
Theory and Practice of
Visual Languages and

Description Logics

Volker Haarslev

Habilitationsschrift

Universität Hamburg
Fachbereich Informatik

September 2001

Contents

I Introduction 1

1 Motivation and Overview 3

1.1 Theory and Practice of Visual Languages 3

1.2 Theory and Practice of Description Logics 5

1.3 Road Map . 7

2 Deutsche Zusammenfassung 9

II Contributions to Visual Language Theory 25

3 A Theory for Describing Visual Notations 29

3.1 Introduction . 29

3.2 Theoretical Foundation . 30

3.2.1 Objects and Topology . 30

3.2.2 Spatial Relations . 31

3.2.3 Description Logic . 32

3.2.4 Extension of Description Logic: Concrete Domains 36

3.2.5 Applying Description Logic to Visual Language Theory 37

3.3 GenEd: Implementing the Theory . 38

3.3.1 Spatial Logic Implemented by Built-in Parser 38

3.3.2 User Interface . 39

3.3.3 Implementation . 40

3.4 Examples: Diagrammatic Notations . 41

3.4.1 Petri Nets . 42

3.4.2 Entity-Relationship Diagrams . 44

3.5 Example: Programming Language Pictorial Janus 46

I

3.5.1 Computational Model of Pictorial Janus 46

3.5.2 Language Elements of Pictorial Janus 48

3.5.3 Other Semantic Issues . 52

3.6 Related Work . 53

3.7 Summary . 55

4 Querying GIS with Spatial Sketches 57

4.1 Motivation and Introduction . 57

4.2 VISCO: Visual Spatial Constellations . 58

4.2.1 The Visual Query Language . 58

4.2.2 Relationships between Objects . 64

4.2.3 Operators and Computed (Derived) Objects 66

4.2.4 Extended Example: City Maps . 69

4.3 Related Work . 72

4.4 Summary . 73

5 VISCO: Bringing Visual Spatial Querying to Reality 75

5.1 Introduction . 75

5.2 The VISCO Prototype . 77

5.3 Representing and Compiling Queries . 81

5.4 Summary . 85

III Spatial Reasoning with Description Logics 87

6 Integrating Qualitative Spatial Reasoning into Description Logics 91

6.1 Introduction . 91

6.2 Qualitative Modeling . 93

6.3 Spatial Reasoning for Polygons . 95

6.4 Spatioterminological Inferences: an Extended Example 97

6.5 Related Work . 100

6.6 Summary . 101

7 Description Logics and Concrete Domains 103

7.1 The Description Logic ALCRP(D) . 103

7.1.1 The Concept Language of ALCRP(D) 104

II

7.1.2 The Assertional Language of ALCRP(D) 106

7.2 Decidability and Undecidability Results . 107

7.3 Spatioterminological Reasoning . 108

7.4 Examples for Spatioterminological Reasoning 109

7.4.1 Reconsidering the Hamburg Example 109

7.4.2 ABox Reasoning for GIS Applications Concerning Environmental
Planning . 111

7.5 Summary . 112

IV Visual Language Theory Revisited 115

8 Visual Spatial Query Languages: A Semantics Using Description Logic 117

8.1 Introduction . 117

8.2 Modeling in VL Theory with Concrete Domains 118

8.2.1 Reasoning with ALC(D) . 119

8.2.2 Unintended Models in ALC(D) . 120

8.2.3 Reasoning with ALCRP(D) . 122

8.3 Semantics of Spatial Queries . 123

8.3.1 Completion of Queries . 123

8.3.2 Reasoning about Visual Spatial Queries 126

8.4 Using ABox Patterns for n-ary Queries . 130

8.5 Related Work . 131

8.6 Summary . 132

V Practical Reasoning with Description Logics 135

9 Expressive ABox Reasoning with Number Restrictions, Role Hierarchies,
and Transitively Closed Roles 139

9.1 Defining the Language . 140

9.1.1 The Concept Language . 140

9.1.2 The Assertional Language . 142

9.2 ABox Reasoning versus Concept Consistency 143

9.3 An ABox Example . 144

9.4 A Tableaux Calculus for ALCNHR+ . 148

III

9.4.1 Completion Rules . 149

9.4.2 Decidability of the ABox Consistency Problem 154

9.5 Summary . 159

10 Optimization Techniques for Reasoning with Expressive ABox and Con-
cept Expressions 161

10.1 Introduction . 161

10.2 Optimizing TBox and ABox Reasoning . 162

10.2.1 Semantic Branching . 162

10.2.2 Dependency-directed Backtracking 163

10.2.3 Subtableaux Caching . 165

10.2.4 Lazy Unfolding . 167

10.2.5 GCI transformation . 168

10.2.6 Benchmark Problems used for Evaluation 168

10.3 New Transformations on GCIs . 169

10.4 Signature Calculus for ALCNHR+ . 172

10.4.1 Completion Rules . 175

10.4.2 Decidability of the ABox Consistency Problem 179

10.4.3 Further Enhancements . 179

10.4.4 Evaluation . 180

10.4.5 Summary and Discussion . 181

10.5 Role Path Contraction . 182

10.6 Exploiting Deep Pseudo Models for TBox Reasoning 186

10.7 Exploiting Flat Pseudo Models for ABox Reasoning 191

11 High Performance Reasoning with Very Large TBoxes 195

11.1 Topological Sorting for Achieving Quasi Definition Order 196

11.2 TBox Clustering . 197

11.3 Dealing with Domain and Range Restrictions 198

11.4 Exploiting Disjointness Declarations . 199

11.5 Caching Policies . 199

11.6 Empirical Results for TBox Classifications 200

VI Summary and Outlook 205

Bibliography 211

IV

A Verifying Satisfiability in ALCRP(D): An Extended Example 225

B The Calculus for ALCRP(D) 231

B.1 Completion Rules . 231

B.2 Clash Rules . 233

V

List of Figures

3.1 Primitive relations between A and B. 38

3.2 Higher-level relations. 39

3.3 GenEd: petri net for reader-writer problem (simplified). 41

3.4 Two figures: library menu and zoom of a petri net. 42

3.5 Zoom of the petri net shown in Figure 3.3. 43

3.6 An ER diagram modeling airlines. 44

3.7 Append of two lists in Pictorial Janus (original art by Ken Kahn). 47

3.8 The normalized append program equivalent to the version in Figure 3.7.
Regions are displayed as rectangles and annotated with DL concept names. 49

4.1 Query language elements supported by VISCO (non-shaded nodes represent
auxiliary concepts; a refinement for the node “Geom. Object” is given in
Figure 4.2). 59

4.2 Geometric objects of VISCO. 60

4.3 Basic language elements of VISCO. 61

4.4 Various applications of transparency films. 62

4.5 Various quadrilaterals. 63

4.6 Translucent and opaque enclosures. 64

4.7 Unknown spatial relations between two objects in different enclosures (dis-
joint or touching or overlapping?). 65

4.8 Scalable circle touching a rectangle. 66

4.9 Examples of ε-enclosures. 67

4.10 A subsection of the city of Hamburg. Intended query matches are marked
and numbered. 68

4.11 A subway station with a church in its vicinity. 70

4.12 Three adjacent buildings aligned in parallel. 70

4.13 Constellation with brook, street, pond. 71

4.14 A brook crossing a street in underground and running along a pond. 72

VII

5.1 Visual appearance of various implemented VISCO objects. 76

5.2 A simple VISCO query: “Search for a lake of (nearly) arbitrary form that is
not bigger than 300×300 m.” The elements used in the query are explained
in the figure by annotations (in italic font). 77

5.3 Logical architecture of VISCO. 78

5.4 The Graphical Query Editor of VISCO: the main window (left) and the
“Buttons” window (right). 79

5.5 Vague gestures in VISCO. 80

5.6 Execution and result inspection. 82

5.7 The Map Viewer. 83

5.8 A simple ASG and its corresponding C/E net. 84

5.9 A node “N” of a more complex ASG. 85

5.10 Corresponding C/E net for node “N”. 85

6.1 A subsection of Öjendorf (a district of the city of Hamburg). 92

6.2 Hierarchy of spatial relations. 94

6.3 Spatial relations between A and B. 95

6.4 Relationship between abstract and spatial domain. 97

6.5 A sketch of the northern part of Germany with polygons for Germany (p1),
Northern Germany (p5), the federal states Schleswig-Holstein (p4) and Ham-
burg (p2) as well as a small district of Hamburg (p3). Polygon p3 is assumed
to be inside p2 but p2 is not inside p4. 98

6.6 TBox for the Northern Germany example. 99

7.1 Relationship between abstract and concrete domain 109

7.2 A subsection from the Öjendorf map (see text). 112

8.1 Automatic completion of visual queries by application of default rules. . . . 124

8.2 Scenarios for situation-adapted completion of queries (see text). 125

8.3 Spatial sketch for first query. 126

8.4 Spatial sketch for second query. 128

8.5 Spatial sketch for second query refined by an additional lake. 130

9.1 Concept hierarchy of the TBox family augmented with the individuals from
the ABox smith family . Ovals represent atomic concepts, rectangles denote
ABox individuals, solid lines show the direct subsumption relationship, and
dashed lines the instance membership of the individuals for their direct types.147

VIII

9.2 Construction of the canonical interpretation (two examples for case 4). In
the lower example we assume that the individual d2 is a blocking individual
for c2 (see text). 156

10.1 Illustration of the dependency-directed backtracking technique. The satisfia-
bility of the concept term (C1
 D1) � . . . � (Cn
 Dn) � ∃R . (C � D) � ∀R .¬C
has to be checked. Using dependency-directed backtracking only n steps are
required in contrast to the case without dependency-directed backtracking
where 2n steps are needed. 164

10.2 Caching example with blocking (see text). 166

10.3 Evaluation of the enhanced GCI absorption technique. Setting 1 with en-
hanced gci absorption; Setting 2 with standard gci absorption. 172

10.4 Role hierarchy. 180

10.5 RACE: benchmark problems w/out signature calculus. 181

10.6 Example for ABox chain contraction (see text). The upper ABox is trans-
formed into the lower one. 183

10.7 RACE: ABox realization w/out role path contraction. 184

10.8 RACE: ABox instance checking w/out role path contraction. 185

10.9 Evaluation of pseudo model merging techniques (3 runs for each TBox; Set-
ting 1: all optimizations enabled, Setting 2: subtableaux caching disabled,
Setting 3: both subtableaux caching and the deep mode of model merging
disabled). 191

10.10Evaluation of the individual model merging technique (3 runs for each TBox;
Setting 1: all optimizations enabled, Setting 2: ‘told disjoints’ disabled,
Setting 3: both ‘told disjoints’ and individual model merging disabled). . . 193

10.11Comparison for synthetic ABox benchmarks. 194

11.1 Evaluation of the topological sorting and clustering techniques for selected
TBoxes (4 runs for each TBox; Setting 1: all optimizations enabled, Setting
2: clustering disabled, Setting 3: topological sorting disabled, Setting 4:
both topological sorting and clustering disabled). 201

11.2 Evaluation of the topological sorting and clustering techniques for UMLS2
(4 runs for each TBox; Setting 1: all optimizations enabled, Setting 2: clus-
tering disabled, Setting 3: topological sorting disabled, Setting 4: both
topological sorting and clustering disabled). 202

11.3 Evaluation of the classifications of the UMLS-2 knowledge bases (runtime
is given in hours : minutes, NST = number of subsumption tests, MaxNC =
maximal number of children). 203

IX

A.1 Initial constraint network corresponding to ABox A12. For symmetric rela-
tions the arrows point in both directions. Inverse relations have been omitted.227

A.2 Final constraint network (most of the implicit constraints are added) which
corresponds to ABox A13. For symmetric relations the arrows point in both
directions. Inverse relations have been omitted. 228

X

Foreword

I have written this monograph in a style reflecting American English. As a matter of
taste I often form sentences in the plural form (‘we’ instead of ’I’) in order to enhance
the readability of this text. However, I am the only author of this text and I am solely
responsible for any possibly remaining errors.

I am very grateful to Prof. Dr. Bernd Neumann, who always supported my research and
gave me the freedom to pursue quite diverse research areas such as visual languages and
description logics. His concern for practical applications inspired me to drive my theoretical
work by the experience gained from the development and use of actual applications.

This work is based on a close collaboration with several colleagues and former students.
I am particularly indebted to Dr. Ralf Möller, Michael Wessel, Carsten Lutz, and Anni-
Yasmin Turhan. My colleague Dr. Ralf Möller was heavily involved in the research on
description logics and gave essential advice on the work about visual languages. Michael
Wessel implemented the GenEd editor and co-designed the VISCO query language and
implemented the VISCO system. Carsten Lutz participated in the work on ALCRP(D)
and helped to improve the presentation of the ALCNHR+ calculus. Anni-Yasmin Turhan
implemented prototype systems for the description logics ALC(D) and ALCRP(D) and
co-developed optimization techniques for description logics with concrete domains. She
also helped to test the RACE system and co-authored the RACE user manual.

I am also very thankful to Prof. Dr. Franz Baader and the members of his group at the
RWTH Aachen for their detailed reviews that helped to improve many description logic
papers which are now part of this monograph.

I am indebted to Prof. Dr. Kim Marriott and Dr. Bernd Meyer, both from Monash Univer-
sity, Australia. They always supported my logical approach to visual language theory and
gave me plenty of feedback during discussions at workshops and conferences that helped
to improve the visual language theory papers which became part of this monograph.

I would like to thank Prof. Dr. Bernd Neumann and Michael Wessel for their valuable
comments on a draft of this monograph.

XI

Part I

Introduction

Chapter 1

Motivation and Overview

This monograph reports on research carried out by the author over the last six years. The
research comprises two major areas, visual language theory and description logics, which
seem to be quite diverse. However, it will become clear to the reader in the following that
both lines of research are intertwined with each other. The work on visual language theory
gave important impetus to the author’s research on description logics and the results from
description logics motivated new approaches for visual language theory. Another basic
principle underlying the research reported in this monograph is the coexistence of theory
and practice. It is the author’s firm belief that the advancement of theoretical work should
be driven by shortcomings encountered in practical applications and, vice versa, results
from theoretical work should be evaluated and possibly refined with the help of actual
applications.

The following sections in this chapter will briefly introduce the above-mentioned research
areas and relate the author’s research to the body of work carried out in these areas. The
chapter closes with a section giving a road map for the remainder of this monograph.

1.1 Theory and Practice of Visual Languages

Visual languages, such as diagrams or maps, have been important components of human
communication over centuries. Unfortunately, the theoretical aspects of visual languages
have only been analyzed to some extent but are in no way comparable to what we know
today about sequential languages. One of the problems in visual language theory already
starts with the definition of a visual language. In the context of this monograph we will
regard a visual language as a collection of diagrams representing valid sentences in this
language. A diagram is considered as a constellation of graphical symbols or icons in a two
dimensional space. The meaning of a diagram (and a sentence in this language) is mainly
defined by the meaning of its elements and their spatial relationships. Obviously, the work
on visual language theory is closely related to research in diagrammatic reasoning (e.g. see
[Glasgow et al., 1995] for an overview and [Olivier et al., 2000] for a recent survey).

3

4 Motivation and Overview

The research on visual language (VL) theory is mainly concerned with the specification
of visual languages. The body of work can be divided into three general approaches (see
[Marriott and Meyer, 1998b, page 2]). The grammatical approach has its historical roots
in formal language theory and theoretical linguistics. The logical approach is influenced
by formalisms developed in the artificial intelligence community. The algebraic approach
is derived from work in the formal specification of data types, programming languages and
programming environments.

For sake of brevity we do not attempt to give an overview on research in visual language
theory. There already exists an excellent book on visual language theory with a recent
survey of visual language specification and recognition [Marriott et al., 1998].

The research on visual language theory presented in the next part of this monograph plays a
major role in the logical approach. This research is concerned with the formal specification
of visual (or diagrammatic) notations such as (aspects of) petri nets, entity-relationship
diagrams, or visual programming languages. Our approach employs as a formal method
the description logic ALCQ with so-called ABoxes. The approach is feasible for both
the recognition and the specification of these notations. We used terminological (TBox)
knowledge for expressing syntax and static semantics and assertional (ABox) knowledge
for describing actual diagram examples. Our theory was practically applied to the formal
design of visual notations with the help of the generic editor GenEd which supports edit-
ing of diagrams. GenEd offers the user a large variety of diagram elements and editing
operations. The actual class of diagrams accepted by GenEd is specified with the help of
description logic.

A parallel research effort is reported in the last two chapters of part two. It is concerned
with the design of a visual spatial query language in the context of geographical information
systems (GIS). A redesign of this query language has been implemented and exemplified
with an application scenario using city maps of Hamburg. The effort clearly demonstrates
the advantage of visual against textual query languages.

The fourth part of this monograph revisits our work on visual language theory by taking
into account the results from our research on description logics where we developed mech-
anisms for integrating reasoning about spatial domains. The description logic ALCRP(D)
is used to provide a first step towards specifying a semantics for visual spatial query lan-
guages.

Several requirements for the theory and practice of description logics were derived from
our work on visual languages. Our theoretical work was based on the logic ALCQ and
formed the basis for the design and implementation of the generic editor GenEd. Due to
the unavailability of appropriate reasoners for ALCQ, GenEd used the description logic
system Classic [Brachman et al., 1991; Borgida and Patel-Schneider, 1994] which offers
TBox and ABox reasoning for a language similar to ALEN . Our experience with GenEd
and Classic proved a strong demand for description logics with higher expressiveness
and more efficient reasoners. Even with this relatively simple description logic, GenEd
(i.e. the Classic system) was not able to analyze diagrams consisting of ∼100 elements

Motivation and Overview 5

within several hours of runtime. The other requirement was the need to integrate reasoning
about spatial domains, e.g. qualitative spatial relations, into description logics. Without
this integration our specifications are incomplete w.r.t. the semantics of underlying spatial
domains.

1.2 Theory and Practice of Description Logics

Description logic (DL) theories are based on the ideas of structured inheritance networks
[Brachman and Schmolze, 1985]. In a DL, a factual world consists of named individuals and
their relationships that are asserted through binary relations (roles). Hierarchical descrip-
tions about sets of individuals (concepts) form the terminological knowledge (TBox). The
assertional language of a DL is designed for stating constraints (in an ABox) for concept or
role membership that apply to a particular domain or world. Most description logics are
based on the basic logic ALC [Schmidt-Schauss and Smolka, 1991] offering standard con-
structors (¬,�,
,∃,∀) for composing descriptions. There exists a correspondence between
several DLs and modal logics [Schild, 1991]. We refer to [Brachman et al., 1991; Woods
and Schmolze, 1992; Borgida, 1995] for a general introduction into description logics.

As mentioned above we identified the need to integrate spatial reasoning into suitable
description logics. Due to our experience with the DL system Classic we first developed
an approach to integrate reasoning about qualitative spatial reasoning into a language such
as ALEN . However, the need for high expressiveness resulted in a more general approach,
the development of the DLALCRP(D) offering a so-called role-forming predicate operator.
This operator is based on the notion of concrete domains. A concrete domain offers a
decision procedure for the consistency of a conjunction of concrete predicates ranging over
a suitable domain. The feasibility of our ALCRP(D) approach is demonstrated in the
context of GIS using a concrete domain based on the RCC theory [Randell et al., 1992].
In a parallel effort, we developed a prototype implementation for ALCRP(D) [Turhan,
1998]. Recently, we adapted two of the most effective optimization techniques to ALC(D)
[Baader and Hanschke, 1991], the basic DL for reasoning with concrete domains, and to
its extension ALCRP(D) [Turhan, 2000; Turhan and Haarslev, 2000].

The experience with this DL prover and the development of new optimization techniques
for DL reasoners [Horrocks, 1997] were the main impetus for our research on the design
and implementation of the DL ALCNHR+ . We advanced the theory of DLs by developing
a calculus deciding the ABox satisfiability problem for the logic ALCNHR+ . This DL is
already quite close to the above mentioned requirements from VL theory and seems to be
suitable for developing an appropriate highly optimized ABox DL reasoner. This leads to
our work on the practice of descriptions logics.

In the context of ALCNHR+ which extends the logic ALC with number restriction, role
hierarchies and transitive roles, we developed the ABox DL reasoner RACE. This DL
system supports TBox and ABox reasoning for ALCNHR+ and serves as a testbed for
empirically evaluating appropriate optimization techniques.

6 Motivation and Overview

RACE employs a set of nowadays “standard” and several novel optimization techniques.
The techniques integrated into RACE can be classified into three main categories. The
first category is the most general one and concerns so-called SAT techniques, i.e. techniques
optimizing the satisfiability test for concept terms. A preprocessing phase transforms con-
cept terms into negation normal form, removes duplicates, performs obvious simplifica-
tions, detects obvious clashes, flattens nested and/or expressions, normalizes the order of
disjuncts and conjuncts, and ensures that all concepts, which are structurally equal, are
also pointer equal. The pointer equality facilitates clash testing. For each concept, its
negated counterpart is precomputed.

The tableaux expansion strategy of RACE incorporates the trace technique (see [Schmidt-
Schauss and Smolka, 1991]) in an adapted version which considers the availability of role
hierarchies and number restrictions in ALCNHR+ . This tableaux expansion strategy per-
forms a depth-first search and allows one to reduce the memory requirements during a
proof. Only assertions derived during a depth-first traversal of the search space need to be
kept in memory at one time.

Disjunctions in concept terms are a major source of complexity in tableaux expansion.
Two optimization strategies, semantic branching and dependency-directed backtracking,
address this problem in particular. Caching the satisfiability status of independent “sub-
tableaux” increases the memory consumption but is also very effective for many problems.
Due to the logic ALCNHR+ , which allows for terminological cycles, lazy unfolding for con-
cept terms has to be used. The tableaux expansion may be blocked using only a subset test
instead of an equality test or other more expensive techniques. Blocking the tableaux ex-
pansion interacts with caching and may require the retraction of cache entries, i.e. making
caching non-monotonic in RACE. The so-called signature calculus optimizes the handling
of number restrictions. Domain and range restrictions for roles are efficiently dealt with
by a special form of lazy unfolding.

The second category of optimization techniques is concerned with TBox reasoning, i.e.
preprocessing of generalized concept inclusions (GCIs) and classification of named concepts
in TBoxes. Usually, GCIs have to be represented as disjunctions. Therefore, GCIs are
simplified and absorbed into concept definitions whenever possible. Concept definitions
can be efficiently dealt with by the lazy unfolding technique. GCIs expressing domain and
range restrictions for roles are also absorbed and addressed as mentioned above. RACE
uses marking techniques controlled via the computation of so-called told subsumers and
told disjoints in order to avoid unnecessary subsumption tests. The classification requires
both a top and bottom search phase since axioms may be specified in arbitrary order and
GCIs may cause subsumption relationships. Named concepts are ordered via topological
sorting for safely bypassing the expensive bottom search phase during classification. A
clustering technique tries to reduce the number of subsumption tests performed in the top
search phase. The flat and deep model merging technique creates and caches pseudo models
of concept terms and is a good heuristics to reduce the overall number of subsumption tests.

The third category comprises techniques especially designed for optimizing the ABox sat-
isfiability test and ABox realization for individuals. The contraction technique transforms

Motivation and Overview 7

ABoxes in order to maximize caching techniques. ABox realization also uses marking
techniques controlled via told subsumers and told disjoints that avoid unnecessary ABox
satisfiability tests. The individual model merging technique creates and caches pseudo
models for ABox individuals. In analogy to the model merging techniques it reduces the
overall number of ABox satisfiability tests.

All these techniques are already implemented in RACE and have been empirically evalu-
ated with a set of either standard or newly created benchmark problems. Several of these
problems were derived from knowledge bases used in actual applications.

1.3 Road Map

This monograph is organized in six parts. The first part contains this introduction and
the German summary. The remaining parts describe the research outlined above in detail.
Parts consisting of several chapters are usually introduced by chapter summaries.

The second part contains contributions to the theory and practice of visual languages. It
starts with a theory for describing visual notations and describes the generic editor GenEd
which is based on this theory. It continues with the design of a visual spatial query language
motivated by geographical information systems. The last chapter of this part describes the
VISCO system based on a redesign of the query language.

The third part is concerned with the integration of qualitative spatial reasoning into de-
scription logic theory. It begins with a first proposal for extending a logic similar toALEN .
It ends with a chapter introducing our research on ALCRP(D), a logic supporting reason-
ing with concrete domains. This concrete domain mechanism is used to demonstrate the
integration of spatial reasoning using examples from the GIS domain.

The fourth part revisits the theory presented in the second part and gives a first proposal
for a semantics of visual spatial query languages using ALCRP(D).

The fifth part reports on the research about practical reasoning with expressive description
logics. First, it introduces a calculus for the logic ALCNHR+ deciding the ABox consis-
tency problem. This calculus forms the basis for the RACE architecture. It continues with
a chapter presenting optimization techniques that are either novel or significantly extend
already known techniques. The effectiveness of these techniques is demonstrated with an
empirical evaluation. This part concludes with new optimization techniques that proved to
be effective in the context of “simple” but huge knowledge bases containing over 100,000
axioms and 60,000 hierarchical roles.

The last part gives a general summary of this monograph and tries to assess the achieve-
ments of the research presented here, followed by an outlook on future and ongoing re-
search. The appendix consists of two sections. The first section summarizes the calculus
for ALCRP(D) which is used in the second section where an extended reasoning example
using ALCRP(D) in a GIS domain is given in full detail.

Kapitel 2

Deutsche Zusammenfassung

Diese deutsche Zusammenfassung ist als Ergänzung zum englischsprachigen Teil dieser Mo-
nographie zu sehen. Daher werden viele der im englischsprachigen Teil exakt eingeführten
Begriffe und Probleme im deutschsprachigen Teil bewußt informell beschrieben oder moti-
viert. Damit sollen unangenehme Redundanzen vermieden werden. Eine präzise Einführung
dieser Begriffe im deutschsprachigen Teil erscheint nur dann sinnvoll, wenn große Teile die-
ser Arbeit ins Deutsche übersetzt werden würden.

