
A Fully Formalized Theory for Describing Visual Notations
(Extended Abstract)

Volker Haarslev
University of Hamburg, Computer Science Department,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
haarslev@informatik.uni-hamburg.de

Abstract

This paper addresses issues in visual language the-
ory with the help of logic formalisms that were de-
veloped for reasoning tasks by the artificial intelli-
gence and spatial databases community, especially
for spatial and diagrammatical reasoning. We de-
scribe an approach based on three formal compo-
nents. Topology is used to define basic geometric
objects. Theory about spatial relations from the
domain of spatial databases is employed to define
possible relationships between visual language ele-
ments. Description logic theory from the AI com-
munity is used to combine topology and spatial
relations. The resulting theory has been success-
fully applied to formally specifying semantics of vi-
sual languages. The theory’s application is illus-
trated with a specification of entity-relationship di-
agrams.

1 Introduction

This paper reports on an approach to formalizing
visual notations. In contrast to many grammati-
cal approaches dealing primarily with syntactic is-
sues of visual languages (VLs) we propose a spatial
logic for describing semantics of visual notations.
This logic combines three components (topology,
spatial/topological relations, description logic) that
are themselves also formally specified with precise
semantics. These components were derived from
research communities that are related to VL re-
search: reasoning on diagrammatic representations
and spatial databases. The goal of this paper is the
attempt to intensify the dialogue between these re-
search communities and to “advertise” the benefits
of this particular view of VL theory. The success-
ful application of our theory to a completely visual
language for concurrent logic programming, Picto-
rial Janus (PJ) [1, 2], has been reported elsewhere
[3, 4]. This experience resulted in the development

of an editor for visual notations [5] whose generic
semantics are based and controlled by the theory
described in this paper.

Our approach is generic in the sense that particu-
lar instances can be chosen for the above mentioned
components. This process depends on the nature
of specific visual notations to be formally specified.
For instance, the definition of PJ is mostly based
on topological relations between lines, arrows, and
convex regions. Therefore, we selected correspond-
ing definitions for primitive geometric objects, an
appropriate theory on spatial (topological) rela-
tions [6] that can deal with true 1D objects and
regions, and a matching description logic. However,
we like to emphasize that other visual languages or
notations might require different definitions for ob-
jects and their possible relationships. In the follow-
ing section we shortly review alternative instances
for spatial relations theory.

2 Theoretical Foundation

We believe that the semantics of representational
devices used for VL theory should be well under-
stood. That is, the meanings of represented lan-
guage concepts should be unambiguously deter-
mined by explicit notational devices whose mean-
ings (semantics) are understood, so that algorithms
can operate on the representation in accordance
with the semantics of the notation, without need-
ing ad hoc provisions for specific VL domains. In
the following we outline a fully formalized theory
for describing visual notations that consists of three
components. Each component is defined by precise
semantics. The definition of objects and relations is
based on point-sets and topology. Description logic
theory can be based on model-theoretic semantics
appealing to first-order logic or using a composi-
tional axiomatization with set theory.

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 1

2.1 Objects and Topology

The definition of basic geometric objects (the el-
ementary vocabulary of a visual notation) usually
relies on topology which is itself a basis for defin-
ing relationships between objects. In the following
we assume the usual concepts of point-set topology
with open and closed sets [7]. The interior of a set
λn (denoted by λon) is the union of all open sets in
λn. The closure of λn (denoted by λn) is the inter-
section of all closed sets in λn. The complement of
λn (denoted by λ−1

n) with respect to the embedding
space !n is the set of all points of !n not contained
in λn. The boundary of λn (denoted by ∂λn) is the
intersection of the closure of λn and the closure of
the complement of λn. It follows from these defini-
tions that ∂λn, λon, and λ−1

n are mutually exclusive
and ∂λn ∪ λon ∪ λ−1

n is !n.

