CNCy0rC=0C,UC,
occ(C)* = oce(D)*E if ¢ =3R.D or C =VR.D
occ(C)* = oce(D)*E if C =3R.Dor C =VR.D

Based on this language we define concept interpolation, the basis for ABox
interpolation. From now on we will use the letters I and L for (Lyndon) inter-
polants. Concept interpolation holds for two concepts C' and D where C' C D if
there is a concept I such that C C I and I C D and occ(I) C oce(C) Noce(D).

ABox interpolants connect the implicit positive knowledge about an objects a
with the negative information about an object b, thus highlighting the differences

the second to assertion mining.

between them. A concept I is an ABoz interpolant for a and b iff a €y, I and
b €5, —I and where occ(I) C occ?(a) N oce?(b). The language for an instance a
is the smallest set occ?(a) such that occ(C') C occ?(a) for all conceptual axioms
(a:C) € A, occ(b)® C occ*(a) for all (a,b) : R € A and occ(C) C occA(a) if
(bya): R€ Aand b:VR.C € A. dcc?(a) is defined similarily.

Partial ABox interpolation plays an intermediate role between concept and
ABox interpolation and relates knowledge about an object with a concept. A
concept L is a partial interpolant for an object o, an ABox A and a concept C'
where o €5 C'if and only if: C C L & o €4 =L and occ(L) C otc™(0) N oce(C).

Partial interpolation for an ABox A can be reduced to concept interpolation
by construction of a preprocessing complete ABox A’ for A [6]. Furthermore
ABox interpolation can be reduced to partial interpolation by propagation of
some properties of objects into the ABox.

2.1 Assertion Mining and Interpolation

It is easy to see that the set of ABox interpolants for a classified object a €x, D
(the examples for D in A) with all other classified individuals b &5 D (the
counterexamples) coincides with the set of generalised decision concepts.

Theorem 2.1 If there are any classified individuals for a decision D and a
knowledge base 2, G(D) is the set of all ABox interpolants for the classified
objects a €x, D with respect to the set of all classified instances b €5 D.

Every generalised decision concept C' for a decision D is an ABox interpolant
for an a €y D and all b € D because there is a witness and because b €5, =C' for
all b €5, D. But every ABox interpolant I for a and all b obviously instantiates
every b into =/ and since a €y [is a witness, [is a generalised decision concept.

This theorem is the theoretical foundation for Assertion Mining using inter-
polation methods. The idea to use interpolants for assertion mining is simple:
the input is an ABox A and a set of decisions D and an empty or unfoldable
TBox. Preprocessing of the ABox might consist of unfolding, restriction to fewer
elements, retrieval of the instances of each decision, etc. For each decision D in
D a generalised decision concept for each decision (if defined) is calculated as
the disjunction over the GDCs for each possible witness. The GDCs for each
witness are just the conjunctions over the ABox interpolants of the witness with
all the negative examples. The evaluation of the GDCs could comprise statistical
analysis, decomposition into minimal subconcepts or involve human expertise.

Algorithm 2.1 summarizes the assertion mining procedure in pseudo code
where ABox_LI(A,a,b) is a method to calculate an ABox interpolant for two
elements a and b with respect to an ABox A. Such a procedure for ALC will be
presented in the following section based on tableau calculi.

6

Algorithm 2.1 disc_aboxmine (A, D) Discernibility based Assertion Mining

Input: An ABox A and a set of decisions D.
Output: A TBox 7 = Upcp{P=Gp}, where all Gp are “almost” maximal GDCs.

A* := preprocess (A);
T:=9;
for all D € D

for all a € class(A*)

ifaeD
for all b € class(A*)
ifnot be D
if ABox_LI(A*, a,b) is defined
LI% := LI°M ABox LI(A*,a,b);

GDC := GDC U LI*

evaluate(GDC);

T :=TU{D=GDCY,

return 7T

2.2 Tableau Methods for Interpolation.

The algorithms to calculate interpolants using logical tableaux presented here
follow the lines of [7]. Interpolants for ALC concept subsumption can be con-
structed from a fully expanded closed tableau collecting contradicting literals
on each branch using construction rules corresponding to traditional tableaux.
For ABox interpolants the more complex interaction between role and concept
assertions has to be taken into account. The solution is to preprocess the ABox
(according to [6]) and propagate the result of all possible inference steps into a
concept. This concept can then be used in an intermediate interpolation step
to represent the complete knowledge about one of the objects. Application of
the same preprocessing steps then allow a further reduction of the interpolation
problem to concept interpolation.