Einleitung

Diese Monographie stellt Forschungsarbeiten des Autors dar, die in den letzten sechs Jah-
ren durchgeführt wurden. Die Arbeiten beschäftigen sich mit zwei wesentlichen Bereichen,
der Theorie und Praxis visueller Sprachen und der Theorie und Praxis von Beschreibungs-
logiken. Beide Forschungsgebiete erscheinen auf den ersten Blick wenig Gemeinsamkeiten
zu haben, es wird allerdings nachfolgend klar werden, daß die Arbeiten dazu miteinander
verwoben sind und sich die Erkenntnisse in diesen Gebieten wechselseitig ergänzt haben.
Die Arbeiten zu visuellen Sprachen haben die Forschung im Bereich der Beschreibungslo-
giken befruchtet, und umgekehrt haben die Erkenntnisse über Beschreibungslogiken neue
Wege zur Weiterentwicklung der Theorie visueller Sprachen ermöglicht.

Ein wichtiges Prinzip bei der Durchführung dieser Arbeiten ist die Koexistenz von Theorie
und Praxis. Arbeiten im Bereich der Theorie sollten immer durch bekannte Defizite in
praktischen Anwendungen motiviert werden. In analoger Weise sollten Erkenntnisse aus der
Theorie mithilfe praktischer Anwendungen evaluiert und möglicherweise verfeinert werden.

Die nachfolgenden Abschnitte geben über die vier wesentlichen Teile dieser Monographie
einen Überblick. Für eine vertiefte Darstellung sei auf den englischsprachigen Teil dieser
Monographie verwiesen.

9

10 Deutsche Zusammenfassung

Theorie und Praxis visueller Sprachen

Der erste Teil dieser Monographie präsentiert Arbeiten zur Theorie und Praxis visuel-
ler Sprachen. Visuelle Sprachen, z.B. Diagramme oder Karten, sind seit Jahrhunderten
wichtige Bestandteile menschlicher Kommunikation. Allerdings wurden die theoretischen
Aspekte visueller Sprachen erst in den letzten Jahren untersucht, so daß der derzeitige
Erkenntnisstand nicht mit Arbeiten in anderen Bereichen, beispielsweise natürlichen Spra-
chen, vergleichbar ist. Das Problem mit visuellen Sprachen beginnt bereits mit der einheit-
lichen Charakterisierung oder Definition einer visuellen Sprache. In Kontext dieser Arbeit
wird eine visuelle Sprache als eine Sammlung von Diagrammen verstanden, die gültige
Sätze dieser Sprache repräsentieren. Ein Diagramm wiederherum wird als eine zweidimen-
sionale räumliche Anordnung von graphischen Symbolen oder Piktogrammen angesehen.
Die Bedeutung eines Diagramms und somit auch die Bedeutung eines Satzes der visuellen
Sprache ist hauptsächlich durch die Bedeutung der Diagrammelemente und ihrer räumli-
chen Anordnung zueinander bestimmt. Die Arbeiten zur Theorie visueller Sprachen stehen
in enger Beziehung zu den Arbeiten im Bereich des Schließens über Diagramme (siehe bei-
spielsweise [Glasgow et al., 1995] für einen guten Überblick und [Olivier et al., 2000] für
eine aktuelle Darstellung dieses Gebietes).

Die einschlägigen Forschungsarbeiten zu visuellen Sprachen beschäftigen sich hauptsächlich
mit der Spezifikation derartiger Sprachen. Die Arbeiten lassen sich in drei grundsätzliche
Ansätze unterteilen (siehe die Darstellung in [Marriott and Meyer, 1998b, Seite 2ff]). Ein
Bereich beschäftigt sich mit der Spezifikation durch Grammatiken. Dieser Ansatz hat seine
historischen Wurzeln in der Theorie der formalen Sprachen und der Linguistik. Der zweite
Bereich untersucht die Verwendbarkeit von logischen Formalismen, die oft dem Gebiet der
Künstlichen Intelligenz zugeordnet werden können. Im letzten Ansatz werden algebraische
Formalismen favorisiert, die aus den Gebieten der abstrakten Datentypen und der formalen
Spezifikation von Programmiersprachen und Programmierumgebungen stammen.

Es wird in dieser Monographie bewusst darauf verzichtet, einen umfassenden Überblick
über den Bereich der visuellen Sprachen zu geben, da bereits eine exzellente und äußerst
umfassende Darstellung zur Spezifikation und zum Parsen visueller Sprachen in [Marriott
et al., 1998] zu finden ist.

Eine Theorie zur Beschreibung visueller Notationen

Kapitel 3 stellt einen logischen Ansatz zur Spezifikation visueller Sprachen oder Notationen
vor. Dabei ist von Bedeutung, daß die Semantik eingesetzter Sprachmittel in der Theorie
visueller Sprachen klar definiert ist. Dies bedeutet, daß die Bedeutung von Sprachelementen
eindeutig durch ihre graphischen Repräsentanten gegeben ist, deren Semantik wohldefiniert
ist, damit entsprechende Verfahren entwickelt werden können, die in Übereinstimmung mit
der Semantik der Repräsentanten arbeiten, ohne daß ad-hoc Provisorien eingeführt wer-
den müssen. Deshalb basiert die hier vorgestellte Theorie auf folgenden Komponenten.
Objekte und ihre Beziehungen untereinander sind mithilfe der Topologie von offenen und

Deutsche Zusammenfassung 11

geschlossenen Punktemengen definiert. Es werden drei repräsentative Ansätze zur Defi-
nition qualitativer räumlicher Relationen vorgestellt [Egenhofer, 1991; Clementini et al.,
1993; Randell et al., 1992], die letztendlich eine ähnliche Definition von Objekten und ihren
Beziehungen gestatten.

Beschreibungslogik wird eingesetzt, um topologische Beziehungen und qualitative räum-
liche Relationen mit konzeptuellen Beschreibungen zu kombinieren. Beschreibungslogiken
basieren auf Ideen zu strukturierten Vererbungsnetzen [Brachman and Schmolze, 1985]. In
einer Beschreibungslogik wird eine faktische Welt als eine Menge von benannten Indivi-
duen verstanden, deren Beziehungen untereinander üblicherweise durch binäre Relationen
beschrieben werden. Hierarchische Beschreibungen (oder auch Axiome) über Mengen von
Individuen bilden sog. konzeptuelle oder terminologische Beschreibungen. Solche Beschrei-
bungen (oder auch Terme) über Individuen werden als Konzepte bezeichnet, während die
binären Relationen Rollen genannt werden. Die Elemente der rechten Seite einer Rolle
werden als Füller dieser Rolle bzgl. eines Individuums bezeichnet. Attribute sind Rollen,
die höchstens einen Füller haben dürfen.

Beschreibungen können aus Namen bestehen, die Konzepte, Rollen (Attribute) und Indi-
viduen denotieren, sowie aus Operatoren zur Kombination von Beschreibungen. Die mo-
dellorientierte Semantik der Sprachelemente kann auf Prädikatenlogik erster Ordnung oder
auf einer kompositionalen Axiomatisierung durch Mengentheorie basieren. Die meisten Be-
schreibungslogiken basieren auf der

”
Basislogik“ ALC [Schmidt-Schauss and Smolka, 1991],

die Standardoperatoren (¬,�,
,∃,∀) zur Konstruktion von Beschreibungen anbietet. Es
existiert eine wohlbekannte Korrespondenz zwischen verschiedenen Beschreibungslogiken
und Modallogiken [Schild, 1991]. Für eine weiterführende Einführung in das Gebiet der
Beschreibungslogik wird auf [Brachman et al., 1991; Woods and Schmolze, 1992; Borgida,
1995] verwiesen.

Bei Beschreibungslogiken wird in der Regel zwischen zwei formalen Beschreibungsmitteln
unterschieden. Eine Menge von Axiomen wird in einer TBox zusammengefasst, während ei-
ne ABox assertorische Beschreibungen zwischen benannten Individuen enthält. Eine grund-
legende Inferenz, die mit TBoxen assoziiert wird, ist die Ableitung von Subsumptionsbe-
ziehungen zwischen gegebenen Namen für Konzeptbeschreibungen. Dieser Inferenzdienst
wird auch Klassifikation genannt. Die Subsumptionsbeziehung kann wiederherum auf den
Konsistenzbegriff eines Konzeptterms zurückgeführt werden. Bei ABoxen ist deren Kon-
sistenz eine grundlegende Inferenz. Die ABoxkonsistenz kann benutzt werden, die Menge
der speziellsten Konzeptnamen (bzgl. der Subsumptionsbeziehung in einer TBox) eines In-
dividuums zu bestimmen, von denen dieses Individuum eine Instanz ist. Dieser Vorgang
wird auch als Realisierung bezeichnet.

Die Beschreibungslogik wird für visuelle Sprachen folgendermaßen eingesetzt. Konzepte
beschreiben Elemente der visuellen Sprache, wobei sog. primitive Konzepte grundlegende
geometrische Elemente repräsentieren. Mithilfe des Klassifikation einer TBox können die
Konzeptnamen in einer Taxonomie angeordnet werden. Diese Taxonomie wird benutzt,
um die Realisierung von Individuen in einer ABox durchzuführen. Individuen bezeichnen
Elemente aus Beispielsätzen einer visuellen Sprache. Somit kann die Realisierung als Par-

12 Deutsche Zusammenfassung

sen eines Satzes verstanden werden. Daher kann der Einsatz von Beschreibungslogiken
als Grundlage dafür gedeutet werden, daß Spezifikationen visueller Sprachen

”
ausführbar“

und mithilfe von Beispielen (gegeben durch ABoxen) verifizierbar werden. Inkonsistente
Beschreibungen werden automatisch erkannt. Diese Eigenschaften führen direkt zur An-
wendung der Theorie zur Beschreibung visueller Sprachen.

Der generische, objektorientierte Editor GenEd bietet eine Vielzahl von graphischen Ele-
menten, die in einer visuellen Sprache enthalten sein können. Die geometrische Schlußfolge-
rungskomponente basiert auf der oben skizzierten Theorie und kann entsprechende räumli-
che Beziehungen zwischen Diagrammelementen berechnen. Ein Beschreibungslogiksystem,
welches die Klassifikation von TBoxen und die Realisierung von ABoxen unterstützt, wird
zum Parsen der erstellten Diagramme verwendet.

Die Plausibilität der Theorie zur Beschreibung visueller Sprachen wird anhand dreier Bei-
spiele untermauert, nämlich einigen Aspekten von Petrinetzen, Entity-Relationship-Dia-
grammen und der visuellen Programmiersprache Pictorial Janus [Kahn and Saraswat, 1990;
Kahn et al., 1991].

Eine visuelle räumliche Anfragesprache und ihre Realisierung

Kapitel 4 und 5 beschreiben die Arbeiten zur Entwicklung einer visuellen räumlichen An-
fragesprache, die im Rahmen des VISCO-Systems implementiert wurde. Diese Arbeiten
basieren auf den im Kapitel 3 entwickelten Ideen, die im Kapitel 8 zur Beschreibung der
Semantik visueller räumlicher Anfragesprachen erweitert werden.

Die von VISCO unterstützte visuelle räumliche Anfragesprache kann sowohl topologische als
auch metrische Einschränkungen und Beziehungen zwischen Anfrageelementen ausdrücken.
Die Anfragesprache wird mithilfe einer Metapher der

”
naiven Physik“ visualisiert. Die Ei-

genschaften von Sprachelementen werden als Gummibänder, Streichhölzer, Drehgelenke,
Nägel, Murmeln, usw. interpretiert. Die physikalischen Eigenschaften der von den Visuali-
sierungen repräsentierten Gegenstände sollen beim Benutzer das Verständnis der Semantik
der Sprachelemente unterstützen. Beispielsweise können Gummibänder sich zusammenzie-
hen oder gedehnt werden, oder im Gegensatz zu Streichhölzern um geometrische Elemente
gewickelt werden. Weiterhin darf eine Murmel im Unterschied zu einem Nagel herumrollen
und damit ihre räumliche Position verändern.

Im Gegensatz zu anderen relevanten Arbeiten (siehe bspw. [Egenhofer, 1996]), deren Fo-
kus auf topologischen Beschreibungen liegt, verwendet VISCO einen Bottom-Up-Ansatz und
berücksichtigt direkt die durch das Anfragediagramm gegebenen geometrischen Eigenschaf-
ten, aber ermöglicht auch das Annotieren durch Metainformation, die eine Spezifikation
fast reiner topologischer Anfragen gestattet. Die Metainformation kann genutzt werden,
um Relaxierungen, zusätzliche Einschränkungen oder Freiheitsgrade (don’t care) zu spezi-
fizieren.

Das Basiselement von VISCO’s Anfragesprache ist die sog. Transparentfolie, die eine recht-
eckige Form hat und ein eigenes lokales kartesisches Koordinatensystem besitzt. Folien
können skaliert, verschoben, rotiert und übereinander gelegt werden. Sie müssen immer

Deutsche Zusammenfassung 13

einen Fixpunkt bzgl. möglicher Transformationen besitzen. Weitere Sprachelemente können
innerhalb von Folien erzeugt werden. Dies sind Fixpunkte, Murmeln, Nägel, Streichhölzer,
Gummibänder und Umzäunungen. Fixpunkte, Murmeln und Nägel können auch Stütz-
punkte einer Polylinie repräsentieren, während Streichhölzer starre und Gummibänder fle-
xible Segmente einer Polylinie darstellen. Damit ist es möglich, eine Variabilität in der
möglichen Formveränderung von Polylinien zu beschreiben. Gleichzeitig wird mit diesen
Sprachmitteln ein fließender Übergang zwischen geometrischen und topologischen Anfra-
geelementen ermöglicht. Ein weiteres wichtiges Element dafür ist eine Umzäunung, die aus
einer sich nicht selbst schneidenden Polylinie besteht. Sie wird benutzt, um die Bewegungs-
freiheit von Murmeln einzuschränken. Mithilfe dieser Elemente können komplexere Objekte
aggregiert werden, wobei Gelenke sowohl als Murmeln wie auch als Nägel wählbar sind.
Der integrierte Parser von VISCO erkennt qualitative räumliche Beziehungen zwischen An-
frageelementen. Eine Anfrage ist somit ein Diagramm, das eine Beispielkonstellation von
gesuchten Objekten beschreibt, die unter Einhaltung der implizierten Einschränken zu
diesem Beispiel passen sollen.

Drei repräsentative Anfrageszenarien im Kontext von Stadtkarten von Hamburg werden
vorgestellt und erläutert. Der implementierte VISCO-Prototyp besteht aus einem graphi-
schen Editor zur Erstellung von Diagrammen, die eine Anfrage repräsentieren. Der Proto-
typ enthält weiterhin eine Komponente zur Ausführung der Anfrage und der Inspektion
der Ergebnisse. Diese Komponente basiert auf einem optimierenden Anfrageübersetzer.

Anforderungen an Beschreibungslogiken

Aus den bisher skizzierten Arbeiten zur Theorie und Praxis visueller Sprachen konnten
in Bezug auf Beschreibungslogiken mehrere Anforderungen gewonnen werden. Aufgrund
der Tatsache, daß entsprechende Beschreibungslogiksysteme für die Logik ALCQ, die in
Kapitel 3 verwendet wird, nicht zur Verfügung standen, verwendet der generische Editor
GenEd das Beschreibungslogiksystem Classic. Die Erfahrungen im Umgang mit GenEd
und Classic haben den Bedarf für ausdrucksstarke Beschreibungslogiken und entsprechen-
de effiziente Systeme untermauert. Beispielsweise konnten ABoxen mit etwa 100 Elementen
innerhalb von mehreren Stunden Rechenzeit von Classic nicht erfolgreich realisiert wer-
den, obwohl Classic nur eine Logik ähnlich zu ALEN unterstützt. Weiterhin wurde deut-
lich, daß Beschreibungslogiken das Schließen über räumliche Domänen, insbesondere über
qualitative räumliche Relationen, unterstützen müssen, um Spezifikationen zu vermeiden,
die bzgl. räumlicher Domänen unvollständig sind.

Räumliches Schließen mit Beschreibungslogiken

In diesem Teil der Monographie werden Arbeiten zu Beschreibungslogiken vorgestellt, die
u.a. aus der Erfahrung mit visuellen Sprachen inspiriert sind.

14 Deutsche Zusammenfassung

Qualitatives räumliches Schließen mit Beschreibungslogiken

Kapitel 6 bietet einen Lösungsvorschlag, gewisse Eigenschaften des Raums in die Seman-
tik einer Beschreibungslogik zu integrieren, die ähnlich zu ALEN ist. Diese Integration
basiert auf der Idee, eine räumliche Region als eine Menge von Punkten zu interpretieren
und die Subsumptionsbeziehung zwischen Konzepten auf Subsumption zwischen Regio-
nen zu erweitern. Eine Region subsumiert eine andere Region, wenn die erstere die zweite
enthält. In Anlehnung an [Egenhofer, 1991] definieren wir acht qualitative Basisrelationen,
die sich wechselseitig ausschließen, und fünf weitere Relationen, die als Disjunktion von
Basisrelationen definiert sind. Diese 13 Relationen werden in einer Subsumptionshierarchie
beschrieben.

Darauf aufbauend führen wir einen neuen Operator ein, der eine qualitative räumliche
Beziehung zwischen zwei Individuen beschreiben kann. Die Semantik von (© sr . C) kann
folgendermaßen beschrieben werden. Dieser Term beschreibt die Menge aller Individuen,
die mit anderen Individuen, die eine Instanz von dem Konzept C sind, über eine qualitative
räumliche Relation sr in Beziehung stehen. Dabei gilt diese Beziehung nicht direkt für diese
Individuen, sondern für Regionen, die mit diesen Individuen über ein Attribut assoziiert
sind. Dieser Sachverhalt wird in Abbildung 6.4 visualisiert. Die Nützlichkeit dieses Opera-
tors wird anhand eines Landkartenbeispiels für Norddeutschland demonstriert, wo räum-
liche und terminologische Schlüsse kombiniert werden. Eine prototypische Implementation
hat gezeigt, daß dieser neue Operator in das Classic-System integriert werden konnte. Al-
lerdings musste die Kombinierbarkeit mit anderen Operatoren syntaktisch eingeschränkt
bleiben. Dieser Nachteil führte zur Entwicklung der Beschreibungslogik ALCRP(D), die
im nächsten Abschnitt skizziert wird.

Beschreibungslogiken und konkrete Domänen

Kapitel 7 erweitert die in Kapitel 6 geschilderten Arbeiten zu einem wesentlich generelleren
Ansatz. Es wird die neue Beschreibungslogik ALCRP(D) eingeführt, die als Grundlage zur
Integration des Schließens über qualitative räumliche Relationen in Beschreibungslogiken
anzusehen ist. ALCRP(D) basiert auf der Logik ALC(D) [Baader and Hanschke, 1991], die
die Menge der Individuen in abstrakte und konkrete Objekte, z.B. reelle Zahlen, aufteilt.
Abstrakte Individuen werden mit konkreten über Attribute in Beziehung gesetzt. Bezie-
hungen zwischen konkreten Individuen können durch eine Menge sog. konkreter Prädikate
ausgedrückt werden. Diese werden durch einen konzeptbildenden Prädikatoperator mitein-
ander assoziiert. Ein Paar bestehend aus einer Menge konkreter Individuen und einer Men-
ge konkreter Prädikate wird auch als konkrete Domäne bezeichnet. ALCRP(D) erweitert
ALC(D) um einen sog. rollenbildenden Prädikatoperator, der die Einführung von definier-
ten Rollen anhand konkreter Prädikate erlaubt. Nur sog. zulässige konkrete Domänen sind
gestattet. Ein wichtiges Kriterium für die Zulässigkeit ist die Forderung, daß das Konsi-
stenzproblem für endliche Konjunktionen von Prädikaten entscheidbar sein muß.

Leider ist das ABoxkonsistenzproblem für die Logik ALCRP(D) unentscheidbar. Aller-
dings läßt sich eine Syntaxrestriktion für Konzeptterme in TBoxen formulieren, sofern

Deutsche Zusammenfassung 15

diese Terme vollständig aufgefaltet werden, d.h. alle Namen werden durch ihre Definition
ersetzt und das Negationszeichen darf nur noch vor nicht mehr auffaltbaren Namen vor-
kommen. Die Syntaxeinschränkung verhindert beispielsweise Terme der Art ∃R1 .∀R2 . C,
falls R1 und R2 definierte Rollen sind. Mit dieser Syntaxeinschränkung kann gezeigt werden,
daß das ABoxkonsistenzproblem für die eingeschränkte Logik ALCRP(D) entscheidbar ist.
Im nachfolgenden verstehen wir unter ALCRP(D) immer die Variante mit den Syntaxein-
schränkungen, ohne dies explizit zu erwähnen.

ALCRP(D) ist für räumlich-terminologisches Schließen sehr interessant, da sich beispiels-
weise bekannte Ansätze zum qualitativen räumlichen Schließen mithilfe einer entsprechen-
den konkreten Domäne integrieren lassen. Dies wird mit der konkreten Domäne S2 gezeigt,
die auf dem RCC-Ansatz [Randell et al., 1992] basiert. Mithilfe der Domäne S2 wird das sog.
Hamburg-Beispiel (siehe Abschnitt 7.4.1) erneut betrachtet. Es lassen sich nun räumlich-
terminologische Schlüsse aufzeigen, die sich in ALC(D) oder mit dem in Kapitel 6 vorge-
stellten Ansatz nicht ableiten lassen. Diese Beispiele sind auch leicht auf das Schließen mit
ABoxen übertragbar. Die Eigenschaften von ALCRP(D) machen diese Logik nun wieder
für die Theorie visueller Sprachen interessant, da die Bedeutung von Sätzen einer visuellen
Sprache oft von räumlichen Beziehungen abhängen. Ein erster Vorschlag zur Semantik von
visuellen räumlichen Anfragesprachen wird im nächsten Abschnitt vorgestellt.

Eine Semantik visueller räumlicher Anfragesprachen

In Anlehnung an den Anwendungsbereich der geographischen Informationssysteme wird
im Kapitel 8 ein erster Vorschlag zur Spezifikation der Semantik visueller räumlicher
Anfragesprachen beschrieben. Diese Ideen werden anhand von Beispielszenarien für Geo-
Informationssysteme illustriert. Als konkrete Domäne wird die Vereinigung zweier konkre-
ter Domänen verwendet, nämlich S2 ∪ R. Dabei sei R definiert über der Menge R al-
ler reeller Zahlen mit Prädikaten, die aus Ungleichungssystemen gebildet werden können,
die wiederum aus ganzzahligen Polynomen mit mehreren Unbestimmten bestehen dürfen
[Tarski, 1951]. Die Domäne S2 enthält alle nicht-leeren, regulär geschlossenen Teilmengen
von R

2 (siehe Kapitel 7.3 für eine genaue Definition).

Unter Annahme dieser Voraussetzungen werden die LogikenALC,ALC(D) undALCRP(D)
bzgl. ihrer Ausdruckskraft verglichen. Ein wohl überzeugendes Beispiel für räumlich-ter-
minologische Schlüsse in ALCRP(D) ist die Beschreibung eines sog. Paradiesferienhau-
ses (paradise cottage), das zum Angeln geeignet sein muß (fishing cottage), aber in einem

”
mückenfreien“ Wald (mosquito free forest) liegen soll. Ein zum Angeln geeignetes Ferien-

haus soll der Einfachheit halber einen Fluß
”
berühren“, während ein mückenfreier Wald

räumlich disjunkt zu einem Fluß sein muß. Die folgenden Axiome beschreiben diese Begrif-
fe mithilfe der Beschreibungslogik ALCRP(D). Zum intuitiven Verständnis wird hier die
informelle Bedeutung in Form von Prädikatenlogik beschrieben, wobei Konzepte als ein-
stellige und Rollen als zweistellige Prädikate gedeutet werden. Für eine präzise Definition
der Sprachelemente von ALCRP(D) sei auf Kapitel 7.1 verwiesen.

16 Deutsche Zusammenfassung

fishing cottage
.
= cottage � ∃ is touching . river

(fishing cottage(x) = cottage(x) ∧ ∃ y : is touching(x , y) ∧ river(y))

(is touching(x , y) = ∃ z1 , z2 : has area(x , z1) ∧ has area(y , z2) ∧ touching(z1 , z2))

mosquito free forest
.
= forest � ∀ is connected .¬river

(mosquito free forest(x) = forest(x) ∧ ∀ y : is connected(x , y) ⇒ ¬ river(y))

(is connected(x , y) = ∃ z1 , z2 : has area(x , z1) ∧ has area(y , z2) ∧ connected(z1 , z2))

paradise cottage
.
= fishing cottage � ∃ is g inside . forest � ∀ is g inside . mosquito free forest

(paradise cottage(x) = fishing cottage(x) ∧ ∃ y1 : (is g inside(x , y1) ∧ forest(y1))∧
∀ y2 : (is g inside(x , y2) ⇒ mosquito free forest(y2)))

(is g inside(x , y) = ∃ z1 , z2 : has area(x , z1) ∧ has area(y , z2) ∧ g inside(z1 , z2))

Aufgrund der durch die qualitativen räumlichen Relationen modellierten Beziehungen kann
gezeigt werden, daß das Konzept paradise cottage nicht erfüllbar ist. Dies liegt in der den
Relationen zugrundeliegenden Semantik begründet:

Eine Situation, wo eine Region r1 (Ferienhaus) innerhalb (g inside) einer an-
deren Region r2 (Wald) liegt und die Region r1 eine dritte Region r3 (Fluß)
berührt (touching), impliziert, daß r2 mit r3 verbunden (connected) ist, d.h.
g inside(r1, r2) ∧ touching(r1, r3) ⇒ connected(r2, r3)

Damit muß ein Paradiesferienhaus sowohl in einem Wald liegen, der mit einem Fluß räum-
lich verbunden ist, als auch in einem mückenfreien Wald, der nicht mit einem Fluß verbun-
den sein darf. Dies ist in ALCRP(D) ein Widerspruch.

Eine Semantik für Anfragen wird nun folgendermaßen definiert. Es wird angenommen,
daß eine Anfrage als Diagramm formuliert ist, das eine Beispielkonstellation beschreibt.
Die durch die Elemente des Diagramms repräsentierten semantischen Entitäten sind als
Konzepte definiert. Das Anfragediagramm wird nun in eine ABox übersetzt (z.B. durch
ein System wie VISCO). Dabei stellen Individuen Elemente des Diagramms dar. Die Daten-
bankeinträge seien ebenfalls als ABoxindividuen repräsentiert. Mit einem Standardabstrak-
tionsverfahren können ABoxen bestimmter Form auf einen Konzeptterm reduziert werden.
Die Beantwortung einer Anfrage besteht dann in der Berechnung aller Individuen, die In-
stanz dieses Konzeptterms sind. Die Anwendbarkeit des Abstraktionsverfahrens hängt von
der Ausdruckskraft der zugrundeliegenden Beschreibungslogik und von der Struktur der
betrachteten ABoxen ab. Die zulässigen ABoxen dürfen keine Gabeln (joins) oder Zyklen
enthalten, falls diese Strukturen nicht auf Konzeptterme abbildbar sind. Weiterhin können
keine beliebigen n-ären Anfragen behandelt werden. Dafür werden sog. ABoxmuster vor-
geschlagen, die es erlauben, beliebige ABoxen um den Preis einer höheren Komplexität zu
behandeln.