These definitions form the basis for Egenhofer’s
approach [8] to define topological relations between
objects using the so-called 9-intersection. This
method defines relations between two objects by
nine set intersections (every pairwise combination
of interior, boundary, and complement). The fol-
lowing restrictions apply to every pair of sets.
(1) λi, λj be n-dimensional and λi, λj ⊂ !n, (2)
λi, λj $= ∅, (3) all boundaries, interiors, and com-
plements are connected, and (4) λi = λoi and
λj = λoj . A major drawback of this approach is the
failure to describe true one-dimensional objects.

This was the motivation for the proposal by
Clementini et al. [6]. They extended Egenhofer’s
approach by introducing points and lines as ad-
ditional object types and the dimension of inter-
sections as new feature for discriminating more
cases. Three types of geometric objects are mod-
eled. Regions have to be convex, connected and
without holes. Lines and arrows must not be self-
intersecting, are either circular or directed, and
have exactly two end points. Points are elements
of lines and describe their start or end points. The
boundary of a point is an empty point-set, the
boundary of a line is either an empty point-set (for
a circular line) or a point-set consisting of its two
end points (for a non-circular line). The boundary
of a region is a circular line. The interior of an ob-
ject is the object without its boundary. In case of
points and circular lines their interior is identical
to the object itself. Both approaches cannot deal
with concave objects.

A third but different approach is based on the
work of Clarke about ‘individuals and points’ [9,
10]. Clarke’s calculus interprets individual vari-
ables as ranging over spatio-temporal regions and
the two-place primitive predicate, ‘x is connected
with y ’, as a rendering of ‘x and y share a common
point ’. Randell and Cohn [11] developed their RCC
theory based on this single property of connected-
ness. The RCC theory is a superset of Egenhofer’s
theory. It can even describe relationships with con-
cave objects by using a convex hull operator.

Of course, there exists a strong interaction be-
tween the way of defining basic geometric objects
and a set of corresponding spatial relations that
can hold between these objects. Each of the above
mentioned approaches defines a set of spatial (topo-
logical) relationships which are outlined in the next
section.

2.2 Spatial Relations

Egenhofer’s approach distinguishes eight mutu-
ally exclusive relations (out of 92 = 18 differ-
ent cases). The other cases can be eliminated
since the above mentioned restrictions on sets have
to hold. The remaining relations cover all pos-
sible cases. The 9-intersection is defined as ma-
trix.

In(λi, λj) =




∂λi ∩ ∂λj ∂λi ∩ λoj ∂λi ∩ λj

λoi ∩ ∂λj λoi ∩ λoj λoi ∩ λj

λi ∩ ∂λj λi ∩ λoj λi ∩ λj





With this definition the eight cases (disjoint,
meet, equal covers/coveredBy, contains/inside,
overlap) can be easily characterized by the
distinction between empty and non-empty
intersections. For instance, the contains rela-
tion is specified by the 9-intersection as follows.

I5(λi, λj) =




∅ ∅ ¬ ∅

¬ ∅ ¬ ∅ ¬ ∅
∅ ∅ ¬ ∅





Clementini et al. have to deal with 44 = 256 differ-
ent cases caused by taking into account the dimen-
sion of intersections. The number can be reduced
to a total of 52 real cases considering the restric-
tions on objects. They furthermore reduced this
still large number of possible relationships to five

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 2

with the help of an object calculus. These five bi-
nary topological relations (touch, overlap, cross, in,
disjoint) are mutually exclusive and cover all possi-
ble cases (see [6] for a proof). For instance, the in
relation is defined as follows: object λ2 is in object
λ1 if the intersection between λ1’s and λ2’s region
is equal to λ2 and the interiors of their regions in-
tersect. It is transitive and applies to every situa-
tion.

<λ2, in, λ1> ⇔ (λ1 ∩ λ2 = λ2) ∧ (λo1 ∩ λo2 $= ∅)

Cohn and Randell define nine spatial relations (that
are similar to Egenhofer’s set) in terms of a single
primitive relation ‘C(x,y)’ read as ‘x is connected
with y’. The authors also introduce an operator
‘conv(x)’ which computes the convex hull of a pos-
sibly concave object. Its definition enables reason-
ing with concave objects. This approach is moti-
vated by the idea that spatial databases might eas-
ily compute whether the single relation C(x,y) holds
between two objects in the database. Further de-
ductions could be based on this primitive relation.
For instance, the relation ‘x is a part of y’ (denoted
as P(x,y)) is defined as follows.

