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Abstract: This paper presents a theoretical basis for termi-
nological reasoning about objects and their qualitative spatial
relationships. In contrast to existing work, which mainly fo-
cuses on reasoning about qualitative spatial relations alone,
we integrate quantitative and qualitative information with ter-
minological reasoning. This theory is motivated as basis for
knowledge representation and query processing for instance
in the domain of deductive geographic information systems.
Keywords: Qualitative spatial reasoning, terminological
reasoning.

1 Introduction
The combination of formal conceptual and spatial rea-
soning serves as a theoretical basis for knowledge repre-
sentation in domains such as geographical information
systems (GIS) and can be used to solve important ap-
plication problems. For instance, spatioterminological
inferences can be applied to interpretation of map data-
bases [6] and to spatial query processing [9].

Our treatment of spatial reasoning is based on Egen-
hofer’s set of topological relations [3] while the termi-
nological reasoning part is based on description logic
(DL) theory. In contrast to our earlier work presented
in [7], [5] and [8] where topological relations are used
as primitives in the sense of logic, we extend the treat-
ment of topological relations with respect to conceptual
reasoning by interpreting their semantic definition and
by demonstrating their influence on automatic concept
classification.

2 Integrating Spatial and
Terminological Reasoning

This section introduces a space box (SBox) reasoner
which implements inference services over spatial regions
and concept terms. The SBox reasoner complements
the usual DL reasoning facilities concerning the TBox
and Abox. We analyze current possibilities to integrate
the SBox into the CLASSIC system. The integration is
based on a recent proposal [2] that extended the the-
ory behind the CLASSIC DL for coping with external
domains.

The fundamental idea of our SBox extension is the
treatment of spatial regions as subsets of R2 represented
by polygons and to define so-called spatial subsumption
between polygons with respect to the relation g contains
(or g inside, see Figure 1). Basically, spatial subsump-
tion can be reduced to the polygon inclusion and in-
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Figure 1: Subsumption hierarchy of spatial relations.
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Figure 2: Elementary spatial relations between A and B.

tersection problem. The restriction to polygons is mo-
tivated by computational geometry offering efficient al-
gorithms for polygon inclusion and intersection. As we
will see, additional spatial inferences must be supported
(reasoning with spatial relations) because not all poly-
gons must necessarily be given as constants.

2.1 Spatial Relations
In a similar way as [4] we define 13 binary topological
relations that are organized in a subsumption hierarchy
(see Figure 1). The leaves of this hierarchy represent
eight mutually exclusive relations (elementary relations)
that are equivalent to the set of relations defined by
Egenhofer [3]. The non-elementary relations are defined
by a disjunction of relations represented as direct descen-
dants of the corresponding nodes. Figure 2 illustrates
five elementary relations (the inverses and the relation
‘equal’ have been omitted). Due to lack of space we refer
to [6] for a formal definition of these relations.

2.2 New Language Constructs as External
Concept Expressions

In order to support spatial inferences, we introduce new
concept constructors based on these spatial relations.
Our semantics assumes that each domain object is as-
sociated with its spatial representation (i.e. a polygon)
via a predefined attribute has area (see Figure 3). Spa-
tial concepts for the external domain are denoted as srp



Figure 3: Relationship between abstract and concrete
objects.
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Figure 4: A sketch of the northern part of Germany with
polygons for Germany (p1), Northern Germany (p5), the
federal states Schleswig-Holstein (p4) and Hamburg (p2)
as well as a small district of Hamburg (p3). Polygon p3
is assumed to be inside p2 but p2 is not inside p4.

where sr is a relation from Figure 1 and p is a polygon
constant. The integration of the abstract and the exter-
nal, spatial domain is realized with ∀-restrictions on the
fillers of the attribute has area (see below). We extend
the range of the DL interpretation function ξ to the set
of polygons P where each polygon p ∈ P defines a subset
of R2. The operator srp has the following semantics.

ξ[srp] = {x| (x, p) ∈ ξ[sr])} with ξ[sr] ⊆ P × P

For instance, we use the constructor g insidep to define
concepts for a region in Northern Germany, for a district
of the city of Hamburg etc. (HH is part of the car license
number for Hamburg).

northern german region .= (∀ has area g insidep5
)

district of hh .= (∀ has area g insidep2
)

The corresponding spatial constellation is illustrated in
Figure 4. The construct (∀ has area g insidep5

) subsumes
every region of Northern Germany whose associated
polygon is g inside of p5. With the operator equalp,

we define concepts for the federal states Hamburg and
Schleswig-Holstein.

federal state hh .= (∀ has area equalp2
)

federal state sh .= (∀ has area equalp4
)

For instance, federal state hh is subsumed by
northern german region since ξ[equalp2

] ⊆ ξ[g insidep5
].

We like to exphasize that equalp2
cannot subsume other

spatial concepts. Algorithms for deciding subsumption
between srp concepts are explained in Section 2.3.