Deutsche Zusammenfassung 17

Eine prototypische Implementierung von ALCRP(D), die keine Optimierungstechniken
einsetzt, wird in [Turhan, 1998] beschrieben. Experimente mit dieser Implementation ha-
ben gezeigt, daß der Einsatz von Optimierungstechniken unabdingbar ist, um das System
in der Praxis realistisch einsetzen zu können. Basierend auf den in [Horrocks, 1997; Hor-
rocks, 1998; Horrocks and Patel-Schneider, 1999] und im folgenden Kapitel vorgestellten
Ergebnissen wurden erste Arbeiten zur Optimierung von Beschreibungslogiken mit kon-
kreter Domäne durchgeführt [Turhan, 2000; Turhan and Haarslev, 2000].

Praktisches Schließen mit Beschreibungslogiken

Die Erfahrungen im Umgang mit dem Prototypsystem fürALCRP(D) machten bereits De-
fizite im Entwurf von Beschreibungslogiksystemen für Teilmengen von ALCRP(D), z.B.
für die Basislogik ALC, deutlich. Insbesondere der Umgang mit Disjunktionen während
des Beweisverfahrens zur Prüfung der Konzepterfüllbarkeit und der ABoxkonsistenz war
zu ineffizient, um praktische Probleme handhaben zu können. Weiterhin ergaben sich aus
den Anforderungen zur Theorie visueller Sprachen, daß ein ABox-Inferenzsystem für Be-
schreibungslogiken mit Sprachkonstrukten wie Rollenhierarchien und Anzahlrestriktionen
unterstützt werden sollte. Aus dieser Motivation heraus wurde ein ABoxkalkül für die
Logik ALCNHR+ entwickelt, da die dafür anwendbaren Optimierungsverfahren teilweise
auch auf ALCRP(D) übertragen werden können. Die Logik ALCNHR+ erweitert ALC um
Anzahlrestriktionen, Rollenhierarchien und transitive Rollen. Kapitel 9 führt die Logik und
ihr Kalkül ein und gibt einen Beweis für die Entscheidbarkeit des ABoxkonsistenzproblems.
Aus Gründen der Entscheidbarkeit wird die Kombinierbarkeit von Anzahlrestriktionen und
transitiven Rollen eingeschränkt. Anzahlrestriktionen sind nur für nicht-transitive Rollen
gestattet, die weiterhin keine transitiven Unterrollen haben dürfen. Die Ausdruckskraft
von ALCNHR+ ist bereits recht hoch, da das Vorhandensein von Rollenhierarchien und
transitiven Rollen die Spezifikation von allgemeinen Konzeptinklusionen gestattet, d.h. es
sind auch Axiome der Form C � D möglich, wobei C und D beliebige Konzeptterme sein
dürfen. Eine Beispielmodellierung ist in Kapitel 9.3 zu finden.

Der Beweis zur Entscheidbarkeit des ABox-Konsistenzproblems basiert auf sog. Vervoll-
ständigungsregeln (und deren Eigenschaften), die gegebene Zusicherungen solange expan-
dieren, bis entweder keine Regel mehr anwendbar ist und auch kein Widerspruch entdeckt
wurde, d.h. die gegebene ABox ist konsistent, oder alle ableitbaren ABoxen einen Wider-
spruch enthalten, d.h. die gegebene ABox ist inkonsistent. Im Falle der Konsistenz einer
ABox kann dann mithilfe einer kanonischen Interpretation ein Modell konstruiert werden.
Man könnte daher den Vervollständigungsprozeß auch als den Versuch einer Modellkon-
struktion deuten. Um die Vollständigkeit des Verfahrens zu garantieren, wird als Teil des
Beweises eine Strategie zur Regelanwendung definiert, die eine Bearbeitung von Rollen-
nachfolgern gemäß einer Breitensuche sicherstellt. Dies wird benötigt, um die Korrektheit
der kanonischen Interpretation zu gewährleisten. Nach dem Beweis der lokalen Korrektheit
der Regeln werden die möglichen Widerspruchsarten definiert. Mithilfe der kanonischen
Interpretation wird der entscheidende Teil des Beweis, nämlich die Korrektheit der Verfah-

18 Deutsche Zusammenfassung

rens, gezeigt. Die Terminierung des Verfahrens kann über die Angabe einer Oberschranke
für die Menge aller ableitbaren Zusicherungen begründet werden.

Sowohl allgemeine Konzeptinklusionen als auch transitive Rollen erfordern eine Behandlung
von Zyklen während der Anwendung von Vervollständigungsregeln. Um die Terminierung
der Anwendung der Vervollständigungsregeln zu gewährleisten, muß eine sog. Blockierungs-
bedingung eingeführt werden, die die Vervollständigung (oder auch Tableauxexpansion)
genau dann blockiert, wenn keine

”
neue“ Information abgeleitet werden kann. Dies sei mit

dem folgenden Konzeptterm illustriert, der auf Konsistenz geprüft werden soll (has ancestor
sei eine transitive Rolle): ∃≥2 has ancestor � ∀ has ancestor . (∃≥2 has ancestor). Dieser Kon-
zeptterm beschreibt folgenden Sachverhalt

”
Jemand hat mindestens zwei Vorfahren und

für alle diese Vorfahren gilt, daß sie ebenfalls mindestens zwei Vorfahren haben müssen“.
Ohne eine Blockierungsbedingung würde die Anwendung entsprechender Vervollständi-
gungsregeln nicht terminieren, da bei der Modellkonstruktion durch die Transitivität von
has ancestor jeder Füller dieser Rolle ebenfalls wieder Nachfolger für has ancestor haben
muß. Da die Logik ALCNHR+ jedoch die Eigenschaft besitzt, daß für alle Konxeptterme
und ABoxen endliche Modelle existieren, ist es leicht möglich, eine Terminierung und die
Existenz entsprechender Modelle sicherzustellen.

ALCNHR+ ist gleichzeitig die Grundlage für die Entwicklung des Beschreibungslogiksy-
stems RACE, das TBox- und ABox-Schließen für ALCNHR+ implementiert. RACE ist
ein prototypisches System, das u.a. der Evaluierung bekannter und neuartiger Optimie-
rungstechniken zum Schließen mit ALCNHR+ dient. Diese Techniken und ihre Evaluierung
werden in den Kapitel 10 und 11 ausführlich dargestellt.

Verfahren zum Konsistenztest

Die von RACE eingesetzten Optimierungstechniken lassen sich in drei grundsätzliche Ka-
tegorien unterteilen. Die erste Kategorie betrifft die

”
Basismaschine“ von RACE, den sog.

SAT-Tester, der den Konsistenztest für Konzepte und ABoxen realisiert. Eine Vorverar-
beitungsphase transformiert Konzepte in ihre Negationsnormalform, entfernt redundante
Elemente, führt offensichtliche Vereinfachungen durch, behandelt leicht erkennbare Wider-
sprüche, verflacht geschachtelte Konjunktionen und Disjunktionen, normalisiert die Rei-
henfolge von Disjunkten und Konjunkten, und stellt sicher, daß alle strukturell gleichen
Konzepte durch dieselbe Datenstruktur repräsentiert werden. Dies vereinfacht die Reali-
sierung des Tests auf Widersprüche. Weiterhin werden aus Gründen der Einfachheit und
Effizienz zu allen Konzepten ihre Negation vorberechnet und gespeichert.

Die Strategie zur Anwendung der Vervollständigungsregeln arbeitet in Anlehnung an die
sog. Trace-Technik (siehe [Schmidt-Schauss and Smolka, 1991]), die eine Reduzierung des
Speicherbedarfs im Mittel ermöglicht. Die Trace-Technik mußte für die Logik ALCNHR+

derart angepaßt werden, daß die Interaktionen mit Rollenhierarchien und Anzahlrestrik-
tionen berücksichtigt werden. Dabei findet die Vervollständigung im Gegensatz zum theo-
retischen Verfahren, das für den Beweis der Entscheidbarkeit entwickelt wurde (s.o.), in
Form einer Tiefensuche statt, damit nur abgeleiteten Zusicherungen entlang eines Pfades

Deutsche Zusammenfassung 19

(trace) gleichzeitig gespeichert werden müssen.

Disjunktionen in Konzepttermen sind eine wichtige Ursache für die Zeitkomplexität von
entsprechenden Vervollständigungsverfahren. Zwei generelle Optimierungstechniken, se-
mantisches Verzweigen und abhängigkeitsgesteuertes Backtracking, können eine Effizienz-
steigerung im Mittel bewirken. Ihre Anwendung auf Beweissysteme für Beschreibungslo-
giken wird in [Horrocks, 1997] ausführlich dargestellt und empirisch bewertet. Ohne den
Einsatz dieser beiden Verfahren ist ein praktikables Beschreibungslogiksystem heute nicht
mehr denkbar. Beim semantischen Verzweigen wird der Suchraum

”
semantisch“ halbiert,

da davon ausgegangen wird, daß ein Disjunkt C entweder wahr (d.h. C führt zu keinem
Widerspruch) oder falsch (d.h. ¬C führt zu keinem Widerspruch) sein kann. Allerdings
ist es möglich, daß in einem Teilbaum beide Alternativen, C oder ¬C, zu einem Wider-
spruch führen, d.h. dieser Teilbaum ist nicht erfüllbar. Derartige Situationen können beim
Einsatz blinder Suche dazu führen, daß einmal erkannte Widersprüche, die unabhängig
von der lokalen Entscheidung sind, u.U. immer wieder in anderen Teilbäumen erneut ent-
deckt werden. Dies bedeutet in der Regel, daß die Unerfüllbarkeit eines Teilbaumes von
Entscheidungen abhängt, die in übergeordneten Teilbäumen getroffen wurden. Ein derar-
tiges Widerspruchsflattern (clash thrashing) kann beim Einsatz des abhängigkeitsgesteu-
erten Backtracking vermieden werden. Bei diesem Verfahren werden die Abhängigkeiten
von Disjunktionen vermerkt, so daß im Falle eines Widerspruchs beim Backtracking alle
diejenigen verbleibenden Alternativen übergangen werden, deren Auswahl das Ableiten
desselben Widerspruchs nicht verhindern kann.

Eine weitere Technik, das Speichern des Ergebnisses eines sog. Subtableauxtests (sub-
tableaux caching), benötigt zwar im schlimmsten Fall für ALCNHR+ exponentiell viel
Speicher, ist aber für viele Anwendungsprobleme nötig, um diese lösen zu können. Als
Beispiel sei eine Anwendung im Telekommunikationsbereich genannt, wo es darum geht,
Interaktionen bei der Konfiguration von Telefonanlagen zu entdecken (siehe [Areces et al.,
1999]). Aus der Modellierung von möglichen Interaktionen ergibt sich beispielsweise eine
TBox, die RACE in weniger als 10 Sekunden klassifizieren kann, wenn die Ergebnisse der
Subtableauxtests gespeichert und wiederverwendet werden. Ohne den Einsatz dieser Op-
timierungstechnik kann diese TBox dagegen nicht in 10000 Sekunden klassifiziert werden.
Im Rahmen von RACE werden zwei Cache-Arten zum Einsatz gebracht. Der erste Cache-
Typ vergleicht den Suchschlüssel mit den Schlüsseln der Einträge auf Gleichheit . Der zweite
Cache-Typ unterscheidet zwischen Einträgen, die erfüllbar und unerfüllbar sind. Für die
erfüllbaren Einträge werden deren Schlüssel mit dem Suchschlüssel auf eine Obermengen-
beziehung verglichen, d.h. ist bereits ein erfüllbarer Eintrag für eine Obermenge bekannt,
so gilt die Erfüllbarkeit ebenfalls für eine Untermenge. In analoger Weise kommen bei un-
erfüllbaren Einträgen der Test auf die Untermengenbeziehung zum Einsatz, d.h. ist bereits
ein unerfüllbarer Eintrag für eine Untermenge bekannt, so gilt die Unerfüllbarkeit ebenfalls
für eine Obermenge. Durch den zweiten Cache-Typ kann in der Regel eine Effizienzstei-
gerung in der Laufzeit und eine Reduktion des Speicherbedarfs für den Cache erreicht
werden.

Die Ausdruckskraft vonALCNHR+ erzwingt die Behandlung von terminologischen Zyklen.

20 Deutsche Zusammenfassung

Beispielsweise könnte ein Mensch beschrieben werden als jemand, der mindestens einen
Menschen als Vorfahren besitzt (human � ∃ has ancestor . human). Zwei Standardtechniken
werden zur Behandlung von Zyklen eingesetzt. Zum einen werden Konzeptnamen nur nach
Bedarf aufgefaltet (lazy unfolding), zum anderen darf die Tableauxexpansion blockiert
werden (s.o.), wenn sichergestellt ist, daß keine neue Information erzeugt werden kann.
Diese Technik interagiert allerdings mit dem Speichern von Subtableauxergebnissen, d.h.
möglicherweise müssen bereits gespeicherte Subtableauxergebnisse widerrufen werden. Dies
wird durch eine in RACE eingebaute Dependenzverwaltung für Cache-Einträge ermöglicht.
Durch das Zurücknehmen von Einträgen wird der Cache in RACE nicht-monoton.

Durch Axiome der Form ∃≥1 has ancestor � human kann der
”
Urbildbereich“ (domain) und

durch � � ∀ has ancestor . human der
”
Bildbereich“ (range) von Rollen eingeschränkt wer-

den. Die erste Form der Axiome erfordert die Behandlung von Disjunktionen der Art
¬∃≥1 has ancestor
 human, die unbedingt zu vermeiden sind, da derartige Axiome sehr
zahlreich sein können. In RACE ist ein erweitertes Tableauxverfahren integriert, das diese
Art von Axiomen durch eine spezielle Form des Auffaltens nach Bedarf behandeln kann.

Eine weitere wichtige Ursache für die Zeit- und Speicherkomplexität ist die Behandlung von
Anzahlrestriktionen in Kombination mit Rollenhierarchien. Ein naiver Umgang mit diesen
Restriktionen führt in Tableauxverfahren dazu, daß sehr viele Individuen erzeugt werden
müssen (z.B. unter Umständen 50000 Individuen für das Konzept (∃≥50000 hat sitz)). In
Kapitel 10.4 wird ein geändertes Tableauxverfahren vorgestellt, daß nur notwendige Stell-
vertreter erzeugt, die über Signaturen (signatures) beschrieben werden und die von der
verwendeten Zahl unabhängig sind. Beispielsweise würde für das Konzept ∃≥50000 hat sitz
genau eine Signatur statt 50000 Individuen als Rollenfüller von hat sitz generiert werden.
Empirische Untersuchungen haben gezeigt, daß damit eine Effizienzsteigerung in der Lauf-
zeit um mehrere Größenordnungen erreicht werden kann.

Verfahren zur Behandlung von TBoxen

Die zweite Kategorie von Optimierungstechniken dient der effizienten Behandlung von
TBoxen, insbesondere der Subsumptionstest soll optimiert werden. Eine wichtige Tech-
nik ist die Transformation bzw. Absorption von allgemeinen Konzeptaxiomen, die für Be-
schreibungslogiken erstmals in [Horrocks, 1997] eingeführt wurde. Dabei wird versucht, die
Anzahl solcher Axiome zu verringern und sie in eine möglicherweise einfachere Form zu
transformieren. Beispielsweise können die beiden Axiome {A � E
 F, A � B � C � D} in
folgendes Axiom A � (E
 F) � (¬B
 (C � D)) transformiert werden, das durch die Tech-
nik des Auffaltens nach Bedarf sehr effizient behandelt werden kann. Nichtabsorbierba-
re allgemeine Axiome müssen als Disjunktionen repräsentiert werden, die den Suchraum
während eines Beweises vergrößern. Kapitel 10.3 stellt ein in RACE integriertes Verfahren
dar, das die in [Horrocks, 1997] vorgeschlagene Technik erweitert und im Mittel verbessert.
Weiterhin können die o.a. Axiome zur Definition des Urbild- und Bildbereichs von Rollen
eliminiert und durch die Behandlung des Auffaltens nach Bedarf ersetzt werden.

In Kapitel 11 werden die in [Baader et al., 1994a] eingeführten Markierungs- und Pro-

Deutsche Zusammenfassung 21

pagierungstechniken erweitert. Diese dienen dazu, die Anzahl der Subsumptionstests zu
reduzieren, indem die während der Vorverarbeitung von Konzepten und deren Klassifika-
tion gewonnene Information ausgenutzt wird. Dabei werden strukturell leicht erkennbare
Subsumptions- und Disjunktheitsbeziehungen zwischen Konzepten abgeleitet. Aufgrund
der Ausdrucksstärke von ALCNHR+ muß sowohl eine

”
Top-Down-Suche“ als auch eine

”
Bottom-Up-Suche“ durchgeführt werden, um Konzeptnamen in die Taxonomie einzusor-

tieren. Kapitel 11 stellt ein neues Verfahren vor, das mithilfe einer topologischen Sortierung
die benannten Konzepte in einer TBox in eine derartige Reihenfolge bringt, daß für pri-
mitive Konzepte die aufwendige Bottom-Up-Suche u.U. weggelassen werden kann. Diese
Technik wird weiterhin durch eine Gruppierungstechnik unterstützt, die bei Konzeptnamen
mit vielen direkten Nachfolgern (in der Taxonomie) diese Nachfolger in Gruppen einteilt,
um ebenfalls die Anzahl von Subsumptionstests zu reduzieren. Statt die Subsumptionstests
mit allen Gruppenmitgliedern einzeln zu überprüfen, wird nur ein korrekter aber unvoll-
ständiger Vortest auf Nicht-Subsumption (s.u.) durchgeführt. Ist dieser erfüllt, brauchen
die Gruppenmitglieder nicht einzeln überprüft werden. Eine empirische Untersuchung für
sehr große Wissensbasen belegt, daß sich durch die Kombination beider Techniken eine
Rechenzeitersparnis von bis zu einer halben Größenordnung erreichen läßt.

Mithilfe sog. Pseudomodelle, die während eines Subtableauxtests erzeugt werden, kann die
Anzahl der notwendigen Subsumptionstests ebenfalls erheblich reduziert werden. Dabei
ist ein Pseudomodell für ein Konzept als eine Datenstruktur anzusehen, die Informatio-
nen enthält, die aus einem vollständig expandierten Tableau eines Konzeptkonsistenztests
extrahiert wurde. Aus der Erkenntnis heraus, daß nur ein kleiner Prozentsatz (üblicher-
weise weniger als 5%) aller möglichen Subsumptionstests während der Klassifikation einer
TBox tatsächlich eine Subsumptionsbeziehung ergibt, wird ein unvollständiger aber kor-
rekter Vortest eingeführt. Statt sofort mit dem Tableauxverfahren zu prüfen, ob ein Kon-
zept C ein Konzept D subsumiert, d.h. ob ¬ satisfiable({a :¬C � D}) gilt, wird getestet, ob
die Pseudomodelle von ¬C und D verschmelzbar sind. Ist dies der Fall, so kann daraus
abgeleitet werden, daß das Konzept C das Konzept D nicht subsumiert. Diese Technik
wurde in [Horrocks, 1997] vorgestellt und analysiert. Im Kapitel 10.6 wird dieses Ver-
fahren erstmals für die Logik ALCNHR+ angepaßt und um eine Variante erweitert, die
mit sog. tiefen Pseudomodellen arbeitet, d.h. die Pseudomodelle werden rekursiv traver-
siert und auf Verschmelzbarkeit überprüft. Die Korrektheit dieses Verfahrens wird formal
untersucht. Empirische Untersuchungen belegen, daß mit der tiefen Variante der Pseudo-
modellverschmelzung eine Verringerung der Laufzeit während der Klassifikation um den
Faktor 1.5-2 erreicht werden kann.

Verfahren zur Behandlung von ABoxen

Die dritte Kategorie umfaßt Techniken, die speziell zur Beschleunigung des ABox-Kon-
sistenztests und der Realisierung von ABoxen entwickelt wurden. Die Kontraktionstechnik
transformiert eine ABox derart, daß die Anzahl der vorhandenen Individuen verringert
werden kann. Sie basiert auf der Idee, eine Menge von Individuen, die durch eine Rollen-
kette miteinander verknüpft sind, in einen geschachtelten Konzeptterm zu transformieren.

22 Deutsche Zusammenfassung

Dadurch können verstärkt Optimierungstechniken für Konzepte (z.B. Modellverschmel-
zung, Caching, etc.) eingesetzt werden. Empirische Untersuchungen für die Kontraktion
(siehe Kapitel 10.5) belegen eine Steigerung in der Laufzeiteffizienz um eine bis mehrere
Größenordnungen.

In Analogie zur Behandlung von TBoxen kommen bei der Realisierung von ABoxen auch
entsprechende Markierungs- und Propagierungstechniken in Betracht. Aus den bekannten
Zusicherungen für Individuen werden strukturell leicht erkennbare Instanz- und Disjunkt-
heitsbeziehungen zu benannten Konzepten ermittelt. Dadurch können unnötige Instanz-
tests vermieden werden. In Kapitel 10.7 wird erstmals die Technik der Pseudomodellver-
schmelzung für den Instanztest von Individuen entwickelt. Statt mit dem Tableauxverfah-
ren zu überprüfen, ob ein Individuum a eine Instanz eines Konzepts C für eine gegebene
ABox A ist, d.h. ob ¬ satisfiable(A ∪ {a :¬C}) gilt, wird getestet, ob die Pseudomodel-
le von a und ¬C verschmelzbar sind. Das Pseudomodell für ein Individuum a wird aus
dem Konsistenztest der ABox A gewonnen, indem aus dem voll expandierten Tableaux
alle Zusicherungen für das Individuum a weiterverarbeitet werden. Das Pseudomodell muß
weiterhin noch derart erweitert werden, daß Rollennachfolger von a berücksichtigt werden.
Auch dieser Vortest ist korrekt aber nicht vollständig, d.h. im Falle einer Verschmelzbarkeit
der Pseudomodelle ist bekannt, daß das Individuum a keine Instanz des Konzepts C ist.
Die Eleganz dieses Ansatzes liegt insbesondere darin begründet, daß die Pseudomodell-
verschmelzung für Individuen somit auf Algorithmen zur Pseudomodellverschmelzung für
Konzepte zurückgeführt werden kann.

Die Effektivität der oben skizzierten Neuentwicklungen oder der Erweiterungen bekann-
ter Verfahren wird anhand von TBoxen und ABoxen evaluiert, die entweder synthetisch
generiert oder aus Anwendungen entstanden sind. Dabei gilt als Grundsatz für die hier
dargestellten Arbeiten zur Optimierung, daß das Hauptaugenmerk in der Entwicklung von
Verfahren zur Behandlung von TBoxen und ABoxen liegt, die idealerweise aus praktischen
Anwendungen entstanden sind.

Zusammenfassung

Diese Arbeit hat sich mit zwei bisher weitgehend disjunkt voneinander betrachteten For-
schungsgebieten befaßt, den visuellen Sprachen und den Beschreibungslogiken. Im Rahmen
dieser Betrachtung konnte gezeigt werden, daß die durchgeführte Forschung beide Gebiete
wechselseitig befruchtet hat. Der Einsatz von Beschreibungslogiken für visuelle Sprachen
hat zu einem neuen logikbasierten Ansatz zur Theorie visueller Sprachen geführt. Die
praktische Verwendung von Beweissystemen für Beschreibungslogiken hat die Notwendig-
keit zur Entwicklung ausdrucksstärkerer Logiken und hochgradig optimierter Beweisverfah-
ren bestätigt. Aus diesen Erkenntnissen heraus sind die Arbeiten zur Beschreibungslogik
ALCRP(D) entstanden sowie die Entwicklung der Beschreibungslogik ALCNHR+ initiiert
worden. Der Entwurf und die Realisierung entsprechender optimierter Beweisverfahren im
Rahmen des Systems RACE liegt darin begründet. Mit RACE wurde ein ABox-Beweissy-
stem vorgestellt, das für fast alle Aspekte der Logik ALCNHR+ angepaßte Optimierungs-

Deutsche Zusammenfassung 23

verfahren anbietet. Es ist zu hoffen, daß die in dieser Arbeit gewonnen und geschilderten
Erkenntnisse weitere Fortschritte in verwandten Bereichen ermöglichen.

Part II

Contributions to Visual Language
Theory

The first part of this monograph presents research about visual language theory. Chapter
3 addresses issues in visual language theory with the help of logic formalisms that were
developed for reasoning tasks by the artificial intelligence and spatial databases communi-
ties, especially for spatial and diagrammatical reasoning. It describes an approach based
on three formal components. Topology is used to define basic geometric objects. Theory
about spatial relations from the domain of spatial databases is employed to define possi-
ble relationships between visual language elements. Description logic theory from the AI
community is used to combine topology and spatial relations. The feasibility of this theory
is demonstrated by describing three representative visual notations: entity-relationship
diagrams, petri nets, and a pictorial language for concurrent logic programming. This
chapter is based on [Haarslev et al., 1994; Haarslev, 1995; Haarslev, 1996a; Haarslev,
1996b; Haarslev and Wessel, 1996; Haarslev, 1998a].

Chapter 4 presents the design of the visual query system VISCO which offers a sketch-based
query language for defining approximate spatial constellations of objects. VISCO smoothly
integrates geometrical and topological querying with deductive spatial reasoning. It is
based on a strong physical metaphor visualizing semantics of query elements. Approximate
queries rely on combined topological and geometrical constraints enhanced with relaxations
and “don’t cares.” Chapter 5 reports on the implementation of VISCO’s spatial query
language using city maps of Hamburg as example domain. Its innovative user interface
consists of three interconnected components: a graphical (syntax-directed) query editor and
visual language compiler, a browser for inspecting the query results, and a map viewer for
browsing the spatial database. Chapter 5 also briefly reports on the process of compiling,
optimizing, and executing VISCO’s queries. Both chapters are based on [Haarslev and
Wessel, 1997; Wessel and Haarslev, 1998]. The raster and vector maps used in both chapters
were donated by the ‘Amt für Geoinformation und Vermessung, Hamburg’.