P (x, y) ≡ ∃z : (C(z, x) ⊃ C(z, y))

2.3 Description Logic

This section gives a brief introduction to some as-
pects of description logic (DL) theory. We do not
attempt to give a thorough overview and formal ac-
count of DL theory. However, we try to summarize
the notions important for VL theory. We refer to
[12, 13, 14] for more complete information about
description logic theory.

DL theories are based on the ideas of structured
inheritance networks [15]. A DL can be consid-
ered as a term rewriting language restricting the
left side of equations to single unique term names.
The specification of a DL consists of a set of con-
cepts (or terms), a set of roles (binary relations that
may hold between individuals of concepts), a set of
disjointness assertions among concepts and among
roles, a set of concept membership assertions for in-
dividuals, and a terminology, which maps names to
specifications of concepts or roles. Concepts may be
primitive or defined . A specification of a primitive
concept represents conditions that are necessary

but not sufficient. The specification of a defined
concept represents conditions that are both neces-
sary and sufficient. Primitive and defined roles are
similarly specified. If a role holds between individ-
uals, these individuals are referred to as fillers of
this role.

Concept specifications may consist of a set of
anonymous concept terms or other concept names.
Unary (e.g. ¬) and binary operators (e.g. ∧, ∨) are
used as connectives. A concept term can also be
given as a restriction of a role. Number restric-
tions specify the maximum or minimum number
of allowed fillers (e.g. (∃≤5 touching), (∃≥1 inside)).
Value restrictions constrain the range of roles and
allow only fillers that are individuals of a spe-
cific concept (e.g. (∀ touching arrow)). Value and
number restrictions may also be combined (e.g.
(∃≥1 touching arrow)). The above mentioned con-
cept specifications are only a subset of all possible
specifications. Figure 1 lists the model-theoretic
semantics of commonly used specification elements
(see also Section 3 for the specification of entity-
relationship diagrams). The expressiveness and
tractability of a particular DL depends on the type
and allowed combinations of connectives and re-
strictions. The underlying algorithms can be NP-
complete regarding their worst-case time complex-
ity with respect to the size of the terms or even
undecidable [14].

There exist several theorem provers for special
types of DLs. These theorem provers (referred to as
DL systems) offer powerful reasoning mechanisms
that are based on the DL semantics. DL systems
usually distinguish two separate reasoning compo-
nents. The terminological reasoner or classifier
(TBox) classifies concepts with respect to subsump-
tion relationships between these concepts and orga-
nizes them into a taxonomy. The TBox language
is designed to facilitate the construction of concept
expressions describing classes (types) of individu-
als. The classifier automatically performs consis-
tency checking (e.g. for incoherence, cycles) of con-
cept definitions and offers retrieval facilities about
the classification hierarchy. The forward-chaining
assertional reasoner or realizer (ABox) recognizes
and maintains the type (concept membership) of
individuals. The purpose of the ABox language
is to state constraints or facts (usually restricted
to unary or binary predications) that apply to a
particular domain or world. Assertional reasoners

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 3

Let C be the set of concepts and R the set of roles in a DL theory. A model is a set
D and an assignment function ξ such that ξ : C −→ 2D, ξ : R −→ 2D

2

where 2D is
the powerset of the domain D, where D2 = (D × D) and where ξ must satisfy the
following conditions (concept names are denoted by c and role names by r):

ξ[concept name] ⊆ D
ξ[role name] ⊆ D ×D

ξ[(c1 ∧ . . .∧ cn)] = ∩n
i=1ξ[ci]

ξ[(c1 ∨ . . .∨ cn)] = ∪n
i=1ξ[ci]

ξ[(∃≥n r)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ ≥ n}
ξ[(∃≥n r c)]] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ∧ y ∈ ξ[c]}‖ ≥ n}
ξ[(∃≤n r)]] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ ≤ n}
ξ[(∃≤n r c)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ∧ y ∈ ξ[c]}‖ ≤ n}
ξ[(∃=n r)]] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ = n}