The algorithms described in this paper are based on tableau proof calculi. A
tableau is a set of branches, where each branch is a set of formulas. A formula is a
term of the form (a : C') or (a,b) : R where a and b are individual variables, C' an
ALC concept and R a role name. A branch is closed if it contains two formulas
a: C and a : =C. The notions of open branch and closed and open tableau are
defined as usual. We will identify a branch B with the set of formulas ¢ on the
branch and write ¢ € B. To simplify the presentation of our rules, we assume
that all formulas are in negation normal form, i.e. negation is always pushed
down to the atomic level [13]. The algorithms to calculate ABox interpolant
are based on concept interpolation. Since concept interpolation is similar to
interpolation in modal logic K and because of the close connection between
ALC and K [11] we omit further details and assume that there is a procedure

7

concept_LI(Cy, Cy) which calculates a concept interpolant for C; and Cy. Please
consult [12, 7] for further details.

(m: if (a:CyMNCy) € B, but not both (a:Cy) € B and (a:C5) € B
then B':=BU{(a:C),(a:Cy)}.

(W): if (a: Cy UCy) € B, but neither (a: C1) € B nor (a:Cs) € B.
then B :=BU{a:C}and B" := BU{a: Cy}.

(V): if (a:VYR.C) € B and ((a,b) : R) € B but not (b: C) € B.
then B':=BU{b:C}.

Figure 1: Preprocessing Rules

Algorithms for ABox interpolation. To calculate ABox interpolants we
adapt the reduction introduced by Hollunder in [6]. In order to reduce ABox
interpolation to concept interpolation and partial ABox interpolation, we have
to preprocess the ABox using the rules in Fig. 1 until no more rule can be
applied. In this case the ABox is called preprocessing complete (ppc). Each
application of a rule triggers a construction rule for ABox Interpolants defined
in Algorithm 2.2, where the concepts B, and B, defined in Definition 2.2 and
inconsistent(C') is the standard procedure for concept consistency.

Algorithm 2.2 ABox LI(B,a,b): ABox Lyndon Interpolation

Input: A branch B and two individuals ¢ and b.
Output: ABox Lyndon interpolant for ¢ and b.

apply(rule, B);
if rule = (M), (V)
{B'} := get_new branches;
return ABox LI(B’, a,b);
if rule = (L)
individual := get_individual;
{B’,B"} := get new_branches;
if individual = b return ABox LI(B’,a,b) M ABox LI(B", a,b);
else return ABox LI(B’ a,b) U ABox LI(B" a,b);
if rule = undefined;
if inconsistent(DB;) return T;
if there is an individual name ¢ # b such that inconsistent(B,) return L;
else return propagate LI(B,a,b);

Hollunder shows that for any consistent ABox A there is a consistent ppc
ABox A’ derivable from A. We identify A’ with the set of all branches B build
from A. An ABox A is consistent if there is an open branch B in the ppc ABox
A’. For each of these open branches we now construct interpolants as defined in
Algorithm 2.3. For this purpose we explicitely collect the information about an
object a on a branch B into a concept B, as defined below.

8

Definition 2.2 The set CB of concepts related to an individual a € B in a
branch B is defined as follows: C € CB iff

e a:C € B, where C is a literal, i.e. a concept name or its negation,
e C =dR.D and a : AR.D € B if there is no R successor of a in B or
e C=VR.D anda:VR.D € B.

For an individual a € B and a branch B we define a concept B, = [|oeen C.

The concept B, now contains all the conceptual information about an object
a in B and an interpolant for two objects a and b on a branch B is simply the con-
cept interpolant for B, and = B,. But there might still be interpolants relating
a role assertion (a,c) : R € B with a universal quantified statement b : VR.C'.?
But this interpolant is just the R—quantified negated partial interpolant for C'
and c and to construct “almost” maximal interpolants, all possible partial inter-
polants of this kind are added disjunctively. To make sure that all interactions
between role successors are detected, we have to propagate simultaniously.