27

Chapter 3

A Theory for Describing Visual
Notations

This chapter reports on an approach to formalizing visual notations. We propose a spatial
logic for describing syntax and static semantics of visual notations. This logic combines
three components (topology, spatial/topological relations, description logic) that are them-
selves also formally specified with precise semantics. These components were derived from
research communities that are related to visual language (VL) research: reasoning on dia-
grammatic representations and spatial databases. The goal of this chapter is to intensify
the dialogue between these research communities and to “advertise” the benefits of this
particular view of VL theory.

3.1 Introduction

The successful application of our theory to a completely visual language for concurrent
logic programming, Pictorial Janus [Kahn and Saraswat, 1990; Kahn et al., 1991], has been
reported in [Haarslev, 1995]. A revised and simplified version of the language specification
of Pictorial Janus is also presented in this chapter. The experience with Pictorial Janus
resulted in the development of the editor GenEd [Haarslev and Wessel, 1996] for designing
visual notations. GenEd’s generic semantics is based on and controlled by the theory
described in this chapter.

GenEd is an object-oriented editor supporting the formal design and analysis of visual
notations. Prominent features of GenEd are (1) it is generic, i.e. domain-specific syntax
and semantics of drawings are specified by users; (2) it has a built-in parser for actual
drawings, driven by our spatial logic; (3) it offers powerful reasoning capabilities about
diagrams and their specification.

In principle, particular instances can be chosen for the components concerned with spatial/
topological relations and description logic. This process depends on the nature of specific
visual notations to be formally specified. For instance, the definition of Pictorial Janus

29

30 A Theory for Describing Visual Notations

is mostly based on topological relations between lines, arrows, and regions. Therefore,
we have selected corresponding definitions for primitive geometric objects, an appropriate
theory on spatial (topological) relations [Clementini et al., 1993] that can deal with true 1D
objects and regions, and a matching description logic. However, we like to emphasize that
other visual languages or notations might require different definitions for objects and their
possible relationships. The syntax and static semantics of particular classes of diagrams
may be specified with description logic. This allows GenEd to support a large variety of
diagrams.

This chapter is organized as follows. The next section discusses the theoretical foundation
of our approach. Afterwards we describe the editor GenEd that implements our theory.
This is followed by two sections presenting three representative visual notations and their
formal specification. We conclude this chapter with a discussion of related work.

3.2 Theoretical Foundation

We believe that the semantics of representational devices used for VL theory should be
well understood. That is, the meanings of represented language concepts should be un-
ambiguously determined by explicit notational devices whose meanings (semantics) are
understood, so that algorithms can operate on the representation in accordance with the
semantics of the notation, without needing ad hoc provisions for specific VL domains. In
the following we outline a fully formalized theory for describing visual notations that con-
sists of several components. The definition of objects and relations is based on point-sets
and topology. Description logic theory can be based on model-theoretic semantics ap-
pealing to first-order logic or on a compositional axiomatization with set theory. The next
sections describe the components of the theory in more detail and briefly review alternative
instances for these components.

3.2.1 Objects and Topology

The definition of basic geometric objects (the elementary vocabulary of a visual notation)
usually relies on topology which is itself a basis for defining relationships between objects.
In the following we assume the usual concepts of point-set topology with open and closed
sets [Spanier, 1966]. The interior of a set λi (denoted by λo

i) is the union of all open sets
in λi. The closure of λi (denoted by λi) is the intersection of all closed sets containing λi.
The complement of λi (denoted by λ−1

i) with respect to the embedding space R
n is the

set of all points of R
n not contained in λi. The boundary of λi (denoted by ∂λi) is the

intersection of the closure of λi and the closure of the complement of λi. It follows from
these definitions that ∂λi, λo

i, and (λ−1
i)

o
are mutually exclusive and ∂λi∪λo

i∪ (λ−1
i)

o
is R

n.

These definitions form the basis for Egenhofer’s approach [Egenhofer, 1991] where the
so-called 9-intersection defines topological relations between objects. This method charac-
terizes relations between two objects by nine set intersections (every pairwise combination
of interior, boundary, and complement). The following restrictions apply to every pair of

Theoretical Foundation 31

sets. (1) Let λi, λj be n-dimensional sets with λi, λj ⊂ R
n, (2) λi, λj �= ∅, (3) all bound-

aries, interiors, and complements are connected, and (4) λi = λo
i and λj = λo

j. A major
drawback of this approach is the failure to describe true one-dimensional objects.

This was the motivation for the proposal by Clementini et al. [Clementini et al., 1993].
They extended Egenhofer’s approach by introducing points and lines as additional object
types and the dimension of intersections as new feature for discriminating more cases.
Three types of geometric objects are modeled. Regions have to be connected and without
holes. Lines and arrows must not be self-intersecting, are either circular or directed, and
have exactly two end points. Points are elements of lines and describe their start or end
points. The boundary of a point is an empty point-set, the boundary of a line is either an
empty point-set (for a circular line) or a point-set consisting of its two end points (for a
non-circular line). The boundary of a region is a circular line. The interior of an object
is the object without its boundary. In case of points and circular lines their interior is
identical to the object itself. Neither approach can deal with concave objects.

A third but different approach is based on the work of Clarke about “individuals and
points” [Clarke, 1981; Clarke, 1985]. Clarke’s calculus interprets individual variables as
ranging over spatiotemporal regions and the two-place primitive predicate, “x is connected
with y,” as a rendering of “x and y share a common point .” Randell et al. [Randell et al.,
1992] developed their RCC theory based on this single property of connectedness. The
RCC theory is a superset of Egenhofer’s theory. It can even describe relationships with
concave objects by using a convex hull operator.

Of course, there exists a strong interdependency between the way of defining basic geomet-
ric objects and a set of corresponding spatial relations that can hold between these objects.
Each of the above mentioned approaches defines a set of spatial (topological) relationships
which are outlined in the next section.

3.2.2 Spatial Relations

Egenhofer’s approach distinguishes eight mutually exclusive relations (out of 92 = 81 dif-
ferent cases). The other cases can be eliminated since the above mentioned restrictions on
sets have to hold. The remaining relations cover all possible cases. The 9-intersection is
defined as a matrix.

In(λi, λj) =

∂λi ∩ ∂λj ∂λi ∩ λo
j ∂λi ∩ λj

λo
i ∩ ∂λj λo

i ∩ λo
j λo

i ∩ λj

λi ∩ ∂λj λi ∩ λo
j λi ∩ λj

With this definition the eight cases (disjoint, meet, overlap, equal, covers/coveredBy,
contains/inside) can be easily characterized by the distinction between empty and non-
empty intersections. For instance, the contains relation is specified by the 9-intersection
as follows.

32 A Theory for Describing Visual Notations

I5(λi, λj) =

 ∅ ∅ ¬ ∅
¬ ∅ ¬ ∅ ¬ ∅
∅ ∅ ¬ ∅

Clementini et al. have to deal with 44 = 256 different cases caused by taking into account
the dimension of intersections. The number of cases can be reduced to a total of 52 real
cases considering the restrictions on objects. They further reduced this still large number
of possible relationships to five with the help of an object calculus. These five binary
topological relations (touch, overlap, cross, in, disjoint) are mutually exclusive and cover
all possible cases (see [Clementini et al., 1993] for a proof). For instance, the in relation is
defined as follows: object λ2 is in object λ1 if the intersection between λ1’s and λ2’s region
is equal to λ2 and the interiors of their regions intersect. It is transitive and applies to
every situation.

<λ2, in, λ1>⇔ (λ1 ∩ λ2 = λ2) ∧ (λo
1 ∩ λo

2 �= ∅)

Randell et al. define nine spatial relations (that are similar to Egenhofer’s set) in terms
of a single primitive relation “C(x,y)” read as “x is connected with y.” The authors also
introduce an operator “conv(x)” which computes the convex hull of a possibly concave
object. Its definition enables reasoning with concave objects. This approach is motivated
by the idea that spatial databases might easily compute whether the single relation C(x,y)

holds between two objects in the database. Further deductions could be based on this
primitive relation. For instance, the relation “x is a part of y” (denoted as P(x,y)) is
defined as follows.

P (x, y) ≡ ∀z : (C(z, x) ⊃ C(z, y))

3.2.3 Description Logic

This section gives a brief introduction to some aspects of description logic (DL) theory. We
do not attempt to give a thorough overview and formal account of DL theory. However,
we try to summarize the notions important for VL theory. We refer to [Brachman et al.,
1991; Woods and Schmolze, 1992; Borgida, 1995] for more complete information about
description logic theory.

DL theories are based on the ideas of structured inheritance networks [Brachman and
Schmolze, 1985]. In a DL, a factual world consists of named individuals and their rela-
tionships that are asserted through binary relations. Hierarchical descriptions about sets
of individuals form the terminological knowledge. Descriptions (or terms) about sets of
individuals are called concepts and binary relations are called roles . Descriptions consist
of identifiers denoting concepts, roles, and individuals, and of description constructors.

Theoretical Foundation 33

For instance, consider the following description with the intended meaning “a circle that
touches only circles” that contains concept names (e.g. circle), role names (e.g. touching),
and constructors (e.g. � and ∀).

circle touching only circles
.
= circle � ∀ touching . circle

The formal semantics of description terms is given denotationally. It uses a set ∆I of
domain values and an interpretation function ·Imapping concept (or role) descriptions to
subsets of ∆I (or ∆I ×∆I) (see below for more details).

Syntax

Let C be a set of concept names that is disjoint from the set R of role names. Any element
of C is a concept term. If C and D are concept terms, R ∈ R is an arbitrary role, n > 1,
and m > 0 (n, m ∈ N), then the following expressions are also concept terms:

• C � D (conjunction)
• C
 D (disjunction)
• ¬C (negation)
• ∀R . C (concept value restriction)
• ∃R . C (concept exists restriction)
• ∃≤m R (at most number restriction)
• ∃≥n R (at least number restriction)
• ∃≤m R . C (qualifying at most number restriction)
• ∃≥n R . C (qualifying at least number restriction).

The concept language of a DL is obtained recursively by starting from a set of names for
concepts and roles, and forming more complex terms by applying description constructors.
A knowledge base (also called terminology or TBox) contains definitions for concepts. De-
finitions characterize concepts as primitive or defined (operators

.
= or �, respectively). A

specification of a primitive concept represents conditions that are necessary but not suffi-
cient. The specification of a defined concept represents conditions that are both necessary
and sufficient. Primitive and defined roles are similarly specified. A role R is considered
as a binary relation and, loosely speaking, the elements of the “right-hand side” are called
the fillers of the role R.

A considerable variety of description constructors is available, for example, unary (e.g. ¬)
and binary operators (e.g. ∧, ∨). A concept term can also be given as a restriction for role
fillers. Number restrictions specify the maximum or minimum number of allowed fillers
(e.g. ∃≤5 touching, ∃≥1 inside). Value restrictions allow only fillers that are individuals
of a specific concept (e.g. ∀ touching . arrow). Value and number restrictions may also be
combined (e.g. ∃≥1 touching . arrow). Roles with an (implicit) ‘∃≤1 ’ number restriction are
called attributes or features .

34 A Theory for Describing Visual Notations

In the DL considered in this chapter, the terminology must not contain cyclic definitions.
Furthermore, a concept name must occur only once on the left-hand side in the definitions
of a terminology. A terminology can also contain a set of disjointness assertions among
concepts and among roles.

The assertional language of a DL is designed for stating constraints for concept or role
membership that apply to a particular domain or world. The set of assertions (ABox) has
to comply to the definitions declared in the TBox.

The language for representing knowledge about individuals is introduced. An ABox A is
a finite set of assertional axioms which are defined as follows.

Let O be a set of individual names. If C is a concept term, R a role name, and a, b ∈ O
are individual names, then the following expressions are assertional axioms :

• a :C (concept assertion),

• 〈a, b〉 : R (role assertion).

For instance, if we assume a TBox with the concept description of a “circle touching
only circles” as given above, we can define individuals representing elements from our VL
domain. The following conjunctive ABox assertions (denoted with the operator ‘:’) use
named individuals (e.g. circle 1) and concept names (e.g. circle) or concept expressions
(e.g. ∃≤1 touching).

circle 1 : circle, circle 2 : circle, circle 3 : circle, rectangle 1 : rectangle,

〈circle 1, circle 2〉 : touching, 〈circle 3, rectangle 1〉 : touching,

circle 1 : ∃≤1 touching, circle 2 : ∃≤1 touching

Based on the semantics explained below, a DL reasoner will infer that circle 1 and circle 2
are members of the concept circle touching only circles while circle 3 is not a member of this
concept.

Semantics

Let C be the set of concept names and R the set of role names. The model-theoretic se-
mantics of a DL is based on the notion of an interpretation. An interpretation I = (∆I , ·I)
consists of a set ∆I (the domain) and an interpretation function ·I . The interpretation
function maps each concept name C to a subset CI of ∆I , each role name R to a subset RI

of ∆I ×∆I . Let the symbols C, D be concept expressions, R be a role name, n > 1, and
m > 0 (n, m ∈ N). Then the interpretation function can be extended to arbitrary concept
and role terms as follows (‖ · ‖ denotes the cardinality of a set):

Theoretical Foundation 35

(C � D)I := CI ∩ DI

(C
 D)I := CI ∪ DI

(¬C)I := ∆I \ CI

(∃R . C)I := {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
(∀R . C)I := {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
(∃≥n R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≥ n}
(∃≤m R)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI}‖ ≤ m}

(∃≥n R . C)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI , b ∈ CI}‖ ≥ n}
(∃≤m R . C)I := {a ∈ ∆I | ‖{b | (a, b) ∈ RI , b ∈ CI}‖ ≤ m}

In the TBox the two special symbols ‘
.
=’ and ‘�’ are used for introducing defined and

primitive concepts, respectively. An interpretation I is a model of a TBox T iff it satisfies

• CI ⊆ DI for all terminological axioms C � D in T , and

• CI = DI for all terminological axioms C
.
= D in T .

Primitive concepts are introduced whenever there is no need or not enough knowledge for
completely describing a concept, i.e. a primitive concept always ‘signals’ to users that there
exists something that is not modeled and thus is outside of a DL.

The semantics of ABox assertions is defined analogously. Let the individual names a, b be
elements of the set of individual names O . An interpretation I additionally satisfies an
ABox A w.r.t. a TBox T iff it satisfies

• aI ∈ CI for all assertional axioms in A of the form a :C, and

• (aI , bI) ∈ RI for all assertional axioms in A of the form 〈a, b〉 : R.

Reasoning Services

One of the basic reasoning services for a description logic formalism is computing the
subsumption relationship between concept terms. This inference is needed in the TBox to
build a hierarchy of concept names w.r.t. specificity.

The notion of a model is used to define the reasoning services that a DL inference engine
has to provide, i.e. the engine can prove for concept specifications whether the following
conditions hold:

• a term C subsumes another term D iff DI ⊆ CI for all models I of T ;

36 A Theory for Describing Visual Notations

• a term C is coherent/satisfiable iff there exists a model I of T such that CI �= ∅;

• terms C and D are disjoint iff DI ∩ CI = ∅ for all models I of T ;

• terms C and D are equivalent iff DI = CI for all models I of T .

Proper DL systems (i.e. implementations of a DL) are guided by this semantics and imple-
ment these inference services. They usually distinguish two reasoning components. The
terminological reasoner or classifier operates on the TBox and classifies named concepts
with respect to subsumption relationships between them and organizes them into a tax-
onomy. The classifier automatically performs normalization of concept definitions as well
as consistency checking operations and offers retrieval facilities about the status of the
classification hierarchy. The forward-chaining assertional reasoner or realizer operates on
the ABox in accordance with the definitions in the TBox and recognizes and maintains
the concept and role membership of individuals. Assertional reasoners usually support a
query language for accessing stated and deduced constraints. Some query languages offer
the expressiveness of the full first-order calculus. The expressiveness and tractability of a
particular DL depends on the variety of employed description constructors. Various com-
plexity results for subsumption algorithms for specific description logics are summarized
in [Woods and Schmolze, 1992].

3.2.4 Extension of Description Logic: Concrete Domains

Standard DL systems usually cannot deal with concepts defined with the help of arithmetic.
For instance, it is not possible to specify a defined concept SmallCircle that describes every
circle whose radius is less than 10mm. It is only possible to specify SmallCircle as a primitive
concept (which can never automatically be recognized for an individual) and to assert this
concept membership for an individual externally. Some DL systems offer extra-logical, user-
defined test functions that may assert the property (radius less than 10mm) automatically.
However, these functions and their related concepts escape the DL semantics and prevent
any reasoning. For instance, a concept VerySmallCircle resembling circles with a radius less
than 5mm should be recognized as a specialization (subconcept) of SmallCircle. The idea
of incorporating concrete domains into DL theory is to extend semantics and subsumption
in a corresponding way (see [Baader and Hanschke, 1991; Hanschke, 1996]). The concrete
domain approach distinguishes between an abstract and a concrete part of a domain. The
languages support operators for specifying predicates that apply to individuals from the
concrete domain (e.g. circles in two-dimensional space).

The above mentioned concepts SmallCircle and VerySmallCircle could be easily specified with
this extension as defined concepts. A reasoner would immediately recognize the subsump-
tion relationship between these concepts. However, the concrete domain approach can
only define concepts dependent on their own properties that are expressed with concrete
predicates. Spatial relations cannot be adequately defined with the operators offered by
“standard” DL languages. A solution for this problem is presented in Chapter 7.

Theoretical Foundation 37

3.2.5 Applying Description Logic to Visual Language Theory

We argue that the main characteristics of DL systems are directly applicable to VL theory
(see also [Haarslev, 1995] and Section 3.4 for example applications):

• The TBox language is used to define VL elements as concept definitions. They are
based on primitive concepts representing basic geometric objects (e.g. region, line,
point). The primitive concepts form the roots of the taxonomy and are viewed as ele-
mentary lexical tokens. Defined concepts express (intermediate) semantic categories
and are based on specializations of these primitive concepts.

• The classifier automatically constructs and maintains the specialization hierarchy of
VL elements (defined as concepts). This hierarchy is used by the realizer to control
the assertional reasoning process.

• Database-like assertion and query languages are used to state and retrieve spatial
knowledge about individuals of VL sentences. Example sentences may be entered
into the ABox by asserting primitive concept memberships for geometric objects and
spatial relationships between objects (as role fillers).

• The forward-chaining realizer automatically recognizes the most specialized concept
membership (i.e. the semantic category of VL elements) of individuals (e.g. input
tokens). It is the main source for driving the recognition process and is utilized as a
general visual parser.

• The automatic detection of inconsistent concept definitions or individuals is an im-
portant advantage of this approach. It is used to detect unsound (e.g. inconsistent)
formal specifications (TBox) or erroneous parser input (e.g. errors in syntax or se-
mantics).

Other (but still non-standard) characteristics are also very useful:

• The retraction of facts (stated in the ABox) is useful for supporting incremental
and predictive parsing techniques in the editing process. Non-monotonic changes of
users are automatically recognized and obsolete deductions retracted (e.g. in the DL
system Classic).

• Default reasoning can make useful assumptions about parser input based on incom-
plete information.

• A DL extended to handle concrete domains could be very useful (see also Chapter 7).
The definition of VL elements and the possible spatial relationships between them
could be solely based on DL theory with a concrete domain over R. The need for an
extra-logical component that recognizes geometric features and asserts them to the
DL system would be obsolete.

38 A Theory for Describing Visual Notations

A B A B A B A

B

A

B

disjoint touching intersecting containing covering

Figure 3.1: Primitive relations between A and B.

In the next sections, we apply the following characteristics of description logic theory to
visual languages.

• TBox reasoning is used to design visual languages since VL elements are described
by concept definitions.

• ABox reasoning is used to parse actual diagrams representing sentences of a visual
language.

3.3 GenEd: Implementing the Theory

The logical framework described in the previous sections forms the basis for the generic
object-oriented editor GenEd. The next sections describe GenEd’s user interface and
implementation in more detail.

3.3.1 Spatial Logic Implemented by Built-in Parser

The implementation of geometric objects and recognition of spatial relations uses well-
known computer graphics techniques for reasons of efficiency. The semantics of these
algorithms is still specified within our theory (see [Wessel, 1996] for a complete treatment).

Geometric Objects

GenEd offers a set of predefined geometric objects (similar to other object-oriented graphic
editors) that can be used to design examples of particular notations. For instance, sup-
ported primitive objects are points, (directed) line segments, line segment chains, (spline)
polygons, circles, etc. These objects can be used to compose other objects (e.g. ovals).

Spatial Relations

GenEd recognizes seven primitive spatial relations (disjoint, touching, intersecting, con-
taining/inside, covering/covered by) which may hold between objects (see Figure 3.1). We
deliberately omitted the ‘equal’ relation in the design of GenEd but it could be integrated
rather trivially. GenEd also computes the dimension of the intersection of objects, if
applicable. The semantics is defined in analogy to Clementini et al. [Clementini et al.,
1993] (see Section 3.2.2). The relations have a parameterized ‘fuzziness’ compensating

GenEd: Implementing the Theory 39

A

B C
A B

C

pointing to(C,B)
starting from(C,A)

directly contains(C,A) linked with(A,B) part of(EP,A)

Figure 3.2: Higher-level relations.

for inexact positioning of objects (caused by users or scaling factors) and floating-point
arithmetic. The fuzziness is defined as a threshold value depending on the global scale
factor and the size of the related objects. In contrast to several other approaches for
spatial relations (e.g. see [Haarslev, 1996b]) GenEd can also deal with concave objects. The
seven relations mentioned above can also be computed for arbitrary concave objects using
standard algorithms from computational geometry. Additionally, an arbitrary collection
of objects may be grouped together and treated as a composite object. A semantics for
composite objects has been defined in analogy to [Clementini and Di Felice, 1997].

The following higher-level relations (that are also applicable to composite objects) have
been implemented with the help of the above mentioned seven relations (e.g. see Figure
3.2).

• The relation directly contains/inside is a subset of the containing/inside relation. A
region λ1 directly contains a regions λ2 iff λ1 contains λ2 and there exists no other
region in λ1 that contains λ2.

directly contains(λ1, λ2) ≡ containing(λ1, λ2) ∧
¬∃λx : containing(λ1, λx) ∧ containing(λx, λ2)

• The relation linked with resembles the connectivity of two-dimensional objects such as
circles, rectangles, etc. It is computed for any two-dimensional object touching a line
or an arrow that eventually leads (possibly via a chain) to another two-dimensional
object. The formal specification is given in [Wessel, 1996].

• The direction of line segments is recorded in the relations starting from and point-
ing to which only apply to arrows.

• Partonomies are handled with the relation has-part/part-of . GenEd automatically
asserts part-of relationships for end points of line segments and arrows and for com-
ponents of composite objects.

3.3.2 User Interface

Figure 3.3 shows a screen shot of the user interface. It contains several (scrollable) panes
and a menu bar at the top. The three horizontal panes below the menu bar offer the

40 A Theory for Describing Visual Notations

selection of object types and the setting of drawing attributes for elements and text. The
left vertical pane shows a variety of modifiable parameters for controlling display options
and scaling factors. The center pane (workspace) contains a petri net for the reader-writer
problem (see Section 3.4.1 for explanations). It displays the petri net elements (place as
circle, transition as rectangle, edge as (spline) arrow, token as bullet, capacity label as
gray number). The elements are also labeled with the concept names as computed by the
classification phase of the spatial parser. The right pane is used to inform the user about
computed concept memberships, role fillers, etc. The horizontal pane below the three
vertical panes is the command pane. Users have the choice whether they enter commands
as gestures (mouse movement, clicks) or as text commands. The pane at the bottom always
shows object-sensitive documentation about available gestures.

Users can always select a collection of elements in the workspace with an enclosing box and
aggregate them into a composite object. The contents of the workspace can be zoomed in
or out (see Figure 3.4b for a magnified selection of the petri net). In general, GenEd offers
many operations on objects that are also available in commercial graphic editors (create,
delete, copy, move, scale, rotate, hide, show, inspect, arrangement, save, restore, undo list).

The general procedure for working with GenEd is as follows. The user loads a DL speci-
fication of a visual notation into GenEd. This specification has to comply with GenEd’s
built-in spatial logic. A new drawing may be created in the workspace (e.g. center window
in Figure 3.3) or an existing one loaded. The built-in spatial parser analyzes a drawing in
accordance with the spatial logic and creates ABox individuals and assertions resembling
the elements of the drawing and their spatial relationships. Afterwards GenEd invokes the
DL system. A protocol of the classification process can be displayed in GenEd’s rightmost
vertical window. GenEd optionally shows the concept membership of drawing elements
and several other useful information (see center window in Figure 3.3).

GenEd supports two reasoning modes. While GenEd is in incremental mode, it records
differences to previous states and reports these differences to the ABox. The reasoning
process is invoked to automatically analyze drawings after every modification and to give
the user an immediate feedback. If the batch mode is set, drawings are always analyzed
from scratch and the user has to start the reasoning process manually. It is worth noting
that users may attach special handles to arbitrary objects. These handles can be used to
fix relative positions between objects or to define stretchable lines whose end points might
be fixed to objects. Primitive and composite objects may be stored in and retrieved from
a user-defined library. Figure 3.4a shows a submenu displaying visualizations of petri net
places stored in the library. The workspace can be saved in and loaded from a file.

3.3.3 Implementation

GenEd is implemented in Common Lisp using the Common Lisp Object System (CLOS)
and the Common Lisp Interface Manager (CLIM) as interface toolkit. The classification
of concepts and the parsing of actual drawings take place by using CLASSIC [Brachman
et al., 1991; Brachman, 1992] as DL system. Classic provides a sound and complete

Examples: Diagrammatic Notations 41

Figure 3.3: GenEd: petri net for reader-writer problem (simplified).

inference algorithm with polynomial time complexity (see [Borgida and Patel-Schneider,
1994] for comments on the semantics of the full Classic language and for an explanation
of its inference procedure). Besides a stable inference engine, the Classic implementation
provides also an explanation framework which is important for practical work. Classic is
also implemented in Common Lisp. GenEd consists of 28 modules with a total of about
300 KB source code (without CLIM, CLOS, and Classic). GenEd is fully implemented
with the features described in this chapter.