ξ[(∃=n r c)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ∧ y ∈ ξ[c]}‖ = n}
ξ[(∀ r c)] = {x| ∀y : (x, y) ∈ ξ[r] ⇒ y ∈ ξ[c]}
ξ[(= r i)] = {x| ∀y : (x, y) ∈ ξ[r] ⇒ y = i}
ξ[(r• c)] = ξ[r] ∩ {(x, y)| y ∈ ξ[c]}
ξ[r1◦ r2] = {(x, y)| ∃z.(x, z) ∈ ξ[r1] ∧ (z, y) ∈ ξ[r2]}

Figure 1: Semantics of DL Elements

support a query language as access to their state.
Some query languages offer the expressiveness of
the full first-order calculus.

2.4 Extension of DL: Concrete Domains

Existing DL systems usually cannot deal with con-
cepts defined with the help of algebra. For instance,
it is not possible to specify a defined concept Small-
Circle that resembles every circle whose radius is
less than 10mm. It is only possible to specify Small-
Circle as primitive concept (which can never au-
tomatically be recognized) and to assert the con-
cept membership externally. Some DL systems of-
fer extra-logical, user-defined help functions that
may assert the property (radius less than 10mm)
automatically. However, these functions and their
related concepts escape the DL semantics and pre-
vent any reasoning. For instance, a concept Very-
SmallCircle resembling circles with a radius less than
5mm should be recognized as a specialization (sub-
concept) of SmallCircle. The idea of incorporating

concrete domains into DL theory is to extend se-
mantics and subsumption in a corresponding way
(see [16]). CTL [17] is an example for a DL sys-
tem that combines DL and concrete domains. CTL
uses constraint logic programming (CLP) systems
that can cope with systems of (in)equalities over
(non)linear polynomials (e.g. CLP(!) [18]). The
above mentioned concepts SmallCircle and VerySmall-
Circle can be easily specified in CTL as defined con-
cepts. CTL would immediately recognize the sub-
sumption relationship between these concepts.

2.5 Application to VL

We argue that the main characteristics of DL sys-
tems are directly applicable to VL theory (see also
[3] and Section 3 for a specific application):

• The TBox language is used to define VL ele-
ments as concept definitions. They are based
on primitive concepts representing basic geo-
metric objects (e.g. region, line, point). The

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 4

primitive concepts form the roots of the tax-
onomy and are viewed as elementary lexical to-
kens. Defined concepts express (intermediate)
semantic categories and are based on special-
izations of these primitive concepts.

• The classifier automatically constructs and
maintains the specialization hierarchy of VL
elements (defined as concepts). This hierarchy
is used by the realizer to control the assertional
reasoning process.

• Database-like assertion and query languages
are used to state and retrieve spatial knowl-
edge about individuals of VL programs. Ex-
ample programs may be entered into the ABox
by asserting primitive concept memberships
for geometrical objects and spatial relation-
ships between objects (as role fillers).

• The forward-chaining realizer automatically
recognizes the most specialized concept mem-
bership (i.e. semantic category of VL element)
of individuals (e.g. input tokens). It is the
main source for driving the recognition process
and is utilized as general visual parser.

• The automatic detection of inconsistent con-
cept definitions or individuals is an important
advantage of this approach. It is used to de-
tect unsound (e.g. inconsistent) formal specifi-
cations (TBox) or erroneous parser input (e.g.
errors in syntax or semantics).

Other (but still non-standard) characteristics are
also very useful:

• The retraction of facts (stated in the ABox) is
useful for supporting incremental and predic-
tive parsing techniques in the editing process.
Non-monotonic changes of users are automat-
ically recognized and obsolete deductions re-
tracted.

• Default reasoning can make useful assump-
tions about parser input while incomplete in-
formation exists.

• A DL extended to handle concrete domains
could be very useful. The definition of VL el-
ements and the possible spatial relationships
between them could be solely based on DL the-
ory with a concrete domain over !. The need

age

pilot flies1

salary

aircraft1

Figure 2: A simple entity-relationship diagram

for an extra-logical component that recognizes
geometric features and asserts them to the DL
system would be obsolete.