In many cases, restrictions about spatial relations will
have to be combined with additional restrictions. For ex-
ample, how can we define a concept that describes a dis-
trict of Hamburg that touches the federal state Hamburg
from the inside? This requires some kind of qualified ex-
istential quantification. Thus, we propose the concept-
forming operator (© sr c) with the following semantics
(let sr denote a spatial relation and c a concept term):

ξ[(© sr c)] = {x| ∃y1, y2, z : (x, y1) ∈ ξ[has area],
(z, y2) ∈ ξ[has area],
(y1, y2) ∈ ξ[sr], x 6= z, z ∈ ξ[c]}

With this new operator we define the following two con-
cepts. It can be proven that hh border district to sh is
subsumed by hh border district.
hh border district .=

district of hh u (© t inside federal state hh)

hh border district to sh .=
district of hh u (© touching federal state sh) u
(© spatially related federal state hh)

In the next section we discuss how inferences about
the new concept-forming terms can be realized with the
CLASSIC extension interface.

2.3 Extending the CLASSIC Description
Logic

Borgida et al. [2] defined the following set of functions
for integrating a new concept-forming operator K into
the CLASSIC description logic system. These functions
are declared to the CLASSIC inference engine and are
automatically called during subsumption proofs when re-
quired.

Normalization
In addition to syntax checking a normalization function
for each term constructor K is required (in the following,
the constructor pattern K is written in square brackets).
As part of the normalization phase, all defined concepts
are replaced by their definition.

• NormalizeTerm[srp](srp) = srNormalizePolygon(p)

• NormalizeTerm[(© sr c)]((© sr c)) =
(© sr NormalizeTerm(c))
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Figure 5: Constraint network for computing the sub-
sumption relation between two concepts. The constraint
system is inconsistent.

Subsumption
Structural subsumption has to deal with terms that ei-
ther contain external predicate terms (see [2]) or are
equal to a predicate term. In our case, an external pred-
icate term (used as a concept) refers to a polygon p ex-
plicitly given in srp. In CLASSIC’s terminology, an ex-
ternal predicate term srp is called a host concept. Host
concepts may not be combined with abstract concepts
(e.g. in conjunctions).

• StructuralSubsumes?[srr](sr1p,sr
2
q) returns true iff

∀x ∈ P : sr1p(x) ⇐ sr2q(x). In other words:
∃ x ∈ P : ¬sr1(x, p) ∧ sr2(x,q) must be inconsistent.

Thus, in order to check whether g insidep5
subsumes

equalp2
(see above) the constraint system presented in

Figure 5 must be solved. Before well-known algorithms
for solving spatial constraint systems (based on Egen-
hofer’s composition table [3]) can be applied, restrictions
concerning “concrete” polygon constants must be com-
puted. In the example shown in Figure 5, p2 (Hamburg)
is known to be s inside p5 (Northern Germany). The
constraint system is obviously inconsistent because equal
composed with s inside is defined to be s inside. How-
ever, ¬g inside does not contain s inside (see also Figure
1). Thus, equalp2

is subsumed by g insidep5
. Grigni et

al. have emphasized [4] that constraint systems that are
(relationally) consistent must not necessarily lead to sit-
uation that are realizable in the plane. Thus, an addi-
tional planarity test must be added (see also [11]). For
other concept-forming operators similar techniques can
be applied.

• StructuralSubsumes?[(© sr c)]((© sr1 c1),(© sr2 c2))
returns true iff

– c2 v c1 and
– ∃ x, y, z ∈ P : ¬sr1(x, y)∧sr2(x, z) is inconsistent.

In order to compute whether a concept term based on the
constructor K subsumes a general concept term which is
constructed with other concept constructors, we have to
check whether the general concept implies the concept
based on K.

Figure 6: Example for a term that is implied by a con-
junction of spatial host concepts.

• Subsumes?[srp](srp,normalizedHostConcept) returns
true iff the conjunction normalizedHostConceptu¬srp
is inconsistent. From normalizedHostConcept we
only consider the predicate terms sripj

. This is
a generalization of StructuralSubsumes?. For in-
stance, s insidep1 is subsumed by the conjunction
spatially relatedp1

u g insidep2
(see Figure 6). Due to

the constraint propagation process, spatially related
is restricted to s inside because, according to Figure
4, p2 is s inside p1. If we claim that ¬s insidep1(x)
holds, the constraint system becomes inconsistent.

In order to check whether hh border district is implied
by hh border district to sh it must be shown that the
conjuction district of hhu(© touching federal state sh)u
(© spatially related federal state hh) (or its normalized
form) implies (© t inside federal state hh). To be able
to prove this implication, a decision procedure for the
pattern K = (© sr c) must be declared with CLASSIC’s
extension interface.