3.4 Examples: Diagrammatic Notations

We demonstrate two visual notations whose specifications were created with GenEd. Place-
transition petri nets are used as first notation. The second notation defines simple entity-
relationship (ER) diagrams. We present these examples in order to demonstrate the ex-
pressiveness of our specification language and the reasoning capabilities of GenEd. We

42 A Theory for Describing Visual Notations

(a) Library menu with submenu. (b) Magnified selection of a petri net.

Figure 3.4: Two figures: library menu and zoom of a petri net.

assume a few primitive and mutually disjoint concepts such as rectangle, circle, diamond,
line, and text. We also rely on spatial relations (touching, containing, linked with, text value)
representing relationships between geometric objects. These examples have been developed
within Classic’s DL but are presented in the following sections with a more powerful DL
for reasons of brevity and simplicity.

Throughout the next sections, we use a top-down approach for developing and presenting
diagram specifications, i.e. they get more and more complex. We start with specifications
of basic geometric objects and compose these specifications stepwise to more specialized
specifications describing higher-level elements of a diagram.

3.4.1 Petri Nets

In the following we give the reader an idea how a specification of visual language for
fragments of petri nets might be developed. A petri net (e.g. see Figure 3.5) is a triple
N = (P, T, E) with P a set of places, a set T �= ∅ of transitions, and a relation E ⊂
(P × T) ∪ (T × P) representing edges.

A tuple N = (P, T, E, C, W, M) defines a place-transition net if the following conditions
hold. The tuple (P, T, E) is a petri net with places P and transitions T . The capacity for
each place is defined by C : P → N ∪ {ω}. W : E → N− {0} specifies the weight of every
edge. The initial marking is defined by M : P → N ∪ {ω}, with ∀p ∈ P : M(p) ≤ C(p).

We only outline the design of the specification for place-transition nets. We define concepts
representing legal constellations for places, transitions, and edges. A petri net is specified
as a composite object consisting of at least five parts.

Examples: Diagrammatic Notations 43

Figure 3.5: Zoom of the petri net shown in Figure 3.3.

petri net
.
= composite thing � ∃≥5 has parts � ∃≥1 has parts . place �
∀ has parts . (¬rectangle
 transition) � ∀ has parts . (¬arrow
 edge)

It is important to note that a term such as ∀ has parts . (¬circle
 place), that one might
have expected, would overconstrain the definition of the concept petri net since tokens are
currently also represented as circles. We could rectify this problem by splitting circles into
filled (token) and transparent (place) circles. Petri nets are specialized to place-transition
nets after defining capacity labels, places with capacity, tokens, places with tokens, edges
with capacity, and active transitions.

place transition net
.
= petri net � ∃≥1 has parts . place with token

An interesting special case of a place-transition net is a predicate-event net. All places and
edges have a maximal capacity of one.

∀p ∈ P : C(p) = 1 ∧ ∀(x, y) ∈ E : W (x, y) = 1

44 A Theory for Describing Visual Notations

Figure 3.6: An ER diagram modeling airlines.

predicate event net
.
= place transition net � ∀ has parts . (¬place
 predicate event place) �
∀ has parts . (¬arrow
 predicate event edge)

The definition of predicate-event places and transitions are omitted. There are still other
interesting concepts characterizing special petri net elements that are left out due to brevity.
However, the next section discusses entity-relationship diagrams which are specified in
almost full detail.

3.4.2 Entity-Relationship Diagrams

Our definition of a subset of entity-relationship (ER) diagrams was inspired by [Serrano,
1995]. Figure 3.6 shows a part of a petri net modeling relationships in an airline company.
Since this modeling does not employ concrete domains, we replace the reference to “text
strings” (e.g. 1) by corresponding disjoint atomic concept names (e.g. value 1). We use the
term ∃=n . . . as an abbreviation for (∃≤n . . .) � (∃≥n . . .).

Examples: Diagrammatic Notations 45

Connectors

A relationship-entity connection is a line
that touches exactly one text label (ex-
pressing cardinality) and two other re-
gions (rectangle or diamond). A cardi-
nality is a text string with values chosen
from the set {1, m, n}.

entityrelation
ship

cardinality

relationship entity
.
= line � ∃=3 touching � ∃=1 touching . text �
∃=1 touching . rectangle � ∃=1 touching . diamond

cardinality
.
= text � ∀ text value . (value 1
 value m
 value n) �
∃=1 touching � ∀ touching . relationship entity

An attribute-entity connection is a line
that touches only two regions (circle or
rectangle) and no text string.

entityattribute

attribute entity
.
= line � ∃=2 touching � ∀ touching . (circle
 rectangle) �
∃=1 touching . rectangle � ∃=1 touching . circle

Entities

An entity is a rectangle that con-
tains its name. It touches one
relationship-entity and optionally
some attribute-entity connectors. It
is linked with a diamond.

entityattribute relation
ship

1

named region
.
= region � ∃=1 containing � ∀ containing . text

entity
.
= rectangle � named region � ∃≥1 linked with . diamond �
∀ linked with . (circle
 diamond) � ∃≥1 touching . relationship entity �
∀ touching . (attribute entity
 relationship entity)

Relationships

A relationship is a diamond that contains its
name. It touches one relationship-entity and op-
tionally some attribute-entity connectors. It is
linked with two entities.

relation
ship

n m

46 A Theory for Describing Visual Notations

relationship
.
= diamond � named region � ∃=2 linked with � ∀ linked with . entity �
∃=2 touching � ∀ touching . relationship entity �
∃≤2 touching .∀ touching .∀ text value . value 1 �
∃≤1 touching .∀ touching .∀ text value . value m �
∃≤1 touching .∀ touching .∀ text value . value n

Attributes

An attribute is a circle that contains its name.
It touches one attribute-entity connector and
is linked with an entity.

entityattribute

attribute
.
= circle � named region � ∃=1 linked with � ∀ linked with . entity

3.5 Example: Programming Language Pictorial Janus

In addition to the previous examples, we present the specification of the visual program-
ming language Pictorial Janus (PJ). It is deliberately intended to demonstrate to the
reader that the specification of PJ (and of similar notations with a realistic complexity) is
a non-trivial task that requires automatic reasoning mechanisms.

Pictorial Janus [Kahn and Saraswat, 1990; Kahn et al., 1991] is a completely visual lan-
guage for the domain of parallel programming. It is defined on purely pictorial terms.
Figure 3.7 shows a simple PJ program for concatenating two lists. The next sections infor-
mally describe PJ’s computational model and specify a subset of PJ’s language elements.
The informal description of PJ emphasizes the computational model since the language
elements can be better described by their formal specification.

3.5.1 Computational Model of Pictorial Janus

PJ’s syntax and static semantics are defined through topological relations which have
to hold between language elements. Language elements are either represented as closed
contours (agents, rules, ports, primitive functions, constraints, constants, arrays, bags)
or as (directed) lines (links, channels, call arrows). Since PJ’s syntax is purely based on
topological relationships its language elements can have any shape, size, color, etc. provided
the required relationships are still holding. These graphical features are available for the
programmer for application-specific purposes. PJ’s dynamic (operational) semantics can
be defined by graphical transformation rules.

A PJ computation can be considered as a network of concurrently executing agents asyn-
chronously communicating over point-to-point directional channels. The behavior of an

Example: Pictorial Janus 47

Second list

First list
First list followed
by second list

abc

def answer

append

Figure 3.7: Append of two lists in Pictorial Janus (original art by Ken Kahn).

agent is defined by a collection of rules. Rules describe conditions (guards) under which
their agent will read incoming messages from channels and may place new messages on
channels for which it has tell rights. They also define how an agent replaces itself by a new
subnetwork of messages, channels, and agents. Messages may be channels or may contain
channels.

Preconditions of a rule are denoted by elements that are (transitively) connected to the
ports of this rule and that are allocated outside of this rule. These elements are called
askers of this rule since they represent what is “asked” of the corresponding ports of the
enclosing agent. A rule is indeterministically selected if the agent’s arguments match the
askers of several rules.

The body of a rule consists of all elements that are inside of this rule. They have to be
(transitively) connected to either a port or asker of this rule. We call these elements tellers
since they post (tell) new constraints on shared data structures. A so-called tell right is
required for posting new constraints to non-local data structures. At most one tell right
may exist for any data structure. Tell rights are first-class elements since they may be
communicated over channels.

The execution of a PJ program (i.e. of the corresponding agents) can be specified by purely
graphical transformation rules.

1. The elements connected to the ports of an agent (later on referred to as input data)
must graphically match with the askers of an agent’s rule. As the result of a successful
match every link of the askers is connected to the corresponding input data of the
agent.

2. An agent replaces itself with the body of the selected rule. The askers, ports, and
contour of the rule disappear. Only the input data of the agent, now connected to
elements of the rule body, and all elements of the rule body remain.

48 A Theory for Describing Visual Notations

3. A rule may assign a value to a channel if the rule has a channel as asker (this proves
that it has the tell right to this channel). An assignment takes place by connecting
the value and the head of the channel with a link. Eventually links will shrink to
length zero joining the assigned or matched value and its recipient.

The selection of rules—by matching their askers to input data of their agent—takes place
as long as runnable agents exist. A PJ program either terminates or suspends depending
on the state of the agents.

Keeping in mind these informal descriptions, we briefly explain the example program in
Figure 3.7. The ‘append’ program concatenates two lists (displayed on the left side) and
constructs a new list as result (its placeholder and the tell right are displayed on the right
side). The big gray circle represents the append agent. It contains two mutually exclusive
rules handling the iteration and the termination case. Connecting lines represent equality
between elements. The agent is based on the following algorithm for concatenation. The
first list is processed (i.e. copied) to the result placeholder until the end of the list is reached.
The iteration is implemented by the bottom rule that concurrently removes one element
from the first list, pushes it onto the result list, and recursively invokes its enclosing agent
with the new arguments. The top rule fires if the list end (leftmost gray list element) is
reached. It concurrently discards the list end, sets the list end of the result list equal to the
list start of the second list (i.e. the concatenated new list is constructed), and afterwards
terminates.

3.5.2 Language Elements of Pictorial Janus

This section defines language elements of PJ. We omit several language elements but
present a selection of elements sufficient to understand the example program in Figure
3.8. It is important to note that the ‘beautified’ version of the append program in Figure
3.7 differs from the ‘normalized’ version in Figure 3.8. Any ‘beautified’ PJ program can be
transformed to a ‘normalized’ version that is semantically equivalent and vice versa. The
normalized version makes connections between ports and their arguments explicit. In the
following the formal specification of PJ relies on this normalized version which simplifies
the specification process. The formal specifications are illustrated with (sometimes slightly
modified) quotations from the original PJ specification [Kahn and Saraswat, 1990] and
with example configurations. However, the original PJ specification is somewhat ambigu-
ous and contains cyclic definitions. This has been resolved in our formal specifications by
deliberately deviating from the informal quotations. We either relax restrictions in order
to prevent cycles or add additional restrictions in order to clarify ambiguities.

Ports

A port is an empty region which touches at
most one other region.

Example: Pictorial Janus 49

Port

Port

Port

Agent Rule

Rule

Call Arrow

Ask Message Reference
Port

Tell
Message

(List)

First of
List

Rest of
List

Port

Reference
Port

Port

Port

Ask
Message

(List)

Channel

Agent
Call

(Empty List)

Figure 3.8: The normalized append program equivalent to the version in Figure 3.7. Re-
gions are displayed as rectangles and annotated with DL concept names.

A region R is classified as empty region iff there exists no PJ element inside of R. A port
may touch any number of elements which are not regions but at most one other region.
Ports serve as docking place for lines.

empty region
.
= region � ∃≤0 containing

port
.
= empty region � ∃≤1 touching . region

We distinguish ports with respect to their relationship to other elements. A port may serve
as a

• reference port identifying data structures

• argument port representing arguments of data and rules

• single port.

reference port
.
= port � ∃=1 covered by � ∀ covered by . term � ∃≤0 touching . region �
∃≤1 touching . segment � ∃≤1 touching . point

argument port
.
= port � ∃=1 touching . term � ∃≤0 covered by

single port
.
= port � ∃≤0 touching � ∃≤0 covered by . region

50 A Theory for Describing Visual Notations

Any port can be linked or unused (i.e. not linked). However, an unused reference port indi-
cates a semantic error since the element owning this reference port can never be referenced.
Therefore, we restrict unused ports to be also argument ports.

unused port
.
= argument port � ∃≤0 touching . segment

linked port
.
= port � ∃≥1 linked with . region

Data Terms

A term is a (possibly empty) region. It
touches only ports or tips of arrows.

Terms are building blocks for defining rules, agents, and data structures. Terms can be
divided into data and rule terms. A data term does not touch any arrow or link but has
one reference port (i.e. it is covering this port). End points are only defined for arrows.

term
.
= region � ∃≤0 covered by � ∀ touching . (port
 arrow
 end point)

data term
.
= term � ∃=1 covering � ∀ covering . reference port �
∃≤0 touching . (arrow
 end point)

Constants

A constant is a data term that has no ar-
gument port and contains a constant value
(represented as text).

constant
.
= data term � ∃≤1 containing . region � ∃=1 containing . text � ∃≤0 touching . port

List elements

A list element is a data term with at most
two argument ports. The empty list is a list
element that has no argument ports.

list
.
= data term � ∃≤2 touching . region � ∃≤1 containing . region

empty list
.
= list � ∃≤0 touching . region

Example: Pictorial Janus 51

Rule Terms

Rule terms may not cover any region (and thus any port). Rule terms are building blocks
for agent calls, rules, and agents.

rule term
.
= term � ∃≤0 covering . region

Rules

A rule is a rule term with any number of ar-
gument ports. It has to be inside of an agent.

rule body
.
= rule term � ∃≥1 touching . port � ∀ touching . (¬region
 argument port)

rule
.
= rule body � ∃=1 inside . rule body

Agent calls

An agent call is a rule term with any number
of argument ports. It has to be inside of a
rule and has to contain the start point of a
call arrow.

agent call
.
= rule body � ∃=1 inside . rule � ∃=1 intersecting . call arrow � ∃=1 containing �
∀ containing . end point � ∀ containing .∀ part of . call arrow

Agents

An agent is a rule term at the top level with
any number of argument ports. It has to con-
tain some rules.

agent
.
= rule body � ∃≥1 containing . rule body � ∃≤0 inside . region

52 A Theory for Describing Visual Notations

Call Arrows and Channels

Arrows are used to denote an agent to be called or as representation for a tell right. A tell
right is necessary for sending data to another agent, i.e. writing to a channel.

Call Arrows

A call arrow is an arrow
starting inside of an agent
call and pointing to the
outline of an agent.

call arrow
.
= arrow � ∃≥1 intersecting . rule

recursive call arrow
.
= call arrow � ∃=1 covered by . agent

other call arrow
.
= call arrow � ∃=1 touching . agent

Channels

A channel is an arrow connecting an argu-
ment port with another port.

channel
.
= arrow � ∃=2 touching � ∀ touching . port � ∃=1 touching . argument port

3.5.3 Other Semantic Issues

The formal semantics given in the previous sections is mostly dealing with PJ’s language
elements. For the sake brevity, we left out many conditions specifying more complex
semantic issues. In the following we roughly sketch out important notions concerned with
these issues:

• Connectivity: With the exception of argument ports of agents or rules, every port
has to be linked to another port. This feature is expressed by GenEd’s higher-level
relations (e.g. linked with).

• Reachability: List elements (i.e. their reference ports) that are outside of rules have
to be reachable from argument ports of rules via a (possibly empty) chain of other
list elements. Of course, connectivity is a necessary condition for reachability.

• Askers: Channels, links, and data terms which are reachable parts of preconditions
of rules are classified as askers.

Related Work 53

• Tellers: Channels, links, and data terms which are reachable parts of rule bodies
are classified as tellers.

• Rules: Ports of rules are either unused or linked to reference ports of askers or tellers.

• Agent calls: The number of argument ports of agent calls and their denoted agents
have to be equal.

The complete set of specifications is sufficient to describe semantics of static PJ programs.
This property is verified through the analysis of example programs resulting in a semantic
network which can be used to create executable Textual Janus programs. Every Pictorial
Janus program can be translated into an equivalent textual representation (Textual Janus)
based on flat guarded horn clauses.

3.6 Related Work

There exist many approaches to specifying syntax (and to some degree semantics) of visual
languages. Mostly, these are based on extensions of string grammar formalisms. A complete
and recent overview is out of the scope of this chapter. However, we like to mention a few
approaches: generalizations of attributed grammars (e.g. picture layout grammars [Golin,
1991]), positional grammars (e.g. [Costagliola et al., 1991]), and graph grammars (e.g.
[Göttler, 1989; Najork and Kaplan, 1993; Rekers and Schürr, 1995]). Other approaches
closely related to this one use (constraint) logic or relational formalisms (e.g. [Crimi et al.,
1991; Helm and Marriott, 1991; Meyer, 1992; Wittenburg et al., 1991; Wittenburg, 1993;
Marriott, 1994]) to represent spatial relationships. Wittenburg [Wittenburg, 1993] reports
that some grammar approaches have limitations such as no arbitrary ordering of input is
supported, only special relations are allowed, connected graphs are required, no bottom-
up parsing is provided, no ambiguous grammars, etc. These limitations are sometimes
unacceptable for particular application domains. We refer to [Marriott et al., 1998] for an
extensive review of related work.

Helm and Marriott [Helm and Marriott, 1991] developed a declarative specification and
semantics for VLs. It is based on definite clause logic and implemented with the help
of constraint logic programming. Marriott’s recent approach is based on these ideas but
utilizes constraint multiset grammars [Marriott, 1994]. This is further explored in [Marriott
and Meyer, 1997; Marriott and Meyer, 1998a] where a classification of visual languages
by grammar hierarchies is presented on the basis of copy-restricted constraint multiset
grammars. The decidability versus expressivity trade-off is used to shape the hierarchy
in analogy to the Chomsky hierarchy in formal language theory. An advantage of our
approach is the taxonomic hierarchy of concept definitions and the capabilities to reason
about these specifications and their subsumption relationships.

Cohn and Gooday [Cohn and Gooday, 1994; Gooday and Cohn, 1996] applied the ‘Region-
Connection-Calculus’ (RCC theory) to the VL domain and developed formal static and

54 A Theory for Describing Visual Notations

procedural semantics for Pictorial Janus. However, their specifications use the first-order
theory of RCC that is known to be undecidable (see [Cohn, 1997]). As far as we know, they
do not support the graphical construction (e.g. editing and parsing) of diagrammatic repre-
sentations or mechanical verification processes (e.g. consistency checking of specifications).
Of course, due to the undecidability of RCC’s first order theory a decision procedure for
consistency checking cannot exist.

Citrin et al. [Citrin et al., 1994] also present work on formal semantics of completely
visual languages. They developed formal operational semantics for control in the object-
oriented language VIPR but their specification framework is not very formal and appeals
to intuition.

Another approach to reasoning with pictorial concepts is based on a different, type-theoretic
framework [Wang and Lee, 1993a; Wang and Lee, 1993b; Wang et al., 1995]. An important
distinction is that our theory is more expressive with respect to concept definitions. For
instance, in [Wang and Lee, 1993a] the authors suggest to extend their type-theoretic
approach by notions such as parameterization for construction of generic concepts and type
dependency for describing pictures consisting of parts of other pictures. Our DL theory
already handles the intended effects of parameterization and type dependency since its
reasoning component automatically maintains a taxonomy of subsuming concept definitions
which may share common subparts.

The logical status of (extended) Venn diagrams is analyzed by Shin [Shin, 1994]. She
gives axioms for well-formed Venn diagrams and a semantics using first-order predicate
logic. However, Shin’s formal account is not based on a spatial logic and not supported by
reasoning mechanisms comparable to DL systems.

The understanding of diagrams can be also considered as a subproblem of image interpre-
tation and is related to similar approaches in this area. The first treatment in this area was
the MAPSEE approach [Reiter and Mackworth, 1989]. It is based on specifications with
full first-order predicate logic. Another approach for the logical reconstruction of image
interpretation [Lange and Schröder, 1994; Schröder and Neumann, 1996; Schröder, 1998]
uses DL theory as framework.

In comparison to other logic-based approaches, we argue that DL notation—featuring
concept and role definitions with inheritance and with a possible extension to concrete
domains—is much more suitable for human and even mechanical inspection. This is an
important issue since theories about VLs are still designed by humans. Another principal
advantage of our approach is the use of necessary and sufficient descriptions, i.e. defined
concepts.

The framework introduced in this chapter is suitable for recognizing (parsing) visual nota-
tions as well as constructing examples from specifications (without addressing the layout
problem). Parsing can even hypothesize unknown information about notation elements.
This can be accomplished with the help of ABox reasoning and the underlying model-
theoretic semantics. The ABox reasoner verifies a notation example by creating a corre-
sponding model and can automatically prove whether this model is still satisfiable if further

Related Work 55

assumptions about elements were made. A similar reasoning scheme is proposed in Section
8.3.1 with the help of default reasoning.

The approach presented in this chapter also supports multi-level reasoning and can thus
avoid problems with a combinatorial explosion of alternatives in specifications. For in-
stance, imagine the specification of a triangle based on unordered sets of points (represent-
ing lines). We can avoid this problem because reasoning can take place about connectedness
of points (low-level reasoning) as well as undirected lines (higher-level reasoning).

3.7 Summary

We like to emphasize that our approach has no restrictions about the ordering of input and
the type of allowed relations if we incorporate concrete domains (see Chapter 7 for a DL
with concrete domains). We do not rely on special parsing techniques because our approach
is purely declarative. We can even deal with ambiguous grammars since the DL realizer
can compute every model satisfying the specifications. A problem with our approach could
be the worst-case time complexity of the underlying classification algorithms. However,
almost every logical or constraint approach with an interesting expressiveness has to deal
with tractability and decidability. It is also important to note that complexity issues of
DLs are very well understood and analyzed.

The description logic used in this chapter is called ALCQ [Hollunder and Baader, 1991].
It extends the basic logic ALC with qualified number restrictions. The study reported in
this chapter deliberately neglected the consideration of role hierarchies and inverse roles
due to unknown decidability results at that time the study was conducted. Recently, the
decidability of the ABox consistency problem for a superlogic of ALCQHI was proven
[Horrocks et al., 1999]. ALCQHI extends ALCQ with role hierarchies and inverse roles.
With these new constructs it is possible to model the characteristics of spatial relations
and relations for partonomies much more precisely.

Chapter 8 investigates how to integrate DL theory with spatial domains in analogy to the
concrete domain approach. This is necessary since spatial relations cannot be adequately
defined with the operators offered by the concrete domain DL ALC(D). In our current
approach spatial relations are considered as uninterpreted (primitive) roles with respect to
DL theory and we need an external geometric reasoner (built into GenEd) asserting spatial
relationships. A visual sketch-based query language for geographical information systems
that is based on these ideas is introduced in the next chapter.

Chapter 4

Querying GIS with Spatial Sketches

We present the design of the visual query system VISCO that offers a sketch-based query
language for defining approximate spatial constellations of objects. VISCO smoothly inte-
grates geometrical and topological querying with deductive spatial reasoning. It is based on
a strong physical metaphor visualizing semantics of query elements. Approximate queries
rely on combined topological and geometrical constraints enhanced with relaxations and
“don’t cares.”

4.1 Motivation and Introduction

The need to develop new interface paradigms for interacting with spatial information sys-
tems or databases, especially geographical information systems (GIS), has already been
noted elsewhere [Egenhofer, 1992; Egenhofer, 1996]. With respect to HCI an interface
should be convenient, easy-to-use, and actively supporting the user. A strong metaphor
can motivate users and guide them through the interaction with a system. In response
to these considerations the visual query system VISCO (Vivid Spatial Constellations) is
presented. It provides a sketch-based query language for defining approximate spatial
constellations of objects. VISCO is designed with the goal to reduce the burden of the
user’s intuition about VISCO’s language elements with the help of such a metaphor. Geo-
metric VISCO objects are associated with a metaphorical naive physics semantics that is
intended to guide the user’s interpretation of spatial aspects in a visual representation.
The query language elements are visualized as rubber bands, (cross)beams, swivel joints,
nails, marbles, etc. The meaning of the language elements is immediately graspable from
the physical properties of their visualizations, e.g. a rubber band may be stretched, shrunk
and wrapped around in contrast to a (rigid) beam, a marble can roll around and change
its position in contrast to a nail (see Figure 4.3). The physical properties of geometrical
objects add extra semantics to VISCO’s language elements. Therefore, the meaning of the
aspect “position” of a visualized point object can be immediately discovered by a user
because of the attached “naive physics” semantics.

VISCO offers several novel features that correspond to issues mentioned in a survey on visual

57

58 Querying GIS with Spatial Sketches

query systems for databases. Catarci et al. [Catarci et al., 1997] conclude this excellent
survey with a list of most significant issues for the design of next generation visual query
systems. VISCO’s features incorporate solutions for several of these issues.

• Visualization is an essential part of VISCO and illustrates possible variations in user
sketches.

• VISCO deals with spatial data types such as points, segments, polylines, polygons
and their possible spatial relationships.

• VISCO offers powerful tools for approximate questioning that may be used for formu-
lating queries about approximate spatial constellations of database objects.

In contrast to other relevant work [Egenhofer, 1996] which focuses on topological descrip-
tions we adopt a bottom-up approach and parse the sketches and their geometry as drawn
by the user. VISCO takes the geometry of query sketches seriously but supports the anno-
tation of meta information which can be used to specify almost pure topological queries,
i.e. the query language can express geometric as well as topological constraints. The user
may add meta information to a sketched query. This meta information specifies relax-
ations, additional constraints or “don’t cares” that define the interpretation of the query.
The visibility of user-defined relaxations and “don’t cares” is a major advantage of our
approach. In our opinion this explicit meta information (which has to be supplied by the
user) is important since drawings are always in a sense “overspecified” and their (relaxed)
interpretation strongly depends on the application domain.

4.2 VISCO: Visual Spatial Constellations

The interpretation of a user’s spatial query is a critical part for any spatial query system.
The user’s intuition about the interpretation should match with the system’s implemented
algorithms. For instance, the concept of a right angle has a strong significance in a CAD
system but must be relaxed in a GIS system. This shows that the “correct” interpretation
depends on the actual application domain. Thus, VISCO offers tools that specify meta
information resembling the user’s idea of the interpretation. This approach demands more
skill from the user but makes the intended interpretation explicit. This is the reason why
VISCO’s user interface (that is derived from GenEd, see the previous chapter) offers active
support through visualizations.