3 Entity-Relationship Diagrams

The informal definition of Entity-Relationship
(ER) diagrams is directly taken from [19] in or-
der to demonstrate the expressiveness of our spec-
ification language and the reasoning capabilities of
our DL system. Figure 2 shows an example ER
diagram specifying a relationship between a pi-
lot and an aircraft. We assume a few primitive
concepts (denoted in slanted font) and spatial re-
lations (touching, containing, linked with, text value)
representing geometrical objects (rectangle, circle,
diamond, line, text) and their relationships.

3.1 Connectors

entityrelation
ship

cardinality

A relationship-entity connection is a line that
touches exactly one text label (expressing cardinal-
ity) and two other regions (rectangle or diamond).
A cardinality is a text string with values chosen
from the set {1, m, n}.

relationship entity ≡
(line ∧
(∃=3 touching) ∧
(∃=1 touching text) ∧
(∃=2 touching (rectangle ∨ diamond)) ∧
(∃=1 touching rectangle) ∧
(∃=1 touching diamond))

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 5

cardinality ≡
(text ∧
(∃=1 touching) ∧
(∀ touching relationship entity) ∧
(∀ text value {1,m, n}))

An attribute-entity
connection is a line
that touches only
two regions (circle
or rectangle) and no
text string.

entityattribute

attribute entity ≡
(line ∧
(∃=2 touching) ∧
(∀ touching (circle ∨ rectangle)) ∧
(∃=1 touching rectangle) ∧
(∃=1 touching circle))

3.2 Entities

entityattribute relation
ship

1

An entity is a rectangle that contains its name. It
touches one relationship-entity and optionally some
attribute-entity connectors. It is linked with a dia-
mond.

named region ≡
(region ∧
(∃=1 containing) ∧
(∀ containing text))

entity ≡
(rectangle ∧ named region ∧
(∃=1 touching relationship entity) ∧
(∀ touching (attribute entity ∨

relationship entity)) ∧
(∃=1 linked with diamond) ∧
(∀ linked with (circle ∨ diamond)))

3.3 Relationships

A relationship is a diamond
that contains its name. It
touches one relationship-
entity and optionally some
attribute-entity connectors.
It is linked with two entities.

relation
ship

n m

relationship ≡
(diamond ∧ named region ∧
(∃=2 linked with) ∧ (∀ linked with entity) ∧
(∃=2 touching) ∧
(∀ touching relationship entity) ∧
(∃≤2 touching ((touching ◦ text value) = 1)) ∧
(∃≤1 touching ((touching ◦ text value) = m)) ∧
(∃≤1 touching ((touching ◦ text value) = n)))

Attributes

An attribute is a circle
that contains its name.
It touches one attribute-
entity connector and is
linked with an entity.

entityattribute

attribute ≡
(circle ∧ named region ∧
(∃=1 linked with) ∧ (∀ linked with entity))

4 Related Work

There exist many approaches to specifying syn-
tax (and to some degree semantics) of visual lan-
guages. Mostly, these are based on extensions of
string grammar formalisms. A complete and recent
overview is out of scope of this paper. However, we
like to mention a few approaches: generalizations of
attributed grammars (e.g. picture layout grammars
[20]), positional grammars (e.g. [21]), and graph
grammars (e.g. [22, 23, 24]). Other approaches
closely related to this one use (constraint) logic or
relational formalisms (e.g. [25, 26, 27, 28, 29, 30])
to represent spatial relationships. Experience has
shown (reported by Wittenburg in [29]) that some
grammar approaches have limitations (e.g. no ar-
bitrary ordering of input, only special relations
allowed, connected graphs necessary, bottom-up

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 6

parsing applicable, no ambiguous grammars, etc.)
which are sometimes unacceptable for particular
application domains.

Helm and Marriott [26] developed a declarative
specification and semantics for VLs. It is based
on definite clause logic and implemented with the
help of constraint logic programming. Marriott’s
recent approach is based on these ideas but utilizes
constraint multiset grammars [30]. An advantage
of our approach is the taxonomic hierarchy of con-
cept definitions and the capabilities to reason about
these specifications and their subsumption relation-
ships.