Algorithm 2.3 propagate LI(B,a,b): Propagation for ppc ABoxes

Input: A ppc consistent branch B and two individuals ¢ and b.
Output: ABox Lyndon Interpolant for ¢ and b with respect to B.

for all assertions ((b,d;) : R) € B to ((b,d,) : R) € B
for the set of all formulas {a : VR.C1,... ,a:VR.Cp,} C B
which are universally quantifying over role R for a
if partial LI(B,C1 N ...MNCp,{d1,... ,d,}) exists
LI := LI UVR.partial LI(B,C1MN...NCp,{d1,... ,dp});
for all assertions ((a,c1) : R) € B to ((a,¢,) : R € B
for the set of all formulas {b:VR.C1,... ,b:VR.C,} CB
which are universally quantifying over role R for b
if partial LI(B,C1MN...MCp,{c,... ,cn}) exists
LI := LI U3R.—partial LI(B,C1MN...MCnp,{c1,-.. ,cn});
if concept LI(B,, ~By) exists
LI := LI U concept LI(B,, By);
return LI;

For partial interpolation for a set A of object a; to a, and a concept C
we again have to preprocess the branch and to expand the concept C' until all
possible interactions are made explicit. Algorithm 2.4 describe the preprocessing
steps, Algorithm 2.5 the expansion of the concept into sets of concepts.

Note that the expansion of the concepts C' € S can recursively trigger partial
interpolation. If all rules are exhaustively applied the partial interpolant is

3If e.g. ¢c: =C € B, IR.~C is an ABox interpolant for ¢ and b w.r.t. B.

Algorithm 2.4 partial LI(B,C, A): Disjunctive Partial Interpolation

Input: A consistent Branch B, a concept C and individuals A = {a1,... ,a,}
Output: Disjunctive Partial LI L: C'C L and there is an a; €g ~L for 1 <i <mn
and occ(L) C oec®(a;) Noce(C)

apply(rule, B);
if rule = (L)
{B’,B"} := get new_branches;
return partial LI(B',C,{a1,... ,a,}) MNpartial LI(B",C,{a1,... ,an});
if rule = (M), (V)
{B'} := get_new_branches;
return partial LI(B',C,{a1,... ,an});
if rule = undefined;
return exp_concepts(B,{C},{a1,... ,an});

just the concept interpolant for the conjunction over the concepts in S and the
disjunction of the negations of the B, as defined in Definition 2.2 for all a € A.

Algorithm 2.5 exp_concepts(B, S, A): Partial Interpolation

Input: A ppc branch B, a set of concepts S and individuals A = {aq,... ,an}.
Output: Disjunctive partial LI: MeegC E L and there is an a; €p =L,
occ(L) C oec®B(a;) Noce(O).

if there is a concept C; M Cy such that S = 8" U{C; M Cy}
return exp_concepts(B,S'U{C1} U {Cs}, A);

else if there is a concept Cy LI Co such that S = 5" U {Cy U Cs}

return exp_concepts(B,S'U{C1}, A) Ul exp_concepts(B,S' U {Cy}, A);
else if for all assertions (a;,b;) : R € B where a; € A

for all universally quantified concepts VR.C'y,... ,YR.C,, € S over R

return exp_concepts(B, S, A) UVR. partial LI(B,Ci M...MCy,UJ;{bi})

else return concept LI(MoesC, By, M...M2B,,);

In [12] soundness and completeness of the algorithms is shown in the sense
that whenever there is one, ABox LI(A,a,b) returns with an ABox interpolant
for a and b w.r.t A.

Let us consider the simple ABox A = {(a,a) : R,a: C,b:VRNYR.-~C} which
is preprocessing complete. To calculate an ABox interpolant for a and b we call
propagate_LI(A, a,b) which returns 3R.—partial LI(A,VR.~C,{a}). Ais still
ppc and exp_concepts(A, {VR.~C},{a}) returns VR.partial LI(A, ~C,{a}),
which is simply VR.concept_LI(—C,—C). But this is VR.-~C and the ABox
interpolant for a and b is therefore just AR.-VR.~C', which is AR.3R.C'.

10

2.3 Assertion Mining and Most Specific Concepts

Our algorithms avoid the construction of a representation for the ABox objects
and therefore of the most specific concepts*. This is possible due to exclusive-
ness, because all counterexamples are required to be instances of the negation of
all GDCs. This condition is much stronger than the one used for lcs—learning,
where counterexamples are only required not to be instances of the learned con-
cepts. ABox interpolation captures this notion of instance checking because it
corresponds to a search for possible contradictions between properties of posi-
tive and negative examples.® But in ALC the set of possible contradictions in
an ABox is finite even if ABox cycles exist. Note however, that the algorithms
described above do not terminate for description logics with number restrictions
or features because this would allow for dual contradicting infinite chains. In
this case non-maximal approximations of GDCs have to be constructed and the
method will not be complete.