4.2.1 The Visual Query Language

In the following, we assume a topologically structured vector representation of the data of
interest. Data models like the one assumed here can be found in advanced vector-based
GIS (in contrast to raster-based GIS). The data in vector-based systems usually consists
of nodes or vertices (points), edges (lines) and faces (simple polygons). Additionally,

Querying GIS with Spatial Sketches 59

Object
Geom. Other

Enclosure

Derived
Enclosure

Inner
Enclosure

Epsilon
Enclosure

Outer
Enclosure

Constant
Enclosure

Epsilon +
EnclosureEnclosure

Object
VISCO

Epsilon -

Meta
Object

Object
Universal

Object
Query

Figure 4.1: Query language elements supported by VISCO (non-shaded nodes represent
auxiliary concepts; a refinement for the node “Geom. Object” is given in Figure 4.2).

polylines and arbitrary aggregates of these objects can be found. The “direct component
of” relationship between these objects forms a DAG (Directed Acyclic Graph). In our
case, the DAG has a maximum depth of 4 because aggregates may contain polygons (but
never other aggregates) which are built from lines, and lines contain their end points.
Together, object classes and the operations on them form the logical data model of the
spatial information system. Like SQL, which is only suitable for the relational data model,
VISCO’s query language is only suitable for (topologically structured) vector-based spatial
information systems.

The following elements are the building blocks of VISCO’s query language (see Figure 4.1-
4.3).

• VISCO Objects: A VISCO object is any element of the visual language VISCO.

• Geometric Object: Geometric objects are points, lines, simple (non self-intersecting)
polylines, simple polygons and aggregates (see Figure 4.2). We distinguish two types
of geometric objects: query objects and universal objects (see below).

• Query Objects: A query object is a geometric VISCO object that matches geometric
objects in the spatial database. We can also say, that a query object represents a
database object. Geometric database and geometric VISCO objects must be identi-
cally structured or very similar because VISCO’s query execution is based on graph
matching (see the next chapter).

• Universal Objects: Unlike geometric query objects , which must directly match
objects in the spatial database, a universal or auxiliary object represents an object in

60 Querying GIS with Spatial Sketches

Rubberband

>=-

Polygon

Segment

Point

MarbleNail

Origin

Polyline

Atomic

Antenna Antenna

Segment Transp. Film

Object
Geom.

<=-

Telescope-
antenna Beam

Wooden

Figure 4.2: Geometric objects of VISCO.

the universe of all well-formed geometric objects. Universal objects are primarily used
for expressing additional constraints on query objects, and therefore are considered
as meta objects . It is required that universal objects can be instantiated by other
objects (e.g., as an operator result or through its component objects – a universal
segment could be instantiated by its end points provided they are query objects).

• Meta Objects: A meta object is a VISCO object that visualizes some additional
conditions (constraints) on other VISCO objects and therefore makes statements about
these other objects and their interpretation. Special meta objects are enclosures ,
other meta objects visualize other possible constraints (in form of arrows, text objects
etc).

• Enclosures: An enclosure is a meta object representing a (connected) subset of
R

2. We distinguish constant (or sketched), interior and exterior (for polygons),
and ε-enclosures (see also Figure 4.9). Enclosures may be translucent or opaque.

Querying GIS with Spatial Sketches 61

Fixpoint Marble Nail Beam

Rubber Band Crossbeam (CB) CB (min) CB (max)

CB (min+max) Enclosure Compass Compass (restr.)

Figure 4.3: Basic language elements of VISCO.

Opaque enclosures are used to (partially) occlude other objects and to (partially)
disregard their existence. With the help of opaque enclosures one can express spatial
“don’t cares” by ignoring spatial relationships with occluded objects. In order to
compensate for this visual incompleteness, VISCO’s language has to be integrated
into a supporting environment because it might be impossible to reconstruct the
semantics of a query only from the final drawing.

• Derived Objects: Derived objects comprise interior, exterior, and ε-enclosure, but
also derived center points, calculated intersection points, etc.

In the following some of the geometric objects of VISCO (see also Figure 4.3) are described
in detail.

Transparency Films

Keeping in mind the naive physics metaphor mentioned above, the applicability of VISCO’s
language elements is easily explained. The basic building block is a transparency film (of an
overhead projector). Every transparency has its own local cartesian coordinate system and
a rectangular shape. Users can interactively start to draw query language elements upon
a transparency. A collection of drawn elements defines a (sub)constellation with relevant
geometrical/topological relationships. The size of a transparency and the size and position
of elements drawn on a transparency are taken seriously and do matter. Transparencies
can be scaled, translated, rotated and stacked up like layers. Transparencies always have
a fixpoint (with respect to transformations) which can be any nail (isolated or as vertex)
on the transparency.

Figure 4.4 illustrates various examples. Figure 4.4a shows a simple unscalable transparency
with its fixpoint in the center. The transparencies in Figure 4.4b-f may be scaled as
follows: only vertically down (b), any direction (c), only proportionally (visualized by
dashed guiding lines for the vertices) in any direction (d), only proportionally down with
an uncentered fixpoint (e), only proportionally up (f). The transparencies in Figure 4.4g-j
also constrain the upper and/or lower limit of scaling (visualized by dashed horizontal
or vertical lines): proportionally (g) or arbitrary (h) with lower and upper limit, only

62 Querying GIS with Spatial Sketches

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.4: Various applications of transparency films.

vertically up with upper limit (i), only vertically with upper and lower limit (j). In Figure
4.4k-l we additionally allow rotation of the transparencies around their fixpoint. This is
specified by the compass disk with the fixpoint as center and an arrow as hand. The
compass in Figure 4.4k allows free rotation around the fixpoint, while that in Figure 4.4l
constrains the possible rotation to an angle interval (visualized as bold arc). In general,
a compass may constrain rotation to angle intervals and discrete angle values (see Figure
4.3). A compass allowing only one discrete angle may be abbreviated as a single arrow (its
hand) in order to avoid visual clutter.

Enclosures and Points

Let us imagine, an enclosure is sketched on a transparency. An enclosure is represented
as a simple polygon (with optional holes) whose boundary has to be a closed and not
self-intersecting polyline. An enclosure is a meta object adding to its denoted area the
semantics that all enclosed objects have to stay inside of this (fenced) area. Also, it
specifies that the position of some of its enclosed points have to be relaxed: a point drawn
inside an enclosure is by default a marble that can move around but has to stay inside.
However, a nail cannot change its position (even inside of an enclosure). Enclosures can
be translucent or opaque and are displayed with a gray texture. The associated semantics
is described below (see Section 4.2.2). It is also possible to generate so-called ε-enclosures
which are computed by operators (see Figure 4.9 for examples).

Querying GIS with Spatial Sketches 63

4

(a) (b) (c) (d)

Figure 4.5: Various quadrilaterals.

Line Segments, Polylines and Polygons

Another basic language element is an (undirected) line segment with its two end points.
Each point can be either a marble or a nail. It should be noted that all query objects
except marbles and nails are compound objects, which have component objects. These
components are itself “first class” objects. Segments or edges (as components of polylines)
act either as beams of fixed length or stretchable/shrinkable (atomic) rubber bands. A
beam matches a line segment of fixed length (as specified) in the database. A rubber
band represents a topological structure that matches an arbitrary polyline in the database.
However, an atomic rubber band is defined as indivisible and therefore matches a single
database line segment. In our physical metaphor it resembles somehow a telescope antenna.
There are three types available: the ≤ (≥) atomic rubber band represents a segment with
a given maximal (minimal) length, and the “don’t care” atomic � rubber band does not
enforce any constraints on the length of segment. Vertices (points) connect edges and also
play the role of swivel joints that are either marbles or nails. Polylines may be closed but
not self-intersecting. Regions are defined as simple polygons with polylines as boundaries.

Enclosures affect directly the position of points and indirectly the position and/or shape
of polylines (and thus polygons). Form variability of polylines and polygons is achieved
by position (length) variability of their vertices (edges). Furthermore, number constraints
can be associated with some query objects. An at most constraint for a rubber band,
polygon or polyline specifies the maximal number of line segments of the database object
that is matched against this query object. The number of segments of a query polygon or
polyline always forms an implicit at least constraint. An atomic � rubber band is therefore
equivalent to a rubber band with an ‘at most one’ constraint.

For instance, Figure 4.5a shows a transparency containing the specification of an arbitrary
quadrilateral whose edges are rubber bands and whose vertices are marbles that can float
inside of the enclosure (gray circle). If we discarded the at most four constraint for the
polygon, this query would retrieve arbitrary polygons (with at least four line segments).
Alternatively we could have defined the quadrilateral without the at-most constraint by
using atomic � rubber bands instead of rubber bands. Figure 4.5b-d demonstrates various
other definitions: arbitrary quadrilateral with edges of fixed length (b), floating square of
fixed shape (c), floating square of fixed shape and upright orientation (d).

64 Querying GIS with Spatial Sketches

(a) (b)

Figure 4.6: Translucent and opaque enclosures.

The examples in Figure 4.5c-d use another meta object: a crossbeam constrains the angle
between two connected edges. A simple crossbeam freezes the angle as drawn. This can
be relaxed with minimal and maximal angles indicated by bullets lying on the crossbeam
(see Figure 4.3).

4.2.2 Relationships between Objects

At first it has to be noted that the user’s query is constructed step-by-step using VISCO’s
interactive environment. VISCO’s language is not designed to be visually complete be-
cause the construction history of the query affects its semantics. Parsing a VISCO query
is a progressive process as the construction continues. However, at each construction step
WYSIWYG is taken seriously. Whenever a new query object is introduced, various re-
lationships to other (partially) visible objects are calculated. For instance, the ‘contains’
relationship (or constraint) is enforced between enclosures and their enclosed query ob-
jects. Components of complex query objects are considered as individual “first class”
objects (e.g. the segments of a polygon). So, any discussion of query objects applies to
component objects as well.

We already mentioned that enclosures can be translucent or opaque. An opaque, overlap-
ping enclosure stacked in front can (partially) hide some underlying enclosures and also
objects already drawn. If the topmost enclosure is translucent it will not hide the under-
lying elements. Any visible element stacked below can still be addressed since it is not
hidden (WYSIWYG). Thus, we can enforce an object to be inside various (underlying)
enclosures, if they are not hidden. This is an explicit ‘and’ constraint holding for all visible
‘inside’ relationships of this object. See Figure 4.6a-b: in case a), marble 1 has to be inside
A and B, marble 2 has to be inside A. In case b), marble 1 only has to be inside A.

If an object Y is (partially or fully, see below) visible (with respect to occluding enclosures)
at the time of creation of a query object X, we enforce some additional high-level spatial
constraints between X and Y . These enforced spatial relations strongly affect the semantics
of a query. The following relations (and their unlisted inverses) are recognized by VISCO:

• Enclosure × query object: contains

• Point × segment: either intersects (if the point lies on the line segment) or disjoint

• Segment × segment: either intersects (this includes any constellation where two
segments have at least one common intersection point) or disjoint .

Querying GIS with Spatial Sketches 65

Figure 4.7: Unknown spatial relations between two objects in different enclosures (disjoint
or touching or overlapping?).

There are no point× point relations, because the user interface does not allow the definition
of two points at the same position. Two points are therefore always disjoint. A common
vertex of e.g. two line segments of a polygon is assumed to be only one unique point object
(and not two objects that are equal). This also implies that there exist no congruent query
objects.

The intersects and disjoint relations are computed between points and lines, and lines
and lines regardless whether the point or line objects are components (because of the “first
classness” of component objects). It can be easily shown –by taking into account all compo-
nent point-line relations– that the relations intersects and disjoint are expressive enough to
define, for example, all interesting line-line relations (e.g. disjoint, crosses, touches, meets,
overlaps, contains, inside, covers, covered by).

However, no relation between a compound object and any of its components will be in-
troduced. As an example, if we have two individual line segments that are crossing each
other and completely visible with their two endpoints, the system will calculate 10 relation
constraints (2 line × line tuples, 4 point × line tuples, 4 line × point tuples).

We also support relaxations of spatial relations. Relaxations can be achieved by abstracting
from the identity of component objects and regarding them as a proxy of their compound
object. As an example, the description of a query where a segment crosses a polygon might
include the constraint crosses(segment1 , poly2 segment5). If we abstract from the unique
identity of poly2 segment5 , we can rewrite this constraint to crosses(segment1 , poly2) and
could get more matches. VISCO supports these relaxations through a graphical annotation
method which is not discussed here in detail.

Generally speaking, WYSIWYG determines whether a disjoint or intersects relation is
enforced. The visual information present at creation time has to unambiguously imply
the relation constraint. For instance, if an object A is partially hidden by an enclosure
containing another object B, one cannot visually decide at the time of creation of object
B whether A and B are disjoint or not, and the visually present information does not
accidentally imply ambiguous relationships (see Figure 4.7).

The concept of an enclosure can also be applied to stacked transparencies and their fix-

66 Querying GIS with Spatial Sketches

Figure 4.8: Scalable circle touching a rectangle.

points. The fixpoint of a transparency A can play the role of a marble enclosed on a
lower-level transparency B. This implies that A’s fixpoint can float inside of the enclosure
on B (and thus the flotation of the whole transparency A is constrained). Note that the
whole coordinate system of A is affected by B’s actual transformation. Enclosures for fix-
points of other transparencies must be opaque. We restrict the visibility of fixpoints to at
most one transparency on a lower-level, i.e. a hierarchy of stacked transparencies may re-
sult. The fixpoint of the top-level transparency (in the hierarchy) is implicitly constrained
to be inside a “whole world area”. See Figure 4.8 for an example: this query defines a
rectangle of fixed size and shape that touches a scalable circle at the right.

4.2.3 Operators and Computed (Derived) Objects

VISCO’s interface supports the application of operators to objects. When a new object
is created, its component objects will be introduced as first-class objects. We call this
“top-down” creation of objects. Conversely, a new object can be aggregated (what we
call “bottom-up” creation) by choosing existing query objects as components of the new
object (e.g. choose two existing nails as end points of a new rubber band). Operator-
created objects are also first-class (derived) objects. For instance, the intersection point of
two crossing line segments can be computed. Type and properties of derived objects are
automatically computed but can always manually changed by the user through subsequent
operator applications. Note that derived objects are visualized in a different color in order
to distinguish them from meta and other query objects. Constraints can become redundant
during the incremental construction process, e.g. a compass allowing free rotation for a
beam that is fixed between two nails is superfluous and will be removed from the query.

For sake of brevity we will not discuss all operators of VISCO in detail. The most important
ones are the following (of course, additional operators for changing object positions, para-
meters etc. are required). Note that we consider nails and marbles as points, and rubber
bands, atomic rubber bands, and beams as line segments.

Querying GIS with Spatial Sketches 67

ε+-enclosures ε−-enclosure

Figure 4.9: Examples of ε-enclosures.

• NIL: create transparency

• Transparency: create query object, create enclosure

• Enclosure: toggle enclosure’s translucency, negate enclosure (precondition: enclo-
sure has no holes), create at most constraint (specifying the maximal number of
found database objects inside this enclosure)

• Query object: attach DL concept descriptor (e.g., “road”) to object

• Point: create (derived) ε-enclosure with radius r

• Nail: declare as transparency fixpoint, declare as marble (precondition: nail inside
an enclosure)

• Marble: declare as nail

• Fixpoint × ‘opaque enclosure of underlying transparency containing the
fixpoint’: restrict possible translations of the fixpoint’s transparency to the enclo-
sure of the underlying transparency.

• Fixpoint × ‘underlying transparency that contains the fixpoint’: see above,
with an enclosure degenerated to a point.

• Point × point: aggregate line segment from points

• List of line segments: aggregate polygon, aggregate polyline

• Beam, atomic rubber band: create compass

• Polygon, polyline: create compass, then inherit the compass to all beams and
atomic rubber band segments

• Line segment, polyline: create ε-enclosure with radius r, create midpoint

• Point, line segment, polyline: declare object as a part of a searched object (e.g.
a polyline as part of a polygon boundary)

68 Querying GIS with Spatial Sketches

Figure 4.10: A subsection of the city of Hamburg. Intended query matches are marked
and numbered.

• Polygon: create inner enclosure, create outer enclosure, create ε+-, ε−-enclosure
(see Figure 4.9, a radius r is always required), create midpoint

• Beam: declare as rubber band, declare as atomic rubber band

• Atomic rubber band: change type to ≤, ≥ or �, declare as beam, declare as rubber
band

Querying GIS with Spatial Sketches 69

• Rubber band: declare as beam, declare as atomic rubber band, create at most
number constraint

• (Beam ∨ atomic rubber band) × (Beam ∨ atomic rubber band): create
crossbeam between them

• Line segment × line segment: create intersection point (precondition: a crosses
relation). The new point will be a marble (if inside any enclosure), or a nail otherwise.

• Polygon or polyline with at least one non-atomic rubber band segment:
create at most number constraint

4.2.4 Extended Example: City Maps

In the following we present three extended examples with queries of increasing complexity.
All examples are taken from a ‘city map’ domain. The queries describe constellations of
objects represented in a city map. Figure 4.10 shows a raster image displaying a small
subsection of the city of Hamburg, located in Northern Germany. The intended match for
each query is marked and numbered.

There exists a corresponding vector version of this map that is represented in our spatial
database. The data elements of the vector map consist of text, points, polylines, and
polygons. All data elements have attributes describing their role in the city (e.g. lake, pond,
street, church, building, etc). The attribute values correspond to DL concept descriptions
organized in a predefined taxonomy. Data elements are represented as instances of concept
descriptions that combine conceptual and relational (spatial) knowledge.

The first example describes a constellation where a subway station is in the vicinity of a
church. The intended target of the query is displayed in Figure 4.10 (marked as number
1). A magnified selection is shown as the first element of Figure 4.11. The other elements
show the three construction steps of the corresponding query.

1. Create a transparency with a fixed size of 300 × 300 meters. We assume that the
subway station and the church are represented as points in our database.

2. Draw a nail on the transparency and attach the predefined concept ‘subway station’.
We declare the nail as the fixpoint of this transparency. The transparency itself is
unrelated to any other transparency. This implies that the fixpoint may coincide
with any point object in the database (i.e. on the map).

3. Generate with a predefined operator a circular ε-enclosure with a radius of 100 meters
around the fixpoint. Afterwards, draw a point as a marble inside of the enclosure
and attach the concept ‘church’ to the marble.

The second example describes a constellation where we search for three buildings aligned
in parallel (the intended match for the query is marked as number 2 in Figure 4.10). The
size of the buildings may vary individually. The first element of Figure 4.12 shows a zoom
of intended match while the other elements illustrate the query construction process.

70 Querying GIS with Spatial Sketches

Clip from Figure 4.10 Step 1
300 m.

300 m
Subway Station

Step 2 Step 3

Figure 4.11: A subway station with a church in its vicinity.

4

4

4

Building

Building

Building

Clip from Figure 4.10 Step 1 Step 2

4

4

4

Building

Building

Building

4

4

4

Building

Building

Building

4

4

4

Building

Building

Building

Step 3 Step 4 Step 5

Figure 4.12: Three adjacent buildings aligned in parallel.

Querying GIS with Spatial Sketches 71

Clip from Figure 4.10

50 m.

50 m

Part of Road

Part of Road

Part of Stream

Part of Stream
Pond

Final query

Figure 4.13: Constellation with brook, street, pond.

1. Create an arbitrarily scalable and rotatable transparency. Add a large rectangular
enclosure to this transparency.

2. Create three rectangles. Their vertices are declared as marbles and their edges as
rubber bands. Each rectangle has to match a database polygon with exactly four
line segments. Please note that each rectangle defines a quadrilateral (see also Figure
4.5a). The quadrilaterals are enforced to stay disjoint from one another. We attach
the concept ‘building’ to each quadrilateral.

3. Attach to each edge of the quadrilaterals an arrow constraining the edge’s orientation
to a single fixed angle (as visualized).

4. Apply to every quadrilateral the operator “create center point” resulting in three
(derived or computed) marbles.

5. Sketch an enclosure inside of the large enclosure denoting admissible positions for the
center points of the buildings. This area defines possible deviations for the alignment.

The third and last example (see Figure 4.13) shows the final query and its intended target
(marked as number 3 in Figure 4.10). The construction steps are illustrated in Figure 4.14.
The query defines a constellation where a brook crosses a street in underground and runs
along a pond.

The elements of the query are represented as follows. The constellation is attached to a
proportionally scalable and rotatable transparency specifying a rectangular area with a
minimal size of 50 × 50 square meters. The brook and the street are contained by the
transparency and represented as polylines. They have their own translucent enclosure

72 Querying GIS with Spatial Sketches

50 m.

50 m.

50 m.

50 m.

50 m.

50 m.

50 m.

50 m.

Step 1 Step 2 Step 3 Step 4
50 m.

50 m.

Part of Road

Part of Road

Part of Stream

Part of Stream

50 m.

50 m.

Part of Road

Part of Road

Part of Stream

Part of Stream

50 m.

50 m.

Part of Road

Part of Road

Part of Stream

Part of Stream

50 m.

50 m

Part of Road

Part of Road

Part of Stream

Part of Stream
Pond

Step 5 Step 6 Step 7 Step 8

Figure 4.14: A brook crossing a street in underground and running along a pond.

overlapping each other. The pond’s enclosure is attached to the lower right corner of the
intersection of the enclosures of the brook and the street.

4.3 Related Work

VISCO can be classified as a visual query system for spatial information systems that
uses sketched queries combined with deductive reasoning. A comprehensive survey of
visual query systems for database systems handling conventional data can be found in
[Catarci et al., 1997]. Other relevant work [Meyer, 1994; Egenhofer, 1996] reviews visual
query systems for spatial information systems. A related approach that also uses spatial
relations [Del Bimbo et al., 1994] deals with symbolic descriptions and retrieval in image
databases. In the following we shortly review four approaches [Meyer, 1994; Calcinelli and
Mainguenaud, 1994; Lee and Chin, 1995; Egenhofer, 1996] that come closest to the ideas
and concepts behind VISCO. We especially focus our attention on the spatial properties of
their query languages.

An iconic query language for GIS is presented in [Lee and Chin, 1995]. Icons represent ge-
ographic objects such as lakes, rivers, countries, etc. The icons are abstract and represent
objects only symbolically. However, the dimensionality of objects (0D-2D) is directly rep-
resented by their icons. Possible positions and size of icons can be algebraically specified.
Topological relationships are computed from the icons of a query. It is also possible to spec-
ify orientations or circular search areas. The system provides a “foreground” mode which
is used to specify relevant relationships between objects. Other accidental relationships are
interpreted as “don’t cares”. The user interface is very abstract with simple visualizations.

Querying GIS with Spatial Sketches 73

Geometrical aspects cannot be specified. Only a small set of relations without a formal
model is allowed.

Cigales [Calcinelli and Mainguenaud, 1994] is a “query by visual example” system which
also allows the user to generate a query. However, queries cannot be sketched but have
to be created with the help of operators. For instance, two intersecting areas are created
as the result of an intersect operator. Thus, the drawings are only visualizations created
by the system. In contrast to other systems, Cigales derives the spatial layout of query
elements from the application of predefined operators. The implied look-and-feel of Cigales’
user interface appears to be quite tedious. Furthermore, the layout of queries can change
dramatically after their reformulation and might confuse users. This may be caused by the
automatic visualization process.

Sketch [Meyer, 1994] was the first language proposing a metaphor for drawing sketches on
a blackboard. Sketch allows free-form elements as components of sketches but it strictly
divides queries into propositional and spatial conditions. A sketch is parsed and translated
to a formula in a corresponding logical calculus. The problem of “don’t care” relations
is solved by layers that can contain common objects. Topological relationships are only
computed for elements of a layer. The language Sketch has formal semantics but the
topological relationships have no mathematical foundation. Sketch does not support the
integration of geometric properties into queries. It also requires that database objects
are “pretyped”, i.e. they cannot be recognized through their geometrical properties. For
instance, one can think of a CAD drawing of a transistor that consists of a flat unordered
and unstructured “spaghetti” collection of line segments.

Spatial-Query-by-Sketch [Egenhofer, 1996] is distinct to the previous approaches with re-
spect to similarity matches. It uses conceptual neighborhoods of topological relations for
relaxation of queries. For instance, a ‘touches’ relationship between two objects can be
very similar to a ‘disjoint’ or ‘intersects’ relationship provided the (positive or negative)
gap between the objects is below an appropriate threshold. Spatial-Query-by-Sketch al-
lows multi-modal user input for specifying annotations or desired relaxations. It provides
no facilities for specifying “don’t cares” that apply to relationships between objects. We
argue that metric information is existent in many domains and should not be discarded
and then subsequently added.

Egenhofer states in his paper that “topology matters, metric refines”. However, we argue
that an important cognitive distinction for users is also the geometry (e.g. shape) of ob-
jects. For example, the distinction between a rectangle and a circle (although topologically
equivalent) might be highly relevant for particular application domains.

4.4 Summary

The design of VISCO differs in several aspects from the four approaches mentioned above.
It is expressive enough to define geometrical as well as almost pure topological queries or a
combination of both. It yields high expressiveness by interpreting topological relations as

74 Querying GIS with Spatial Sketches

high-level qualitative constraints enriched with meta information. VISCO offers a powerful
but still quite simple physical metaphor for defining queries as spatial constellations. It
is possible to specify approximate or vague objects and constellations. VISCO provides a
clear distinction between query and meta objects. The meta information (i.e. additional
specifications guiding sketch interpretation) is directly visible to users. There exist no
‘hidden’ relaxations that might confuse the user’s intuitions about query interpretation.
The prototype implementation of VISCO is introduced in the next chapter.

Chapter 5

VISCO: Bringing Visual Spatial
Querying to Reality

This chapter reports on the implementation of a subset of the spatial (sketch-based) query
language VISCO (see also [Wessel, 1998] for further details). The design of VISCO’s query
language was presented in the previous chapter. The example domain, city maps of Ham-
burg, is revisited and used to describe VISCO’s user interface. The user interface consists
of three interconnected components: a graphical (syntax-directed) query editor and visual
language compiler, a browser for inspecting the query results, and a map viewer for brows-
ing the spatial database. We also briefly report on the process of compiling, optimizing,
and executing VISCO’s queries.

5.1 Introduction

We will mainly discuss the user interface which is composed of three main components: the
graphical query editor offering “sketch”-based querying of spatial databases (e.g. containing
digital vector maps of the city of Hamburg), a browser-like query-result inspector , and a
powerful map-inspection tool for the spatial database. Another component of the system
is the optimizing visual language query compiler. Our prototype successfully demonstrates
the usefulness and feasibility of VISCO and its underlying language concepts. The current
prototype is fully implemented as described in this chapter.