Cohn and Gooday [31] applied the RCC theory
to the VL domain and also developed formal se-
mantics for Pictorial Janus. However, their speci-
fications still rely on full predicate logic and can-
not gain from the advantages of our DL approach.
As far as we know, they currently do not support
graphical construction of diagrammatic representa-
tions or mechanical verification processes. We also
argue that DL notation —featuring concept and
role definitions with inheritance and with a possi-
ble extension to concrete domains— is much more
suitable for human and even mechanical inspection.
This is an important issue since theories about VLs
are still designed by humans.

Citrin et al. [32] also present work on formal se-
mantics of completely visual languages. They de-
veloped formal operational semantics for control in
the object-oriented language VIPR but their se-
mantics is not based on the graphical representa-
tion of the language elements.

Another approach to reasoning with pictorial
concepts is based on a different, type-theoretic
framework [33, 34, 35]. An important distinction
is that our theory is more expressive with respect
to concept definitions. For instance, in [33] the
authors suggest to extend their type-theoretic ap-
proach by notions such as parameterization for con-
struction of generic concepts and type dependency
for describing pictures consisting of parts of other
pictures. Our DL theory already handles the in-
tended effects of parameterization and type depen-
dency since its reasoning component automatically
maintains a taxonomy of subsuming concept defi-
nitions which may share common subparts.

A principal advantage of our approach is the
use of necessary and sufficient descriptions, i.e. de-
fined concepts. Logic-based specifications using a

Prolog-like style can only define sufficient but not
necessary conditions. Our framework is suitable
for recognizing (parsing) visual notations as well as
constructing examples from specifications. Parsing
can even hypothesize unknown information about
notation elements. This can be accomplished with
the help of ABox reasoning and the underlying
model-theoretic semantics. The ABox reasoner ver-
ifies a notation example by creating a correspond-
ing model and can automatically proof whether this
model is still satisfiable if further assumption about
elements are made. Our approach also support
multi-level reasoning and can thus avoid problems
with a combinatorial explosion of alternatives in
specifications. For instance, imagine the specifica-
tion of a triangle based on unordered sets of points
(representing lines). We can avoid this problem
since reasoning can take place about connectedness
of points (low-level reasoning) as well as undirected
lines (higher-level reasoning).

5 Conclusion and Future Work

We like to note that our approach has no restric-
tions about the ordering of input and the type of al-
lowed relations if we incorporate concrete domains.
We do not rely on special parsing techniques since
our approach is purely declarative. We can even
deal with ambiguous grammars since the DL real-
izer can compute every model satisfying the specifi-
cations. A problem with our approach could be the
worst-case time complexity of the underlying classi-
fication algorithms. However, almost every logical
or constraint approach with an interesting expres-
siveness has to deal with tractability and decidabil-
ity. It is also important to note that complexity
issues of DLs are well understood and analyzed. A
forthcoming paper will investigate these properties
and and try to apply them to building a taxonomic
hierarchy of visual notations/languages.

We are currently investigating the suitability of
our approach for several visual languages and no-
tations (e.g. venn diagrams, petri nets, flow charts,
etc). This investigation is facilitated by our generic
editor [5] whose semantics are based on our DL
theory. We are planning to incorporate description
logics with concrete domains over the algebra of
simple reals. The relationship between constraint
approaches and description logics with concrete do-
mains has to be more thoroughly analyzed.

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 7

References

[1] K.M. Kahn and V.A. Saraswat, “Complete Visu-
alizations of Concurrent Programs and their Exe-
cutions”, in 1990 IEEE Workshop on Visual Lan-
guages, Skokie, Illinois, Oct. 4-6. Oct. 1990, pp.
7–14, IEEE Computer Society Press.

[2] K.M. Kahn, V.A. Saraswat, and V. Haarslev, “Pic-
torial Janus: A Completely Visual Programming
Language and its Environment (in German)”,
in GI-Fachgespräch Programmieren multimedialer
Anwendungen der GI-Jahrestagung 1991, Darm-
stadt, Oktober 1991, J. Encarnacao, Ed. 1991, pp.
427–436, Springer Verlag, Berlin.