2.4 Practical Experience

WELLINGTON’ KAT implements interpolation based assertion mining as an ex-
tension of the hybrid knowledge representation system WELLINGTON, which was
developped at King’s College London [4]. First tests have been performed on
a knowledge base ¥* for cardiac arrhythmia [5], which contains various infor-
mation including ECG data (based on 279 attribute values) about 452 patients,
which are classified into 16 classes of cardiac arrhythmias. >** has been cre-
ated by translation from a database available at [2] and has maximal relational
depth of three. First results indicate that assertion mining without evaluation
procedures over-generalises, i.e. too many previously unknown examples are in-
stances of too many GDCs. Another crucial problem is related to efficiency and
complexity. Although the learning procedure itself is reasonably fast, the GDCs
which are constructed are too complex for efficient subsequent instance checking
of new objects. Both these issues are related and we are currently implementing
evaluation procedures to simplify GDCs which include symbolic (e.g. logical
decomposition) as well as statistical methods.

3 Conclusion

We have presented algorithms for assertion mining based on interpolation which
calculate generalised decision concepts even if the most specific concept for some
objects in the ABox do not exist. They allow for the construction of new termi-

“The most specific concept msc(a) for an ABox instance a is a minimal concept in the set
of concepts which instantiate a, i.e. a €x C implies ¥ = msc(a) C C for all C € ALC.

°In an ALC ABox A, an ABox individual @ is an instance of a concept C if and only if
AU {a : =C} is inconsistent.

11

nological knowledge from classified ABox instances. We are currently extending
the DL based WELLINGTON representation and reasoning system with a KAT,
a knowledge acquisition tool based on the presented methods.

References

1]

[12]

[13]

F. Baader and R. Kiisters. Least common subsumer computation w.r.t. cyclic
ALN -terminologies. In Proceedings of the 1998 International Workshop on De-
scription Logics (DL’98), 1998.

C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.

W. Cohen and H. Hirsh. Learning the classic description logic: Theoretical and
experimental results. In KR-94, pages 121-133, Bonn, Germany, 1994.

U. Endriss. Reasoning in description logic with WELLINGTON 1.0. In Proceedings
of the Automated Reasoning Workshop 2000, London, UK, 2000.

H.A. Givenir, B. Acar, G. Demiroz, and A. Cekin. A supervised machine learning
algorithm for arrhythmia analysis. In Computers in Cardiology, volume 24, pages
433-436, 1997.

B. Hollunder. Consistency checking reduced to satisfiability of concepts in termi-
nological systems. Annals of Mathematics and Artificial Intelligence, 18:95-131,
1996.

M. Kracht. Tools and Techniques in Modal Logic. North Holland, 1999.

R. Kiisters and R. Molitor. Computing most specific concepts in description logics
with existential restrictions. LTCS-Report 00-05, LuFG Theoretical Computer
Science, RWTH Aachen, Germany, 2000.

R.C Lyndon. An interpolation theorem in the predicate calculus. Pacific Journal
of Mathematics, 9:155-164, 1959.

Z. Pawlak. Rough sets. International Journal of Computer and Information
Sciences, 11(5):341-356, 1982.

Klaus Schild. A correspondence theory for terminological logics: preliminary
report. In Proceedings of IJCAI-91, 12th International Joint Conference on Ar-
tificial Intelligence, pages 466-471, Sidney, AU, 1991.

S. Schlobach. Interpolation methods for assertion mining in hybrid knowledge
bases. Technical report, King’s College London, 2001.

M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48:1-26, 1991.

12

1

Ontology Language Integration:
A Constructive Approach

Heiner Stuckenschmidt and Jerdme Euzenat

ICenter for Computing Technologies,University of Bremen
email: heiner@tzi.de

2INRIA Rhones-Alpes, Grenoble
email: Jerome.Euzenat@inrialpes.fr

Aug 24th 2001

Abstract

The problem of integrating different ontology languages has become of spe-
cial interest recently, especially in the context of semantic web applications. In
the paper, we present an approach that is based on the configuration of a joint
language all other languages can be translated into. We use description logics as
a basis for constructing this common language taking advantage of the modular
character and the availability of profound theoretical results in this area. We
give the central definitions and exemplify the approach using example ontolo-
gies available on the Web.