• Subsumes?[(© sr c)]((© sr c),normalizedConcept)
returns true iff (© sr c) is implied by
normalizedConcept. We have to extract from
normalizedConcept every term of the form
(© sr c) or (∀ has area srp) and to combine
them as a conjunction SC and check whether
∃ x : SC(x) ∧ ¬ (© sr c)(x) is inconsistent.
The decision procedure will be explained
with the example from above. We
start with SC = (∀ has area g insidep2

) u
(© touching federal state sh) u
(© spatially related federal state hh) and want
to derive that (© t inside federal state hh) is im-
plied. From the concept terms given with SC we
construct a graph. In Figure 7 an individual x has
been generated. For this individual x all role fillers
of has area are g inside p2 because district of hh
holds. Since has area is an attribute, a single filler
can be generated as a representative (q2, see Figure
7). The constraint g inside(q2, p2) is added. The
other two terms are treated as follows. Due to the
exists semantics of the circle operator, two addi-
tional individuals y and z are generated, together
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with their associated geometrical representations
q3 and q1, respectively. From the circle terms
we know the constraints spatially related(q2, q1)
and touching(q2,q3). Since z is subsumed by
federal state hh, equal(q1,p2) also holds (see the
structure created in Figure 7). Furthermore,
equal(q3, p4) holds, because y is subsumed by
federal state sh.
In Figure 8, implicit relations between spatial ob-
jects have been added and the constraints have
been solved. Obviously, because q1 is equal to p2,
g inside(q2,q1) also holds. Since p2 is touching p4

(see Figure 4), the relation between q2 and q1 is
further restricted to t inside. Now, in order to check
whether (© t inside federal state hh) is subsumed,
the resulting graph structure is traversed (starting
from x and following has area), i.e. direct paths to
the generated objects are examined. In our example
structure, there are two (direct) paths to new indi-
viduals (z is reached via t inside and y is reached via
touching). The concepts ci of the individuals at the
end of each of these paths are “matched” against
the concept term c of the (© sr c) term in ques-
tion. If there exists a path with relation r to an
individual whose ci is subsumed by c with r being
equal to or a subrelation of sr, then the (© sr c)
term is implied by SC. This is indeed the case for
(© t inside federal state hh).

In a similar way as for srp we declare a subsumption
checker for K = (∀ has area srp).

• Subsumes?[(∀ r c)]((∀ has area sr1p),normalizedConcept)
returns true iff normalizedConcept contains
(© sr2p c0), c0 implies (∀ has area sr3p), and
∃ x, y : ¬sr1(y, p) ∧ sr2(y, x)∧ sr3(x,p) is inconsistent.
(∀ has area equalp2

) is also implied by a
(fills has area p2) term because has area is an
attribute. Note that although CLASSIC adopts
a non-standard semantics for fills, this is not
relevant for host concepts since properties of host
individuals cannot be changed by concept terms.

Conjoining Concept Terms
The functions for conjoining concept terms and consis-
tency checking are similar to the subsumption functions
given above. Implied terms (see above) must also be
considered. In some cases, conjunctions can be simpli-
fied. For brevity, we do not discuss conjoin functions in
detail in this paper.

3 Related Work
Concerning description logic theory, another general
technique for integrating external domains into DLs is
the ‘concrete domain’ approach [1; 10]. For instance,

Figure 7: Initial structure used for deriving the
subsumption relation beween hh border district and
hh border district to sh. For symmetric relations the ar-
rows point in both directions.

Figure 8: Structure from Figure 7 with implicit relations
added and constraints propagated. Irrelevant relations
have been omitted for clarity.

ALC(D) provides a simple interface for external domains
basically requiring that the satisfiability of finite con-
junctions of concrete predicates be decidable. However,
this approach can only define concepts with concrete
predicates that depend on information available from
attribute chains starting with this concept. Spatial re-
lations cannot be adequately defined with the operators
and primitive roles offered by ALC(D). Another solution
might be the new role-forming operator of ALCRP(D)
as proposed in [11]. Then, the term (© sr c) could be
replaced by (∃ sr(has area)(has area) c). However, the
satisfiability problem for ALCRP(D) has shown to be
undecidable (see [11]).

Grigni et al. [4] study the computational problems in
developing an inference system for checking the satisfia-
bility of (conjunctive) combinations of spatial relations.
They point out that in topological inferencing the as-
pects of relational consistency and planarity interact in
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rather complex ways. They showed that besides the re-
lational consistency problem a planarity problem has to
be solved when areas are assumed to be disjoint. With
this additional restriction, in many cases the complexity
of the satisfiability problem becomes NP-hard.

4 Conclusions

In this paper, we have developed a DL formalization of
space with two separate domains: the abstract and the
space domain . The abstract domain is used to repre-
sent terminological knowledge about spatial domains on
an abstract logical level. The space domain extends the
abstract domain and allows access to efficient reasoning
algorithms (e.g. computational geometry, spatial index-
ing) for concrete spatial regions (e.g. polygons in map
databases). We have demonstrated that, on the one
hand, topological relations directly influence the kind
of conceptual or terminological knowledge that can (and
must) be derived by a formal inference engine. On the
other hand, assertions about concepts restrict the set of
possible spatial relations between different individuals.

Due to CLASSIC’s complex extension scheme for ex-
ternal domains, the integration of our proposed opera-
tors into CLASSIC appears to be less elegant than, for
instance, the ALC(D) approach. The high complexity is
caused by delegating to the user the full responsibility
for capturing all (hidden) inferences associated with an
external domain. However, the spatial inference rules
presented in this paper indicate that CLASSIC’s DL ex-
tended by our operators still remains decidable. We do
not support spatial relations in ∀-terms and only a lim-
ited form of exists-in restrictions for spatial relations can
be defined.
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