[3] V. Haarslev, “Formal Semantics of Visual Lan-
guages using Spatial Reasoning”, In VL’95 [36],
pp. 156–163.

[4] V. Haarslev, “Formal Semantics of (Completely)
Visual Languages”, Technical Report, in prepara-
tion, 1996.

[5] V. Haarslev and M. Wessel, “GenEd – An Ed-
itor with Generic Semantics for Formal Reason-
ing about Visual Notations”, Technical Report, in
preparation, 1996.

[6] E. Clementini, P. Di Felice, and P. van Oosterom,
“A Small Set of Formal Topological Relationships
Suitable for End-User Interaction”, in Advances
in Spatial Databases, Third International Sym-
posium, SSD’93, Singapore, June 23-25, 1993,
D. Abel and B.C. Ooi, Eds. June 1993, vol. 692 of
Lecture Notes in Computer Science, pp. 277–295,
Springer Verlag, Berlin.

[7] E. Spanier, Algebraic Topology, McGraw-Hill Book
Company, New York, N.Y., 1966.

[8] M.J. Egenhofer, “Reasoning about Binary Topo-
logical Relations”, in Advances in Spatial
Databeses, Second Symposium, SSD’91, Zurich,
Aug. 28-30, 1991, O. Günther and H.-J. Schek,
Eds. Aug. 1991, vol. 525 of Lecture Notes in
Computer Science, pp. 143–160, Springer Verlag,
Berlin.

[9] B.L. Clarke, “A Calculus of Individuals Based
on ‘Connection’ ”, Notre Dame Journal of Formal
Logic, vol. 22, no. 3, pp. 204–218, July 1981.

[10] B.L. Clarke, “Individuals and Points”, Notre
Dame Journal of Formal Logic, vol. 26, no. 1, pp.
204–218, Jan. 1985.

[11] D.A. Randell and A.G. Cohn, “Exploiting Lattices
in a Theory of Space and Time”, In Lehmann [37],
pp. 459–476.

[12] R.M. MacGregor, “The Evolving Technology
of Classification-based Knowledge Representation
Systems”, In Sowa [38], pp. 385–400.

[13] R.J. Brachman, D.L. McGuinness, P.F. Patel-
Schneider, L.A. Reswnick, and A. Borgida, “Liv-
ing with Classic: When and How to Use a KL-
ONE-like Language”, In Sowa [38], pp. 401–456.

[14] W.A. Woods and J.G. Schmolze, “The KL-ONE
Family”, In Lehmann [37], pp. 133–177.

[15] R.J. Brachman and J.G. Schmolze, “An overview
of the KL-ONE knowledge representation system”,
Cognitive Science, pp. 171–216, Aug. 1985.

[16] P. Hanschke, A Declarative Integration of Ter-
minological, Constraint-based, Data-driven, and
Goal-directed Reasoning, PhD thesis, University
of Kaiserslautern, 1993.

[17] G. Kamp and H. Wache, “CTL – A Description
Logic with Expressive Concrete Domains”, sub-
mitted for publication, 1996.

[18] J. Jaffar, S. Michaylov, P.J. Stuckey, and R.H.C.
Yap, “The CLP(!) Language and System”, ACM
Transactions on Programming Languages and Sys-
tems, vol. 14, no. 3, pp. 339–395, July 1992.

[19] J.A. Serrano, “The Use of Semantic Constraints
on Diagram Editors”, In VL’95 [36], pp. 211–216.

[20] E.J. Golin, “Parsing Visual Languages with Pic-
ture Layout Grammars”, Journal of Visual Lan-
guages and Computing, vol. 2, no. 4, pp. 371–393,
Dec. 1991.

[21] G. Costagliola, M. Tomita, and S.K. Chang,
“A Generalized Parser for 2-D Languages”, in
1991 IEEE Workshop on Visual Languages, Kobe,
Japan, Oct. 8-11. Oct. 1991, pp. 98–104, IEEE
Computer Society Press.