Motivation

It has been widely recognized that information systems benefit from the use of
formal ontologies. These ontologies are used to conceptualize and structure infor-
mation as well as to provide intelligent search facilities and integration methods for
remote information. While ontologies per se already support conceptualization and
structuring, applications like intelligent search and information integration make it
possible to reason about the knowledge specified in the ontologies. This requirement,
in turn requires the ontology to be implemented in a machine processable language.
Thus, the question of using ontologies in information systems is also a question of
the language used to encode the ontologies.

The World Wide Web is the largest information system ever. Its size and
heterogeneity makes ontology based search and integration even more impor-
tant than in other information systems. In this context the “semantic web”
[Berners-Lee et al., 2001] is mentioned. It is supported by the annotation of web
pages, containing informal knowledge as we know it now, with formal knowledge.
These documents can reference each other and depend on background knowledge.
Taking advantage of the semantic web requires to be able to gather, compare, trans-
form and compose the annotations. For several reasons (legacy knowledge, ease of
use, heterogeneity of devices and adaptability, timelessness), it is not likely that this
formal knowledge will be encoded in the very same language. The interoperability of
formal knowledge languages must then be studied in order to interpret the knowledge
acquired through the semantic web.

2 Language Construction

In the words of Tim Berners-Lee, the semantic web requires a set of languages of in-
creasing expressiveness and anyone can pick up the right language for each particular
semantic web application. This is what has been developed by the description logic
community over the years. Our approach focuses on ontology languages that rely on
these logics. The rationale for this choice is the following:

e The expressiveness and complexity of these languages has
been studied thoroughly and well-founded results are available
[Donini et al., 1991],[Donini et al., 1994]

¢ It has been shown that description logics provide a unifying framework for
many class-based representation formalisms [Calvanese et al., 1999].

e Description logic-based languages have become of interest in connection with
the semantic web. the languages OIL [Fensel et al., 2000] and the DAML lan-
guage [McGuinness et al., 2001] are good examples.

A modular family of languages is a set of languages made from a set of oper-
ations (constituting an algebraic base) that can be combined. Since the languages
have a similar kind of semantic characterization, it is easier to transform a represen-
tation from one language to another and one can take advantage of efficient provers
or expressive languages.

2.1 Customized Languages

Relying on description logics we already get a notion of a special language from
the combination of operators. Theoretical results from the field of description logics
provide us with the knowledge about decidable combinations of modeling primitives
and their complexity with respect to subsumption reasoning. Consequently, every
decidable combination of operators is a potential pattern that can be used to build the
ontology for a certain application. In the course of the engineering process we have
to handle different language patterns:

Reasoner Languageghe languages that available reasoners are able to handle.
Legacy Languagesthe language a useful, already existing ontology is encoded in.
Acquisition Languages are languages needed to encode acquired knowledge.

The Goal Language describes a language that can act as an interlingua for the on-
tologies to be integrated. It represents a trade-offs between expressivity con-
straints of the legacy and acquisition languages and the complexity constraints
of the reasoner languages.

In order to find the goal language, we have to find an optimal trade-off between
the other languages involved. For this purpose we invent the notion of coverage for
languages. A languagl is said to cover a languade if there is a transformation
from L to L' that preserves consequence. In particular, this is the case if all modeling
primitives from L are also contained i’ or can be simulated by a combination of
modeling primitives fromZ’. We denote the fact thdt’' coversL asL < L’. Using
the notion of coverage we can now define the customization task.

Definition: Customization Task. A customization task is defined by a triple
(R,U, A) whereR is a set of reasoner languagésa set of legacy languages and

A a set of acquisition languages. The languégis a solution of the customization

task if it is a language that is covered by a reasoner language and covers all reuse and
acquisition languages, or formally:

(1) dJReR(G<R)AVPeUUA(P < Q)

This definition provides us with an idea of the result of the customization process.
However there are still many technical and methodological problems. We have to
investigate the nature of the covering predicate and develop an algorithm for deciding
whether one pattern covers the other. We introduce different notions of coverage of
increasing strength that is based on transformations in the next section.

2.2 A Transformation-Based Approach

The notion of transformability is a central one in our approach because it allows to
define the coverage relation. The simplest transformation is the transformation from
a logic to another which adds new constructors. The transformation is then trivial,
but yet useful, because the initial representation is valid in the new language.