According to the point of view of many other authors in the field, we assume that the
term visual language denotes a means of communicating with a visual system in a coherent
and consistent way through visual expressions (e.g. see [Catarci et al., 1997]). In our
opinion, a visual query language should not be considered in isolation, but in an integrated
environment providing an easy-to-use visual query system, offering active support and
feedback, strong metaphors etc. In fact, it often becomes obvious that the usefulness of a
visual language heavily relies on an appropriate interface which therefore –at least for the
user– is the language (see [Graf, 1990]).

75

76 Visual Spatial Querying with VISCO

RubberbandBeam Antenna <=-Antenna >=-Antenna

Constant Enclosure

Transparency Film

100 m

100 m

OriginMarbleNail

Epsilon Enclosure Some other Meta Objects

Lake

4

Arrow and Scale

Thematic Descriptor

At Most Constraint

Figure 5.1: Visual appearance of various implemented VISCO objects.

The actual visual appearance of various VISCO objects in the implemented user interface
is shown in Figure 5.1 (see Section 4.2.1 for a description of these elements and Figure 5.2
for an example query). For sake of efficiency and ease of implementation the appearance
of some elements is changed compared to their first design reported in the previous chap-
ter. Due to the high expressiveness of the full query language only a subset with slightly
modified language elements has been implemented.

Constructing a VISCO query is a progressive process: at the time when a new object is
created, various high level topological (spatial) constraints between the new object and
already existing objects are established. Here, the notion of (partial) visibility becomes
crucial. Also, each component object (e.g. a segment of a polygon) is considered as an indi-
vidual object with its own identity – however, topological constraints involving components
can be discarded if necessary, yielding more relaxed queries. The following topological re-
lationships between a newly introduced object and any existing object that is not totally
occluded by an enclosure are recognized by VISCO:

• Disjoint is established, if the other object is completely visible.

• Intersects is established, if the new object has at least one visible intersection point
with the other object.

Visual Spatial Querying with VISCO 77

300 m.U

300 m. Lake

Arrow at origin (transparency not rotatable)

Rubberband (matches polyline)

Thematic Descriptor

explicit polygon

(length may change)

(translatable, 300 x 300 m. unscalable, not rotatable)
Transparency Film = aggregate with local coordinate system

Marble = point (position may change)

Antenna = line segment

= point (fixed)

Constant Enclosure (enforces inside)

Origin

Size Indicator

Size Indicator

Iconic Indicator for

Figure 5.2: A simple VISCO query: “Search for a lake of (nearly) arbitrary form that is not
bigger than 300× 300 m.” The elements used in the query are explained in the figure by
annotations (in italic font).

• Inside is established, if the new object is completely visible inside of an enclosure.

• Contains is established between a new translucent enclosure and any other object
that is completely contained within this new enclosure.

When editing a query it is important to distinguish explicit from implicit (emergent) poly-
gons and polylines. Note that a polygon is by itself an implicit object. For instance, in the
case of a triangle we only have visual indicators for the sides of the triangle, but not for
the triangle itself . As a solution to this problem, we introduce for each explicit polygon
(such as the triangle in Figure 5.2) and polyline an iconic sign in form of a “picture of the
picture” (reduced to a small size).

5.2 The VISCO Prototype

The logical architecture of the VISCO prototype is shown in Figure 5.3 and could be termed
as a “repository model” (see [Sommerville, 1995]). We think of VISCO as a component in the
application layer of a spatial database working on an external data model (view) provided
especially for VISCO. Of course, meta data plays a crucial role for answering questions like

78 Visual Spatial Querying with VISCO

Currently not implemented:

- Normalizer
- Animator

ASG
(Abstract Syntax Graph)

Motivate

Validate InspectConstruct

Graphical
Query-
Editor

Execution
and
Result-
Inspector

(Inference-
Optimizing
Compiler

Animator

Data Dictionary
(Meta Data)

engine)

View 1
External

Interface

Repository

Normalizer

to Spatial DB

Graphical User Interface (GUI)

Figure 5.3: Logical architecture of VISCO.

“What types of objects are present in the database?”, etc. The GUI is given through the
following two components:

• a (syntax directed) query editor (a specialized graphical editor), and

• an execution control and query result inspector (including the map viewer, see below).

Another component is the optimizing compiler (see Section 5.3). The animator (intended
to visualize parts of the extension of the current query through animations) and the query
normalizer have not been implemented. These five components work on a common abstract
syntactic representation of the current query, which is maintained and managed by the
abstract syntax graph repository module (ASG module). The ASG is given in form of
a directed multi-hypergraph. The syntax directed query editor enforces the construction
of correct ASGs in this repository. Some meta data must also be reflected at the user
interface — for instance, it does not make sense to allow the user to query a CAD-database
for buildings located in the vicinity of lakes.

We already emphasized the importance of well-designed and easy-to-use GUIs for visual
languages. In our case, the graphical query editor shown in Figure 5.4 is one of the most

Visual Spatial Querying with VISCO 79

Figure 5.4: The Graphical Query Editor of VISCO: the main window (left) and the “But-
tons” window (right).

important parts of the VISCO GUI. The editor’s user interface is composed of two main
windows, labeled “VISCO” and “VISCO Buttons” (handled by two communicating concur-
rent processes). The “VISCO” window is the working space, allowing users to interactively
construct (execute, load, etc.) graphical queries. It consists of four main areas: the biggest
one is the “VISCO Query” pane showing the actual graphical query (which has been al-
ready presented in Figure 5.2), the “VISCO Infos” pane providing helpful information and
explanations, the command line for entering textual commands, and the “VISCO Control”
pane displaying the editable query construction history, which is automatically maintained
by the system during the construction of a graphical query (see below).

The current state of the query editor is maintained and completely visualized by the
“VISCO Buttons” window. For instance, by selecting the button for “rubberband” in
the “VISCO Objects” pane, the next new line segment will be created as a rubberband.
The buttons are named as follows (from top to bottom and left to right): transparency,
constant enclosure, beam, ≤-antenna, origin, ≥-antenna, nail, antenna, polyline (chain),
marble, rubberband, polygon). The (slightly set apart) block of 9 buttons labeled “DB
DB-C U” determines whether the next new geometric VISCO object will be a geometric

80 Visual Spatial Querying with VISCO

Figure 5.5: Vague gestures in VISCO.

universal object (“U”), or a geometric query object (“DB-C” or “DB” – the difference
between these two can be ignored here). The two blocks of buttons in this pane must
be considered columnwise; please note that the object icons of the buttons are labeled
according to the actual selection (here, “DB-C”, “DB-C”, “DB”).

Some other graphical presentation options can be selected with buttons in the “VISCO
Options” pane, as well as an operator from an iconic operator library that pops up by
pushing the currently active operator icon shown in the “VISCO Operators” pane. Then,
the selected operator can be applied to a VISCO object (or a pair of VISCO objects in
the case of a binary operator) visible in the “VISCO Query” area (prefix operator mode).
Most commands can either be entered textually via the command line or chosen from the
“Operators” menu in the menu line, as well as directly activated on an object by a key
sequence. However, most of the construction (e.g. polygon “drawing” etc.) is done directly
without the need to refer to these operators.

In summary, the query editor offers the following powerful features:

Parallel maintenance of an editable construction history : By selecting a con-
struction step in the history, the main display is updated to reflect the state of the query
construction at the time of this step. Entries can be deleted (but of course, the “delete”
operation can also be applied directly to their graphical counter parts). The indentation
of entries shown in the “VISCO Control” pane reflects the graph structure of the objects
(e.g., lines having end points as parts).

Facilities that support the users’s process of query understanding and formu-
lation: For instance, the recognized topological relationships (see above) for a newly
introduced object can be visualized by coloring the already visible objects, denoting the
enforced corresponding spatial constraint (blue means disjoint, red means intersects, green
means inside/contains). By changing the focus or current object (this can be done in the
“VISCO Control” pane), every enforced spatial constraint for every object can be inspected
in a stepwise manner.

Handling of and interaction with complex objects: For instance, in the case of
a polygon, the polygon as a whole as well as its segments and their end points must
be referenced and manipulated by mouse gestures through the user. VISCO offers two
mechanisms for achieving this goal: first, the notion of a focus (or current) object (which
can be selected by pointing at the graphical object or its counterpart in the construction
history); and second the concept of vague mouse gestures (see Figure 5.5). The current
selection (displayed in bold) depends on the distance between the mouse pointer and the

Visual Spatial Querying with VISCO 81

possibly targeted objects and their size.

“Top Down” and “Bottom Up” creation of complex objects: For instance, in order
to create a polygon, a user must be able to select already present segments which afterwards
become components of the freshly built polygon (what we call bottom up creation or
aggregation), as well as to create some completely new segments and their end points
(what we call top down creation). If a new object happens to be created, its type (e.g.,
rubberband, beam, antenna, etc.) and other attributes (should a new enclosure be opaque
or translucent?) will be determined by the current state or mode of the query editor, which
is maintained and visualized in the “VISCO Buttons” window. The editor’s state can be
changed concurrently while performing a complex operation (e.g. while creating a polygon,
one segment could be defined as a rubberband between marbles, but the next segment
could be a beam between two nails).

Handling of and interaction with emergent objects: For instance, there has to be a
way to materialize the emergent rectangle formed by two overlapping rectangular polygons
or the intersection point formed by two intersecting lines. In this example, the emergent
rectangle can easily be made explicit by a twofold application of the operator “Create
intersection point” and an aggregation of the four points to create a new polygon. This is
also an example for the use of derived or computed objects : after repositioning one of the
intersecting lines, an automatic reconstruction of the scene must follow.

Other features of VISCO, such as unrestricted multi-level “Undo” and “Redo” (in our query
editor, even a “Load” can be undone), context-sensitive help facilities etc. are considered
as obligatory nowadays.

Figure 5.6 shows the query execution and result inspection component, another important
part of the VISCO GUI. Here, the result of the query displayed in Figure 5.4 is shown.
Each tile represents a match (in this case, a lake). Another pane shows the Lisp code
generated by the compiler for performing the search. Because components of polygons etc.
are considered as individual objects, also permutations of “one and the same constellation”
appear. Single tiles can be selected and further inspected, deleted, etc. Once a tile is
selected, it can also be inspected more thoroughly with the advanced map inspection tool
“Map Viewer” which is shown in Figure 5.7: here, also the neighborhood of a match
can be inspected, neighborhood objects can be queried for their type by selecting them,
their structure, etc. The map viewer also supports the generation of layers by selecting
individual themes (each theme can be switched “on” or “off” in the scrollable list at the
left side).

5.3 Representing and Compiling Queries

The ASG repository maintains an abstract syntactic representation of the current query
in form of a directed multi-hypergraph. The nodes represent objects (e.g. marbles, rub-
berbands, etc.) with their properties (e.g. an object is a “lake”), the simple edges denote
spatial relations and other constraints (e.g. direct component of). Hyperedges represent

82 Visual Spatial Querying with VISCO

Figure 5.6: Execution and result inspection.

binary (ternary, . . .) operators (e.g. a marble can be the derived intersection point of
two beams). The ASG is constructed by a sequence of internal operator applications pro-
vided by the ASG module, each checking its applicability by a list of preconditions . By
enforcement of these preconditions we ensure that only syntactically correct ASGs can be
constructed. Most of the user’s interactions can directly be mapped to sequences of these
internal operators. No advanced parsing techniques from visual language theory are nec-
essary; however, the above mentioned topological relationships between language elements
are recognized by algorithms borrowed from computational geometry.

In fact, the graphical query editor maintains an internal construction or application se-
quence of these internal ASG operators (a beautified subset of this sequence is shown in
the “VISCO Control” window). After a user operation, the internal history is updated:

Visual Spatial Querying with VISCO 83

Figure 5.7: The Map Viewer.

an entry can be added, deleted or modified. In the case of the removal or modification of
an entry of the history, the ASG is simply reconstructed by replaying the whole internal
history. If an error is encountered during the reconstruction phase because of an unfulfilled
precondition, the user’s interaction is regarded as invalid and automatically undone by the
system. However, in our experience this “frustrating situation” does not appear too often
(the only critical interactions regarding this are “move” and “delete”). The reconstruction
of the ASG is fast enough and therefore appears instantaneously to the user.

The process of query compilation can be easily explained by using a petri net model (in
fact, the compiler can be viewed as a special petri net). A VISCO query has to be considered
as highly declarative — many possible execution plans can be expected. The optimizer
determines the best of these plans (by assigning cost weights to plans) and uses this plan
to construct a Lisp program that will search the database simply in a depth-first manner
(backtracking with “generate-and-test”). A plan itself is basically a sequence of nodes of
the ASG representing the order of sequence in which query objects are matched to objects

84 Visual Spatial Querying with VISCO

Simplified Query

RoadLake

Lake

E1=intersects(Lake,Road)

E2=intersects(Road,Lake)

Road

Simplified ASG

D1 D2

E1 E2

Lake Road

Figure 5.8: A simple ASG and its corresponding C/E net.

in the spatial database. However, to find the best of these potentially n! number of plans
is a very hard problem and can only be addressed heuristically.

In contrast to query objects, universal objects must be constructed or calculated and can
not be searched for (either their operands have to be known and bound in the case of derived
universal objects or their component objects in the case of complex universal objects). This
demonstrates the possibility of having a large number of dependencies between objects that
might reduce the number of possible execution (search) plans.

In Figure 5.8, a very simple ASG and its corresponding C/E petri net are shown.1 The
nodes “Lake” and “Road” (representing query objects) stand in an “intersects” relation
(note that by taking the component relations for the – here not shown – endpoints of
the road into account, we would really get something like “touching”). Two plans are
possible: First, we could search for “Lake” and then for “Road” by using the edge E2 as
a generator (we use a spatial index supporting spatial join and selection operations based
on topological relationships). This requires that the edge E1 has to be deferred. But the
reverse order is also possible. Multiple plans can be derived by traversing edges or their
inverses. The possible plans are now given as processes (sequences of firing transitions)
of this simple net (the transitions D1 and D2 stand for “defer E1” and “defer E2”): D1–
Lake–E2–Road or D2–Road–E1–Lake.2 A firing transition usually generates Lisp code for
the search program. In a complete plan, each double-circled place must be marked. The
quality of the generated plans can differ dramatically (factor 10000 or more in execution
time). The heuristics used by the optimizer are not discussed here.

1In a condition event (C/E) net , each place has a maximal capacity of one – a transition is activated ,
if each of its in-places is marked with tokens and all its out-places are empty after removing all tokens
from the in-places.

2The first plan is better since we have many roads intersecting other elements (e.g. roads) but only
very few lakes.

Visual Spatial Querying with VISCO 85

T

N

Property P S1

S2

Transparency "T"

Universal

"S2""S1"

Nail "N"

Edge E1

Hyperedge E2
"Create Intersection Point"

"Has Position"

Figure 5.9: A node “N” of a more complex ASG.

E1I

E1D

E1A

To the D-transition
of the inverse edge

Edge E1

Generate code

Property P

S2

S1T

PA

NA

E2I E2A

N complete

Hyperedge E2

Figure 5.10: Corresponding C/E net for node “N”.

A more complex example is shown in Figure 5.9 and Figure 5.10. Sometimes, additional
complex dependencies that can not be modeled by simple C/E nets must be taken into
account. Therefore, transitions might be annotated with additional predicates that must
be fulfilled before firing (in addition to the firing rule). Edges might be ignored under
certain circumstances if their corresponding condition is already implied by the pre-history
(see the annotated transitions E1I, E2I).

5.4 Summary

In this chapter we presented an advanced prototype (fully implemented and operational)
for a sketch-based visual spatial query language. A major advantage of this approach is
the direct visibility of an object’s meaning. The strong physical metaphors for language el-
ements make the intended semantics and therefore the interpretation chosen by the system
explicit. The built-in browser described here facilitates a step-wise focusing and under-
standing of the current query as a whole. Mismatches between the intended meaning of a
query as posed by a user and its interpretation as computed by the system are therefore

86 Visual Spatial Querying with VISCO

mostly avoided. We argue that it can be very difficult or even impossible (at the current
state of art in artificial intelligence) to correctly grasp the users intentions (the relevant
aspects) from a freestyle drawn sketch (like the ones assumed in [Egenhofer, 1996]). There-
fore, in order to get a practical system working today , the gap can not be bridged by the
system alone. We still need the semantic input from users and we need systems offering ac-
tive support, so that both are meeting halfway. The described GUI provides an embedding
spatial querying environment, regarding querying as an incremental, step-wise process of
selections, result inspections and further refinements.

A first approach to using description logics for specifying the semantics of visual spatial
queries is presented in Chapter 8.

Part III

Spatial Reasoning with Description
Logics

This part presents two contributions to description logics that were inspired by the need
to integrate reasoning about conceptual descriptions and qualitative spatial relations. The
major contribution of Chapter 6 is the incorporation of characteristics of space into the
semantics of a description logic similar to ALEN . The main idea is to treat a region as a
set of points and to extend the subsumption relationship between concepts to subsumption
between spatial regions. A map interpretation problem is considered as an example and
used to demonstrate how conceptual background knowledge can be exploited for image
interpretation tasks. The chapter is based on [Haarslev et al., 1994; Haarslev and Möller,
1997a; Haarslev and Möller, 1997b; Möller et al., 1998].

Chapter 7 extends the work of the previous chapter by a more general approach. It presents
the description logic ALCRP(D) with concrete domains and a role-forming predicate op-
erator as its prominent aspects. The feasibility of ALCRP(D) for reasoning about spatial
objects and their qualitative spatial relationships is demonstrated by providing an appro-
priate concrete domain for spatial objects. The theory is motivated as a basis for knowledge
representation and query processing in the domain of geographic information systems. In
contrast to existing work in this domain, which mainly focuses either on conceptual rea-
soning or on reasoning about qualitative spatial relations, this theory integrates reasoning
about spatial information with terminological reasoning. We conclude this chapter with
examples for spatioterminological reasoning in the GIS domain. The chapter is based on
[Haarslev et al., 1994; Lutz et al., 1997; Möller et al., 1997; Haarslev et al., 1998a; Haarslev
et al., 1999b].

89

Chapter 6

Integrating Qualitative Spatial
Reasoning into Description Logics

Qualitative relations play an important role in formal reasoning systems. We emphasize
that inferences about spatial relations should not be considered in isolation but should be
integrated with formal inferences about concepts (e.g. automatic consistency checking and
classification). The semantics of qualitative relations should be grounded in a quantitative
representation of spatial data. In our opinion, the abstractions provided by qualitative
spatial relations can be interpreted as an interface between a conceptual model about the
world and quantitative spatial data representing spatial information about domain objects.

6.1 Introduction

The combination of conceptual and spatial inference services can be used to solve impor-
tant application problems. In the following we illustrate how terminological inferences with
spatial relations can be used for image interpretation. The characteristic of these problems
is that it is often very difficult to describe a fixed algorithm that defines an exact sequence
of “interpretation steps” because several different “cues” have to be integrated. In other
words: the solution must be computed by adequately integrating partial information about
domain objects. The information about objects is given by conceptual background knowl-
edge, the image itself and different kinds of intermediate interpretation results. According
to the work of Schröder and Neumann [Schröder and Neumann, 1996] which was inspired
by the MAPSEE approach [Reiter and Mackworth, 1989], image interpretation can be de-
fined as a (re-)construction process of a specific possible world that is consistent with the
given knowledge (see also Section 6.5).

In this chapter, we consider a map interpretation problem and demonstrate how conceptual
background knowledge can be exploited for image interpretation tasks. In a geographical
information system, queries like “search for a living area in a border district with recreation
areas” might be defined. We assume that the necessary data are automatically gathered
using image interpretation techniques. Note that in our setting image interpretation starts

91

92 Integrating Qualitative Spatial Reasoning into Description Logics

Figure 6.1: A subsection of Öjendorf (a district of the city of Hamburg).

with vector data, i.e. areas are defined by polygons. As an example, a subsection of a
vector based map of the city of Hamburg is shown in Figure 6.1. Polygons from the image
data are already annotated with labels like “living-area”, “ordinary-road” etc. In order to
correctly interpret the image, different kinds of world knowledge are required. For instance,
with background knowledge one can infer that the large number 7434 in the upper right
corner of Figure 6.1 cannot be a zip code nor can it describe the height of a mountain
(not in Northern Germany). The required inference steps can be formalized by combining
spatial and terminological reasoning. A proposal for a solution of this task is discussed in
Section 6.4.

The spatial part of the theory is based on Egenhofer’s set of topological relations. In
contrast to [Haarslev et al., 1994] and Chapter 3 where topological relations are used as
primitives in the sense of logic (i.e. they are semantically uninterpreted), we extend the
treatment of topological relations by interpreting their semantic definition with respect
to concept entailment (cf. the notion of subsumption: one concept is more general than

Integrating Qualitative Spatial Reasoning into Description Logics 93

another) and demonstrate their influence on automatic concept classification.

Thus, the theory presented in this chapter allows one to detect both inconsistencies and
implicit information in formal conceptual models for spatial domain objects. On the one
hand, it can be shown that concept definitions and subsumption (or inheritance) relations
restrict the set of possible relations between domain objects. On the other hand, definitions
about topological relations might define implicit subsumption relationships which have to
be automatically detected to capture all kinds of possible inferences that are sanctioned
by the semantics of the representation formalism.

The major contribution of this chapter is the incorporation of characteristics of space
into the semantics of the inference system. The main idea is to treat a region as a set
of points and to extend the subsumption relationship between concepts to subsumption
between spatial regions. A region R1 can be defined to subsume another region R2 when
R1 “contains” R2 (see Section 6.2 for a formal definition of spatial relations). Basically, for
spatial subsumption, the same set-inclusion semantics as for concept languages is used. For
our application we consider spatial point sets defined by polygons. Qualitative relations
between two-dimensional areas are defined by topological relations between polygons.

6.2 Qualitative Modeling

The previous section motivated the formalization (qualitative modeling) of space with the
help of conceptual and spatial inference services. This section introduces the formal tools
used for qualitative modeling. We define spatial regions and their qualitative relationships
and combine them with a description logic framework extended by a spatial reasoner.

The definition of basic geometric objects usually relies on topology which is itself a basis
for defining relationships between objects. In the following we assume the usual concepts
of point-set topology with open and closed sets [Spanier, 1966]. The interior of a set λi

(denoted by λo
i) is the union of all open sets in λi. The closure of λi (denoted by λi) is the

intersection of all closed sets containing λi. The complement of λi (denoted by λ−1
i) with

respect to the embedding space R
n is the set of all points of R

n not contained in λi. The
boundary of λi (denoted by ∂λi) is the intersection of the closure of λi and the closure of
the complement of λi.

The following restrictions apply to every pair of sets. (1) λi, λj be n-dimensional and
λi, λj ⊂ R

n, (2) λi, λj �= ∅, (3) all boundaries, interiors, and complements are connected,
and (4) λi = λo

i and λj = λo
j.

Using these definitions we can define 13 binary topological relations that are organized in a
subsumption hierarchy (see Figure 6.2). The leaves of this graph represent eight mutually
exclusive relations that cover all possible cases with respect to the restrictions mentioned
above. The eight relations are also referred to as elementary relations. The elementary
relations are equivalent to the set of eight relations defined by Egenhofer [Egenhofer, 1991]
and others [Randell et al., 1992; Clementini et al., 1993]. Figure 6.3 illustrates five of these
eight relations (the inverses and the relation “equal” are omitted). The 13 relations are

94 Integrating Qualitative Spatial Reasoning into Description Logics

spatially_related

connected

g_overlapping

touchings_overlapping

g_inside

s_insidet_inside

g_contains

equals_containst_contains

disjoint

Figure 6.2: Hierarchy of spatial relations.

defined as follows:

• spatially related: Two objects have a spatial relationship between each other. This
relation is defined as the disjunction of its two mutually exclusive subrelations disjoint
and connected.

spatially related(λ1, λ2) ≡ disjoint(λ1, λ2) ∨ connected(λ1, λ2)

• disjoint: Two objects are disjoint if their intersection is empty; disjoint is symmetric.

disjoint(λ1, λ2) ≡ λ1 ∩ λ2 = ∅

• connected: Two objects are connected if their intersection is non-empty; connected
is symmetric.

connected(λ1, λ2) ≡ λ1 ∩ λ2 �= ∅

• g overlapping: Two objects are generally overlapping . This relation is defined as
the disjunction of its two mutually exclusive subrelations touching and s overlapping;
g overlapping is symmetric.

g overlapping(λ1, λ2) ≡ touching(λ1, λ2) ∨ s overlapping(λ1, λ2)

• touching: Two objects are touching if only their boundaries are intersecting; touching
is symmetric.

touching(λ1, λ2) ≡ connected(λ1, λ2) ∧ (λo
1 ∩ λo

2 = ∅)

Integrating Qualitative Spatial Reasoning into Description Logics 95

A B A B A B A

B

A

B

disjoint touching s overlapping t contains s contains

Figure 6.3: Spatial relations between A and B.

• s overlapping: Two objects are strictly overlapping if they are connected and their
intersection is not equal to either of them; s overlapping is symmetric.

s overlapping(λ1, λ2) ≡
connected(λ1, λ2) ∧ (λ1 ∩ λ2 �= λ1) ∧ (λ1 ∩ λ2 �= λ2) ∧ (λo

1 ∩ λo
2 �= ∅)

• g contains/g inside: An object λ1 generally contains an object λ2. This rela-
tion is defined as the disjunction of its three mutually exclusive subrelations equal,
t contains, and s contains; g inside is the inverse of g contains; g contains and g inside
are reflexive, antisymmetric, and transitive.

g contains(λ1, λ2) ≡ t contains(λ1, λ2) ∨ s contains(λ1, λ2) ∨ equal(λ1, λ2)

• equal: The relation equal is symmetric and transitive.

equal(λ1, λ2) ≡ λ1 = λ2

• t contains/t inside: An object λ1 tangentially contains an object λ2 if their in-
tersection is equal to λ2 and the intersection of their boundaries is non-empty; the
inverse of t contains is t inside; t contains and t inside are asymmetric.

t contains(λ1, λ2) ≡ (λ1 ∩ λ2 = λ2) ∧ (λ1 ∩ λ−1
2 �= ∅) ∧ (∂λ1 ∩ ∂λ2 �= ∅)

• s contains/s inside: An object λ1 strictly contains an object λ2 if their intersection
is equal to λ2 and only the interiors of their regions intersect; the inverse of s contains
is s inside; s contains and s inside are asymmetric and transitive.

s contains(λ1, λ2) ≡ (λ1 ∩ λ2 = λ2) ∧ (λ1 ∩ λ−1
2 �= ∅) ∧ (∂λ1 ∩ ∂λ2 = ∅)

6.3 Spatial Reasoning for Polygons

This section introduces a spatial reasoner that realizes inference services over 2D polygons.
We demonstrate that the reasoning services provided by the description logic ALC(D) are
insufficient for the formalization of space and propose an extension.