[22] H. Göttler, “Graph Grammars, a new Paradigm
for Implementing Visual Languages”, in Rewrit-
ing Techniques and Applications, 3rd International
Conference, RTA-89, 3-5 April 1989, Chapel Hill,
NC. Apr. 1989, pp. 152–166, Springer Verlag,
Berlin.

[23] M.A. Najork and S.M. Kaplan, “Specifying Visual
Languages with Conditional Set Rewrite System-
s”, in 1993 IEEE Symposiumon Visual Languages,
Bergen, Norway, Aug. 24-27. Aug. 1993, pp. 12–
17, IEEE Computer Society Press.

[24] J. Rekers and A. Schürr, “A Graph Grammar Ap-
proach to Graphical Parsing”, In VL’95 [36], pp.
195–202.

[25] C. Crimi, A. Guercio, G. Nota, G. Pacini,
G. Tortora, and M. Tucci, “Relation Grammars

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 8

and their Application to Multi-dimensional Lan-
guages”, Journal of Visual Languages and Com-
puting, vol. 2, no. 4, pp. 333–346, Dec. 1991.

[26] R. Helm and K. Marriott, “A Declarative Specifi-
cation and Semantics for Visual Languages”, Jour-
nal of Visual Languages and Computing, vol. 2, no.
4, pp. 311–331, Dec. 1991.

[27] B. Meyer, “Pictures Depicting Pictures: On the
Specification of Visual Languages by Visual Gram-
mars”, in 1992 IEEE Workshop on Visual Lan-
guages, Seattle, Washington, Sept. 15-18. Sept.
1992, pp. 41–47, IEEE Computer Society Press.

[28] K. Wittenburg, L. Weitzman, and J. Talley,
“Unification-based Grammars and Tabular Pars-
ing for Graphical Languages”, Journal of Visual
Languages and Computing, vol. 2, no. 4, pp. 347–
370, Dec. 1991.

[29] K. Wittenburg, “Adventures in Multi-dimensional
Parsing: Cycles and Disorders”, in 1993 In-
ternational Workshop on Parsing Technologies,
Tilburg, Netherlands and Durbuy, Belgium, Aug.
8-10, Aug. 1993.

[30] K. Marriott, “Constraint Multiset Grammars”, In
VL’94 [39], pp. 118–125.

[31] A.G. Cohn and J.M. Gooday, “Defining the
Syntax and the Semantics of a Visual Program-
ming Language in a Spatial Logic”, in AAAI-94,
Spatial and Temporal Reasoning Workshop, 1994,
Preprint.

[32] W. Citrin, M. Doherty, and B. Zorn, “Formal Se-
mantics of Control in a Completely Visual Pro-
gramming Language”, In VL’94 [39], pp. 208–215.

[33] D. Wang and J.R. Lee, “Pictorial concepts and
a concept-supporting graphical system”, Journal
of Visual Languages and Computing, vol. 4, no. 2,
pp. 177–199, June 1993.

[34] D. Wang and J.R. Lee, “Visual Reasoning: its
Formal Semantics and Applications”, Journal of
Visual Languages and Computing, vol. 4, no. 4, pp.
327–356, Dec. 1993.

[35] D. Wang, J.R. Lee, and H. Zeevat, “Reason-
ing with Diagrammatic Representations”, in Di-
agrammatic Reasoning: Cognitive and Computa-
tional Perspectives, J. Glasgow, N.H. Narayanan,
and B. Chandrasekaran, Eds., pp. 339–393. AAAI
Press / The MIT Press, Menlo Park, California,
1995.

[36] 1995 IEEE Symposium on Visual Languages,
Darmstadt, Germany, Sep. 5-9. IEEE Computer
Society Press, Sept. 1995.

[37] F. Lehmann, Ed., Semantic Networks in Artificial
Intelligence, Pergamon Press, Oxford, England,
1992.

[38] J.F. Sowa, Ed., Principles of Semantic Networks:
Explorations in the Representation of Knowledge,
San Mateo, California, 1991. Morgan Kaufmann
Publishers.

[39] 1994 IEEE Symposium on Visual Languages, St.
Louis, Missouri, Oct. 4-7. IEEE Computer Society
Press, Oct. 1994.

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996 9