In the following we usel, and L’ to refer to languages. Languages are sets of
expressions. Representationsare sets of expressions which are normally subsets
of a languager; C L. Transformations are mappings L — L’ from expressions
in one language to expressions in a different language.

Definition: Syntactic Coverage This trivial form of transformation provides us
with a first notion of coverage that reflects the situation, where a language is the
subset of the other:

(2) LKL &g (LC L)

For this case, one can define a special case of the coverage relatic &s
which means that one language is completely included in the other in a lexical sense.

If L &1L, the transformation is more difficult. The initial representatiaran be
restricted to what is (syntactically) expressiblelin However, this operation (which
is correct) is incomplete because it can happen that a consequence of a representation
expressible in’ is not a consequence of the expression of that representation in
L'. The preceding proposal is restricted in the sense that it only allows in the target
language, expressions expressible in the source language, while there are equivalent
non-syntactically comparable languages. This is the case of the description logic
languagesALC and ALUE which are known to be equivalent while being defined by
different operators. For that purpose, one can defigel’ if and only if the models
are preserved.

Definition: Semantic Coverage Transformations that simulate some operators of
the transformed language using combinations of operators of the goal language imply
a notion of coverage that is based on the semantics of languaged. deethe a
Tarskian style interpretation defining the model-theoretic semantics of expressions,
then we get

3) LIL g VI T 6= 1 Ep 7(0)

Another possibility is to defineg as the existence of an homomorphism between
the models of the original and the translated language. This property guarantees that
inconsistency of an expression in the target language implies inconsistency of the
expression in the source language.

Definition: Model-Theoretic Coverage Transformations that preserves inconsis-
tency which is an important property with respect to automated reasoning by guaran-
teeing that for every model in L there also is a model in L' define a special case of
semantic coverage we refer to as model-theoretic coverage:

(4) LLL 4 VI 1 L 6= 1 = 7(6)

Summarizing, the syntactic and semantic structure of a language family provides
us with different criteria for coverage all based on the notion of transformability.
These notions of coverage do not only give us the possibility to identify and prove
coverage, it also specifies a mechanisms for transforming the covered into the cover-
ing language. Therefore we not only show that a suitable language can be generated,
but also how the generation is being performed. In the next section we present an
implementation of this approach.

3 Transformation-based Ontology Integration

The notion of semantic interoperability is a very broad one since it covers almost
all application of the semantic web. Therefore we can only give evidence for the
usefulness of the 'family of languages’ approach by example.

3.1 An Example Problem

We chose a scenario where two existing ontologies should be integrated to establish a
semantic model of an application domain. The library of the DAML (DARPA Agent
Markup Language) contains an ontology describing a technical support application
(http://www.daml.org/ontologies/69). It is encoded in the DAML-ONT language.

<Class ID="Productinfo">
<subClassOf
resource="#IlncommingTechSuplncident"/>
<comment>
Technical Product Information
</comment>

</Class>

<Property ID="operatingSystem">
<domain resource="#ProductInfo"/>
<comment>Product’s Operating System</comment>
<default resource="MSWindows98"/>

</Property>

<Class ID="OperatingSystem">
<oneOf parseType="daml:collection">
<OperatingSystem ID="MSWindows2000"/>
<OperatingSystem |ID="MSWindowsNT"/>
<OperatingSystem ID="MSWindows98"/>
<OperatingSystem |ID="MSWindows95"/>
</oneOf>
<comment>
Available Operating Systems
</comment>
</Class>

<Property ID="productVersion">
<domain resource="#Productinfo"/>
<comment>Product’'s Version</comment>
<default resource="#PersonalEdition"/>
</Property>

<Class ID="ProductVersion">
<oneOf parseType="daml:collection">
<ProductVersion ID="EnterpiseEdition"/>
<ProductVersion ID="DeveloperEdition"/>
<ProductVersion ID="ProfessionalEdition"/>
<ProductVersion ID="SmallBusinessEdition"/>
<ProductVersion ID="PersonalEdition"/>
</oneOf>
<comment>Available Product Versions</comment>
</Class>

Since the DAML language borrows from description logics
[McGuinness et al., 2001, Horrocks, 2000] these constructs can easily be mapped on
operators available in the description logic markup language. Operators used in
this specific ontology are: atomic names, primitive classes, primitive roles, domain
restrictions for assigning properties to classes and the one-of operator for defining
classes by enumeration.

We assume that the technical support should be extended to include hardware as

6

well. For this purpose definitions of existing hardware products have to be integrated
into the ontology. As an example product we use the printer ontology that can be
found at http://www.ontoknowledge.org/oil/case-studies/. This ontology in turn is
encoded in the OIL language.

<oil:DefinedClass rdf:ID="HPLaserJet1100Series">
<rdfs:subClassOf>
<oil:And>
<oil:hasOperand>
<rdfs:Class
rdf:about="#HPLaserJetPrinter"/>
</oil:hasOperand>
<oil:hasOperand>
<rdfs:Class
rdf:about="#PrinterForPersonalUse"/>
</oil:hasOperand>
</oil:And>
</rdfs:subClassOf>
<oil:hasPropertyRestriction>
<oil:HasValue>
<oil:onProperty
rdf:resource="#PrintingSpeed"/>
<oil:toClass>
<rdfs:Class
rdf:about="#"8 ppm""/>
</oil:toClass>
</oil:HasValue>
</oil:hasPropertyRestriction>
<oil:hasPropertyRestriction>
<oil:HasValue>
<oil:onProperty
rdf:resource="#PrintingResolution"/>
<oil:toClass>
<rdfs:Class
rdf:about="#"600 dpi""/>
</oil:toClass>
</oil:HasValue>
</oil:hasPropertyRestriction>
</oil:DefinedClass>

The semantics of the OIL language is completely specified in terms of description
logics. Consequently, we can directly map OIL constructs. Operators used in the
model are the following: atomic names primitive concepts, primitive roles, existential

7

restrictions on slot values as well as conjunction for multiple inheritance and multiple
slot constraints.

3.2 Integrating the Specifications

Using the family of languages approach, we can integrate the two specifications in a
three step process. First, we have to analyze the language patterns (i.e. combinations
of operators) at hand then we customize a joint language. Finally, we define and im-
plement transformations between the language patterns and the customized language.

Step 1: Identify Language Patterns The languages used in the specifications
from our example, i.e. DAML and OIL are legacy language in the sense of the
language customization task. As these languages are very expressive, however for
our purpose we only have to care about the part of the languages that are really used
in the specifications (see last section).

The second kind of language patterns involved are defined by the aim of
providing reasoning support for the integrated specifications. A potential reasoner
is the FaCT system that supports two different language®,7 and SHZQO
[Horrocks et al., 1999]. Figure 1 illustrates the expressiveness of these languages.

SHIQ

. JQ;{QT Inv
—/’ZlLC k Trans
"Anythin ‘ Atleast
| N .l g NOtAnd
n NothlngAll or | Single
| Exactly |

Some anot
Rdef
' Atmost

Figure 1. Expressiveness of languages supported by the FaCT reasoner

Step 2: Customize Integration Language The patterns identified in step 1 act as

an input for the language customization step. We denote the language pattern used
for the technical support ontology ds>4/.., the one used for the printer ontology

as Lo;r.. In the example case, we can simply merge the two language patterns
into a language that consists of all operators found in both models. The resulting
integration language denoted 8§ = Lpan .V Loy, Simply consists of the union of

8

the operators present in the two ontologies described above.

We now have to test the suitability of the pattern. For the suitability we have
to check, whether the language covers the legacy languages, i.e. whether
Lpamr N La < Lorr holds. In this case this is obvious, becalgseextends both
languages o;, < Lg and Lpay < Lg). Additionally we have to make sure that
L¢ is covered by at least one reasoner language (denotéghgsand Lsyzo). We
can show that.sy 7o coversLg: Concept and role definitions as well as conjunc-
tion and existential restriction are already directly contained iC while we have
to modelone-of anddomain using other operators of the languages supported.
This can be done in the very same way as it is done from OIL to the FaCT reasoner
[Horrocks, 2000]:

one-of can be simulated usingy , not andcdef , because the transformation from
(one — of () Cy) to (or Cy Cs) A (cdef Cj(not Cy))) preserves inconsis-
tency checking by guaranteeing that for every model for the original expression
there is a model in the transformed one. We obtain consequence preservation
for this transformation.

domain can be simulated usirg)l andinv , because
R < (domain C') = T < (all (inv R) C)
Another way is to use general concept implications or the form:

(some RT) < C
We omit the proofs due to the limited space.

Performing the first transformation we have to usedtéZ Q reasoner, because
inverse roles are needed to simulate domain constraints. If we do the second
transformation, we can even rely on t§¢{F reasoner which supports a smaller
language and therefore is able to provide faster reasoning service.

To summarize, we can use the langudgecreated by the transformations as a
language for the integrated model, because there is a reasoner langualge £ &.
that syntactically coverg.

Step 3: Implement Languages and Transformations This can be refined in three
sub-steps:

1. Translating from DAML and OIL td.p 4y, andLo;r;

2. Providing the transformation fromp 4., and Loy, t0 Lg;

9

3. Translating fron’sy7o Which syntactically coverg to SHZ Q.

The implementation has been carried out by transforming representations within
the oume (Description Logic Markup Language [Euzenat, 2001]) framework. It
encodes many description logics in XML in a coherent way (same operators have
the same name) but does not offer CGI. Transformations are written in the XSLT
language for transforming XML documents.

The second one is more related to description logics. It first involves merging
both ontologies. This is easily achieved with a straightforward transformation, thanks
to the unified vocabulary provided lwymi [Euzenat, 2001](i.e. whatever the logic,
the syntax is the same). The resulting logich(ia.V Lorr) being syntactically
stronger tharl.p 4,1, and Lo, preserves the content of the ontologies as well as the
consequence relation.

Then, the resulting merged ontology, which cannot be directly translated into
SHZQ is converted by applying successive transformations (again writtes
The first one eliminates thdomain constructor and the second one eliminates
the one-of constructor in exactly the way put forth above. Because the first
transformation preserves the models and the second one preserves unsatisfiability,
then, the whole chain of transformation preserve consequence.

4 Discussion

We introduced an approach for ontology language integration that is based on the
construction of a joint language and the use of semantics-preserving transformations.
We outlined the idea of the approach and gave evidence for its suitability using a

real-life example.

The approach presented still has several shortcomings implying needs for further
research. First of all the nature of different kinds of transformation needs further
investigation. We envision a formal framework for proving special properties of
transformation in order to guarantee formal properties of the constructed language.
When thinking of a web of trust, it is also beneficial to annotation complete proofs to
transformed language as a guarantee that no information has been lost.

Another very important related problem which is completely out of the scope
of this paper is the problem of translating not only between different representation
languages, but also between different terminologies. An approach able to perform
translations between different ontologies on the language and the terminology level
would be a big step forward.

10

References

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic webScientific Amercar284(5):35-43.

[Calvanese et al., 1999] Calvanese, D., Lenzerini, M., and Nardi, D. (1999). Unify-
ing class-based representation formalisrdeurnal of Artificial Intelligence Re-
search 11:1999-240.

[Donini et al., 1991] Donini, F., Lenzerini, M., Nardi, D., and Nutt, W. (1991). The
complexity of concept languages. In Sandewall, J. A., Fikes, R., and E., editors,
2nd International Conference on Knowledge Representation and Reasoning, KR-
91. Morgan Kaufmann.

[Donini et al., 1994] Donini, F., Lenzerini, M., Nardi, D., and Schaerf, A. (1994).
Deduction in concept languages: from subsumption to instance chedkingal
of logic and computationd(4):423-452.

[Euzenat, 2001] Euzenat, J. (2001). Preserving modularity in xml encoding of de-
scription logics. In McGuinness, D., Patel-Schneider, P., Goble, C., and Mller, R.,
editors,Proc. 14th workshop on description logics (DL), Stanford (CA,p&pes
20-29.

[Fensel et al., 2000] Fensel, D., Horrocks, I., Harmelen, F. V., Decker, S., Erdmann,
M., and Klein, M. (2000). Oil in a nutshell. 102th International Conference on
Knowledge Engineering and Knowledge Management EKAW, 20@M-les-Pins,
France.

[Horrocks, 2000] Horrocks, I. (2000). A denotational semantics for Standard OIL
and Instance OIL. http://www.ontoknowledge.org/oil/downl/semantics.pdf.

[Horrocks et al., 1999] Horrocks, 1., Sattler, U., and Tobies, S. (1999). Practical rea-
soning for expressive description logics. Pmnoc. of LPAR’99 pages 161-180.
Springer-Verlag.

[McGuinness et al., 2001] McGuinness, D., Fikes, R., Connolly, D., and Stein, L.
(2001). Daml-ont: An ontology language for the semantic W8EE Intelligent
SystemsSubmitted to Special Issue on Semantic Web Technologies.

11