The fundamental idea of the spatial reasoner is the treatment of spatial regions as subsets
of R

2 and to define subsumption between polygons with respect to the relation g contains

96 Integrating Qualitative Spatial Reasoning into Description Logics

as defined in Section 6.2 (see also Figure 6.2). The relation g contains has the properties
of an order relation (reflexive, antisymmetric, transitive), i.e. it has the same properties
as the subsumption relation for concepts. With this definition of spatial subsumption we
can reduce the satisfiability problem to the decision whether a set of polygons is connected
(i.e. there exists a non-empty intersection) or disjoint.

We introduce spatial predicates applicable to descriptions of polygons. With the polygon
restriction we gain applicability of efficient algorithms (e.g. the simplex procedure) for
solving the satisfiability problem. We use one-place predicates for expressing equality
(equalp) or containment (g insidep) of polygons with respect to a reference polygon p which
is used as the second argument of the relation (e.g. g insidep(λx) ≡ g inside(λx, p)). Note,
that such a polygon name p is treated as a constant by the spatial reasoner. We have the
choice to either represent this polygon as a polyline with appropriate coordinate values (and
use the simplex procedure for deciding connectedness) or explicitly assert for a polygon
name p its qualitative relationships with other polygon names (e.g. g inside(p, q)). The
second alternative could be realized by integrating into the spatial reasoner “background
knowledge” about particular polygons (e.g. the relationships as described in Figure 6.5).

We assume an attribute has area whose filler is from the spatial domain (i.e. a polygon
description). For instance, we can now define a concept northern german region by using
the ‘for-all’ constructor ∀ r . P and a unique polygon name p5.

northern german region
.
= ∀ has area . g insidep5

For northern german region the possible filler of has area is restricted to a polygon inside
of p5. The polygon p5 defines the area of Northern Germany. The construct g insidep5

subsumes every region of Northern Germany whose associated polygon is g inside of p5.
Additionally, we need a predicate for expressing equality of polygons since subsumption of
arbitrary subregions is not always desired. For instance, the concept federal state hh (HH
is part of the car license number for Hamburg) contains the equality condition in order to
prevent subsumption with subregions of the city of Hamburg area (see also Figure 6.5):

federal state hh
.
= german federal state � ∀ has area . equalp2

The polygon p2 defines the area of the federal state Hamburg. equalp2
does not subsume

any subregion of p2. Note that due to the definition of g inside, g insidep2
subsumes equalp2

.

However, we need more expressivity in order to adequately characterize spatial relationships
between certain individuals. For instance, the concept definition for hh border district spec-
ifies that an individual is an instance of hh border district iff it is an instance of district of hh
and is associated with another individual which is an instance of hh border district and both
individuals have fillers for has area such that the predicate t inside holds between these
fillers. This situation is illustrated in Figure 6.4.

hh border district
.
= district of hh � (© t inside . federal state hh)

Integrating Qualitative Spatial Reasoning into Description Logics 97

Polygon_1

Polygon_2

spatial predicate
(e.g. t_inside)

has_area has_area
Abstract Domain

Spatial Domain

Individual_1 Individual_2
hh_border_districtfederal_state_hh

Figure 6.4: Relationship between abstract and spatial domain.

In a first approach, we propose the concept-forming operator© that captures the intuition
as indicated above. The assignment function is extended for© concept terms (be sr a name
for an elementary spatial relation as defined in Section 6.2 and C be a concept term):

(© sr . C)I = {x| ∃ y1, y2, z : (x, y1) ∈ has areaI , (z, y2) ∈ has areaI ,

(y1, y2) ∈ srI , x �= z, z ∈ CI}

Note that this concept-forming operator is restricted since only elementary spatial relations
and not abstract roles are allowed in place of sr.

6.4 Spatioterminological Inferences: an Extended Example

The use of the constructs presented in the previous section is demonstrated with a city
map example. Figure 6.5 illustrates the surrounding area of Öjendorf (shown in Figure
6.1). The city Hamburg (represented by the polygon p2) is located in Germany (polygon
p1), especially in Northern Germany (polygon p5) and next to the federal state Schleswig-
Holstein (polygon p4). The district Öjendorf (polygon p3) is located inside of the area of
Hamburg. Actually, it is a border district to Schleswig-Holstein.

The formal model is presented with a description logic TBox shown in Figure 6.6. The
concept german federal state is a primitive concept, i.e. it is defined only with necessary
conditions. For instance, the filler of has area for an instance of german federal state must
be a polygon name which is restricted to g insidep1

which, in turn, describes a polygon
inside p1.

Because the concept german federal state is primitive, it does not subsume the concept
northern german region. However, due to spatial subsumption, northern german region sub-
sumes federal state hh and also federal state sh (the concept for Schleswig-Holstein). The

98 Integrating Qualitative Spatial Reasoning into Description Logics

p1

p5

p2 p3

p4

Figure 6.5: A sketch of the northern part of Germany with polygons for Germany (p1),
Northern Germany (p5), the federal states Schleswig-Holstein (p4) and Hamburg (p2) as
well as a small district of Hamburg (p3). Polygon p3 is assumed to be inside p2 but p2 is
not inside p4.

predicates minn which means [n . . .∞] and maxn which means [−∞ . . . n] are defined over
natural numbers and are also provided by some DL systems.

Another northern german region is district of hh. Note again that the area of district of hh
is not a german federal state because this concept is primitive (see above). The same holds
for district of sh.

While the implicit subsumption relationships discussed above are quite obvious, the last
two concept definitions provide more difficult examples. Based on the definitions given
above, it can be proven that hh border district to sh is subsumed by hh border district. A
hh border district is a district of hh which touches the area of federal state hh from the in-
side (relation t inside). The polygon of federal state hh is explicitly given by the predicate
equalp2

(see the concept definition of federal state hh). If a district of hh touches the poly-
gon of federal state sh, its corresponding area must be tangentially inside the polygon of
federal state hh.

A TBox classifier that deals with the semantics of spatial relations must find these implicit
subsumption relationships in order to correctly and completely classify the terminological
knowledge base.

In some DL systems, a set of rules can be defined to assert additional constraints for ABox
instances when certain conditions (represented by a concept term) are met. For instance,
in Hamburg and Schleswig-Holstein, the mountain height is less than 1000 (meters). This
relationship is asserted by a rule (operator →) that fires for every individual that is classi-
fied as a member of the concept northern german region. The second rule adds additional
constraints to instances of district of hh.

northern german region→ ∀mountain height . max1000

district of hh→ ∀ zip code . min20000 � ∀ area descriptor . min1000

Integrating Qualitative Spatial Reasoning into Description Logics 99

german federal state � ∀ has area . g insidep1

northern german region
.
= ∀ has area . g insidep5

federal state hh
.
= german federal state � ∀ has area . equalp2

federal state sh
.
= german federal state � ∀ has area . equalp4

district of hh
.
= ∀ has area . g insidep2

district of sh
.
= ∀ has area . g insidep4

sh border district
.
= ∀ has area . g insidep4

� (© t inside . federal state sh)

hh border district
.
= district of hh � (© t inside . federal state hh)

hh border district to sh
.
= district of hh �

(© spatially related . federal state hh) � (© touching . federal state sh)

Figure 6.6: TBox for the Northern Germany example.

Automatic classification is also important for assertional knowledge defined in the ABox.
The following statements define partial information about individuals in our city map
domain.

hamburg : federal state hh

öjendorf : district of hh

〈öjendorf, p3〉 : has area

vierlande : ∀ has area . g insidep4
∧

(© touching .∀ has area . equalp3
) ∧ (© spatially related . federal state sh)

The individual hamburg is declared to be an instance of federal state hh. The individual
öjendorf is a district of hh. The filler of the has area role for öjendorf is p3. The ABox
reasoner computes that the federal state hamburg and the district öjendorf are instances of
the concept northern german region. This is basically due to the fact that the polygon p2

and p3 are inside the polygon p5. Thus, the mountain heights in the associated areas are
asserted to be less than 1000 meters (see the rules defined above). This kind of derived
information can be used to guide the map interpretation process by applying conceptual
background knowledge. If the number 7434 in Figure 6.1 were asserted as a filler for the
mountain height of öjendorf, the ABox would derive an inconsistency which indicates that
another hypothesis has to be tried.

In the last assertion, another individual (named vierlande) which touches the polygon of
öjendorf is defined. Since vierlande is by definition subsumed by ∀ has area . g insidep4

, it can-

not be a district of hh but must be inside of district of sh. However, it touches the Öjendorf
polygon (p3) and therefore, it must be automatically classified as a sh border district.

100 Integrating Qualitative Spatial Reasoning into Description Logics

The examples illustrate the importance of complete inference algorithms for TBox and
ABox classification. For instance, if the implicit subsumption relationship between the
concepts hh border district and hh border district to sh were not detected, we could declare
an instance of hh border district to sh and claim that a valid zip code in this area might
be 7434 which is certainly inconsistent (cf. the rule definition for district of hh). Another
hypothesis is that 7434 might be an area descriptor. This hypothesis is consistent with the
terminological background knowledge defined in our TBox example and might be used as
an intermediate result for further interpretation steps.

6.5 Related Work

The idea of incorporating conceptual knowledge (especially knowledge that can be modeled
with a decidable description logic) into spatial reasoning and image interpretation problems
has been proposed in [Haarslev et al., 1994]. Rather than Reiter and Mackworth (see the
description of MAPSEE in [Reiter and Mackworth, 1989]), who use first order predicate
logic, we use a description logic as a basis for our image interpretation problems. In order
to be able to validate the image interpretation knowledge itself (i.e. the TBox), we cannot
include a domain closure axiom, i.e. we cannot enumerate all objects in every image to be
interpreted. In other words: Neither can the problem be reduced to model checking nor
to satisfiability checking in propositional logic. Lange and Schröder [Lange and Schröder,
1994] also discuss the problem of image interpretation in a formal, logical framework. The
incorporation of concrete domain predicates for image interpretation problems is presented
by Schröder and Neumann [Schröder and Neumann, 1996; Schröder, 1998].

Many other approaches for modeling spatial objects and their relations have been pub-
lished. The ontological assumptions for the approach presented in this chapter are based
on a Newtonian conception of space (see [Borgo et al., 1996]). In contrast to the Leib-
nizian conception (assuming space to be strictly dependent on the relations holding between
physical objects), the cartesian structure of our spatial reasoning approach allows spatial
relations to be defined by topological relations between areas defined by polygons (with
an external or absolute reference system). The Leibnizian conception has been adopted
in many approaches inspired by natural language interpretation problems. For sake of
brevity, we do not discuss the large amount of work on logical models of space in this area.

Grigni et al. [Grigni et al., 1995] study the computational problems in developing an infer-
ence system for checking the satisfiability of (conjunctive) combinations of spatial relations.
This work is important for checking the consistency of combinations of concept terms con-
taining predicates based on spatial relations. Grigni et al. point out that in topological
inferences the aspects of relational consistency and planarity interact in rather complex
ways. They showed that besides the relational consistency problem a planarity problem has
to be solved when areas are assumed to be disjoint. With this additional restriction, the
complexity of the satisfiability problem becomes NP-hard in many cases. Lemon [Lemon,
1996] showed that in some “spatial” logics based on convex regions one can construct con-
sistent sentences that have no models in the intended geometrical interpretation, i.e. the

Integrating Qualitative Spatial Reasoning into Description Logics 101

logics are incomplete with respect to the intended geometrical interpretation.

6.6 Summary

In this chapter, we have demonstrated that topological relations directly influence the kind
of conceptual or terminological knowledge that can (and must) be derived by a formal
inference engine. On the other hand, assertions about concepts restrict the set of possible
spatial relations between different individuals.

We have seen that the use of incomplete reasoning services in practical applications is
problematic. For instance, in our application domain the reasoning service might be used
to test whether the hypothesis “7434 is the zip code of Öjendorf” is consistent. In the
example above we have seen that the correct answer depends on complete TBox classifi-
cation algorithms. In this case, an incomplete reasoner that does not detect the implicit
subsumption relationships in the TBox (see the discussion above) must answer “may be”.
However, if we pose the negated query “Is 7434 definitely not the zip code of Öjendorf” the
answer must also be “may be” because an inconsistency cannot be derived due to incom-
pleteness. The question is whether “may be” answers can be used for solving problems in
a geographical information system, especially when “may be” happens to be interpreted as
“no.” Similar problems are likely to occur in incomplete approaches (see e.g. [Russ et al.,
1996] for an image interpretation approach that uses an undecidable description logic).

One idea of the approach presented in this chapter is to reduce the complexity of the
reasoning algorithms by also considering quantitative spatial data which are available in
many practical applications. If concrete polygons are given, no relational consistency
checking (see above) is required but standard algorithms from computational geometry
can be used. In our map interpretation scenario, the incorporation of a spatial reasoner
with a Newtonian view (i.e. with quantitative data) helps to avoid problems of so-called
“spatial” logics. We have discussed some arguments that dealing only with qualitative
relations neglects some aspect of space (cf. [Grigni et al., 1995; Lemon, 1996]) when, for
instance, the qualitative calculus implies additional properties of geometric objects such
as convexity or disjointness of regions.

The spatial reasoning extension proposed in this chapter is no general geometrical theorem
prover. The advantage of our approach which is based also on quantitative information
about spatial regions is that the satisfiability test for finite conjunctions of predicates
can be reduced to well-known algorithms in computational geometry (basically polygon
intersection). Qualitative relations that are grounded in quantitative data provide a bridge
to conceptual knowledge and allow more extensive reasoning services to be exploited for
solving practical problems.

The treatment of predicate concept terms such as ∀ has area . g insidepi
and ∀ has area . equalpi

is also possible using a concrete domain approach (see below). A prototype implementation
[Prien, 1998] using the CLASSIC description logic (and its extension interface) [Brachman
et al., 1991; Borgida and Patel-Schneider, 1994; Borgida et al., 1996] demonstrates that

102 Integrating Qualitative Spatial Reasoning into Description Logics

the concept constructor © can be integrated into CLASSIC. However, it reveals also the
disadvantages of this constructor because it cannot be freely combined with other language
constructs. Therefore, we investigate in the next chapter the logic ALC(D) which is ex-
tended by a role-forming predicate operator that combines abstract attributes and concrete
predicates.

Chapter 7

Description Logics and Concrete
Domains

7.1 The Description Logic ALCRP(D)

We have developed a new description logic called ALCRP(D) in order to provide a foun-
dation for integrating reasoning about qualitative relations with terminological reasoning
using description logics. Our research is strongly motivated by spatial domains such as
geographic information systems (GIS). In this context, inferences about qualitative spatial
relations should not be considered in isolation but should be integrated with inferences
about conceptual knowledge of domain objects (e.g. automatic consistency checking and
classification). The main idea of our approach is to deal with knowledge about abstract
domain objects using description logic theory and to deal with spatial objects and their
qualitative topological relations using predicates defined over these objects. In Chapter 3
we used topological relations only as primitives in the sense of logic. Although some infer-
ences about spatial objects are integrated into ABox reasoning, not all implicit information
has been exploited for terminological reasoning.

With the help of ALCRP(D) we can extend the treatment of qualitative relations –and
topological relations in particular– especially with respect to TBox reasoning. Thus, the
theory presented in this chapter allows one to detect both inconsistencies and implicit in-
formation in formal conceptual models for spatial domain objects. Only the combination of
terminological and topological reasoning ensures that this can be achieved according to the
intended semantics of the spatial domain objects. The combination of formal conceptual
and qualitative reasoning can serve as a theoretical basis for knowledge representation in
the domains mentioned above and can be used to solve important application problems
(see Chapter 6).

ALCRP(D) is based on the description logic ALC(D) which is defined in [Baader and
Hanschke, 1991]. ALC(D) divides the set of logical objects into two disjoint sets, the
abstract and the concrete objects, e.g. real numbers. Abstract objects can be related to
concrete objects via features (functional roles). Relationships between concrete objects are

103

104 The Description Logic ALCRP(D)

described with a set of domain-specific predicates. Referring to these predicates, properties
of abstract objects can also be expressed using a concept-forming predicate operator. In
ALC(D), the pair consisting of a set of concrete objects and a set of predicates defined over
these objects is called a concrete domain. ALCRP(D) extends ALC(D) by introducing
defined roles that are based on a role-forming predicate operator.

7.1.1 The Concept Language of ALCRP(D)

We present the syntax and semantics of the language for specifying concept and role in-
clusions. In accordance with [Baader and Hanschke, 1991] we also define the notion of a
concrete domain.

Definition 7.1 (Concrete Domain) A concrete domain D is a pair (∆D, ΦD), where
∆D is a set called the domain, and ΦD is a set of predicate names. Each predicate name
PD from ΦD is associated with an arity n and an n-ary predicate PD ⊆ ∆n

D. A concrete
domain D is called admissible iff:

• The set of predicate names ΦD is closed under negation and ΦD contains a name �D
for ∆D,

• The satisfiability problem Pn1
1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm

m (xm1, . . . , xmnm) is decidable (m
is finite, Pni

i ∈ ΦD, and xjk is a name for an object from ∆D).

Definition 7.2 (Role Terms) Let R and F be disjoint sets of role and feature names,
respectively. Any element of R ∪ F is an atomic role term. A composition of features
(written f1f2 . . . fn) is called a feature chain. A simple feature can be considered as a
feature chain of length 1. If P ∈ ΦD is a predicate name with arity n+m and u1, u2, . . . , un

as well as v1, v2, . . . , vm are feature chains, then the expression ∃(u1, . . . , un)(v1, . . . , vm).P
(role-forming predicate operator) is a complex role term. Let S be a role name and let T
be a role term. Then S

.
= T is a terminological axiom. This type of terminological axiom

is also called role introduction.

Using the definitions from above, we define the syntax of concept terms in ALCRP(D).

Definition 7.3 (Concept Terms) Let C be a set of concept names which is disjoint
from R and F . Any element of C is a concept term. If C and D are concept terms, R ∈ R
is an arbitrary role, P ∈ ∆D is a predicate of the concrete domain, ui is a feature chain,
then the following expressions are also concept terms:

• C � D (conjunction)

• C
 D (disjunction)

• ¬C (negation)

105

• ∀R . C (concept value restriction)

• ∃R . C (concept exists restriction)

• ∃ u1, . . . , un . P (predicate exists restriction).

A concept term may be put in parentheses. � (⊥) is considered as an abbreviation for
C
 ¬C (C � ¬C).

Definition 7.4 (TBox, Introduction Axioms) Let A be a concept name and let D
be a concept term. Then A

.
= D and A � D are terminological axioms as well. A finite

set of terminological axioms T is called a terminology or TBox if the left-hand side of all
terminological axioms in T are unique and, furthermore, all concept definitions are acyclic.
The axioms A � D in a TBox are also called concept introduction axioms .

The next definition provides a model-theoretic semantics for the language introduced above.
Let D = (∆D, ΦD) be a concrete domain.

Definition 7.5 (Semantics) An interpretation ID = (∆I , ·I)D consists of a set ∆I (the
abstract domain), a set ∆D (the domain of the ‘concrete domain’ D) and an interpretation
function ·I . The interpretation function ·I maps each concept name C to a subset CI of
∆I , each role name R from R to a subset RI of ∆I × ∆I , each feature f from F to a
partial function fI from ∆I to ∆I ∪∆D, and each predicate name P from ΦD with arity n
to a subset PI of ∆n

D. If u = f1 · · · fn is a feature chain, then uI denotes the composition
f1

I ◦ . . . ◦ fn
I of partial functions f1

I , . . . ,fn
I . Let the symbols C, D be concept expressions,

R, S be role names, T be a role term, u1, . . . , un be feature chains and let P be a predicate
name. Then, the interpretation function can be extended to arbitrary concept and role
terms as follows:

(C � D)I := CI ∩ DI

(C
 D)I := CI ∪ DI

(¬C)I := ∆I \ CI

(∃R . C)I := {x ∈ ∆I | ∃ y ∈ ∆I : (x, y) ∈ RI , y ∈ CI}
(∀R . C)I := {x ∈ ∆I | ∀ y : (x, y) ∈ RI ⇒ y ∈ CI}

(∃ u1, . . . , un . P)I := {x ∈ ∆I | ∃x1, . . . , xn ∈ ∆D :

(x, x1) ∈ u1
I , . . . , (x, xn) ∈ un

I ,

(x1, . . . , xn) ∈ PI}

106 The Description Logic ALCRP(D)

(∃ (u1, . . . , un)(v1, . . . , vm) . P)I := {(x, y) ∈ ∆I ×∆I |
∃x1, . . . , xn, y1, . . . , ym ∈ ∆D :

(x, x1) ∈ u1
I , . . . , (x, xn) ∈ un

I ,

(y, y1) ∈ v1
I , . . . , (y, ym) ∈ vm

I ,

(x1, . . . , xn, y1, . . . , ym) ∈ PI}

An interpretation I is a model of a TBox T iff it satisfies AI ⊆ DI (AI = DI) for all
concept introduction axioms A � D (A

.
= D) in T and SI = TI for all role introductions

S
.
= T in T .

7.1.2 The Assertional Language of ALCRP(D)

In the following, the language for representing knowledge about individuals is introduced.
An ABox A is a finite set of assertional axioms which are defined as follows:

Definition 7.6 (ABox Assertions) Let O be a set of individual names. Furthermore,
let X be a set of names for concrete objects (X ∩O = ∅). If C is a concept term, R a role
name, a, b ∈ O are individual names and x, x1, . . . , xn ∈ X are names for concrete objects,
then the following expressions are assertional axioms :

• a :C (concept assertion),

• (a, b) :R (role assertion),

• (a, x) : f (concrete domain feature assertion),

• (x1, . . . , xn) :P (concrete domain predicate assertion).

The interpretation function ·I of the interpretation I for the concept language can be
extended to the assertional language by additionally mapping every individual name from
O to a single element ∆I (the unique name assumption does not necessarily hold). Concrete
objects from X are mapped to elements of ∆D.

An interpretation satisfies an assertional axiom

• a :C iff aI ∈ CI ,

• (a, b) :R iff (aI , bI) ∈ RI ,

• (a, x) : f iff (aI , xI) ∈ fI , and

• (x1, . . . , xn) :P iff (x1
I , . . . , xn

I) ∈ PI .

An interpretation I is a model of an ABox A w.r.t. a TBox T iff it is a model of T and
furthermore satisfies all assertional axioms in A.

107

7.2 Decidability and Undecidability Results

In [Lutz and Möller, 1997] as well as [Haarslev et al., 1998a] it is shown that, unfortunately,
the inference problem of checking the consistency of ABoxes in the “generic” language
ALCRP(D) is undecidable in general. However, in [Haarslev et al., 1999b] a restricted
variant of ALCRP(D) is described that is indeed decidable if only (syntactically) restricted
concept terms are used. Thus, the above-mentioned ALCRP(D) inference problems can
be decided if only restricted ALCRP(D) concept terms are admitted.

In order to introduce the notion of restrictedness we need the notion of a negation normal
form. An unfolded term is in negation normal form if negation is used only for concept
names (for details see [Haarslev et al., 1999b]).

Definition 7.7 A concept term X is called restricted w.r.t. a TBox T iff its equivalent X′

which is unfolded w.r.t. T and in negation normal form fulfills the following conditions:1

(1) For any subconcept term C of X′ that is of the form ∀R1 . D (∃R1 . D) where R1 is a
complex role term, D does not contain any terms of the form ∃R2 . E (∀R2 . E) where R2 is
also a complex role term.

(2) For any subconcept term C of X′ that is of the form ∀R . D or ∃R . D where R is
a complex role term, D contains only predicate exists restrictions that (i) quantify over
attribute chains of length 1 and (ii) are not contained inside any value and exists restrictions
that are also contained in D.

A terminology is called restricted iff all concept terms appearing on the right-hand side of
terminological axioms in T are restricted w.r.t. T . An ABox A is called restricted w.r.t.
a TBox T iff T is restricted and all concept terms used in A are restricted w.r.t. the
terminology T .

These restrictions guarantee the so-called finite model property for restricted ALCRP(D).
For instance, concept terms containing nested some- and all-term with defined roles (e.g.
∃Rc . (∀Rc . C) with Rc a defined role) are not restricted (see [Haarslev et al., 1999b] for
more details).

Theorem 7.1 The ABox consistency problem for restricted ALCRP(D) concept terms is
decidable if D is an admissible concrete domain.

Proof. The proof is given in [Haarslev et al., 1999b]. �

Proposition 7.1 The set of restricted ALCRP(D) concept terms is closed under nega-
tion.

Proof. See [Haarslev et al., 1999b]. �

1For technical reasons, we assume that a concept term is a subconcept term of itself.

108 Spatioterminological Reasoning

7.3 Spatioterminological Reasoning

This section introduces a concrete domain which can represent spatial relations between
domain objects. We focus on topological relations known from the RCC theory [Ran-
dell et al., 1992]. This concrete domain is used later on for two examples demonstrating
spatioterminological inferences.

Before presenting the examples we briefly introduce the concrete domain S2 . We consider
specific spatial objects whose spatial representations are given as polygons. We show that
S2 provides predicates which can be used to describe qualitative spatial RCC-8 relations
as roles between spatial objects.

Definition 7.8 The concrete domain S2 = (∆S2 , ΦS2) is defined w.r.t. the topological
space 〈R2, 2R

2〉. The domain S2 contains all non-empty, regular closed subsets of R
2 which

are called regions for short. The set of predicate names is defined as follows:

• A unary concrete-domain top predicate is-region with is-regionS2 = ∆S2 and its nega-
tion is-no-region with is-no-regionS2 = ∅.

• The 8 basic predicates dc, ec, po, tpp, ntpp, tppi, ntppi and eq correspond to the
RCC-8 relations. Due to brevity we refer to [Haarslev et al., 1999b] for a formal
definition of the semantics.

• In order to name disjunctions of base relations, we need additional predicates. Unique
names for these “disjunction predicates” are enforced by imposing the following
canonical order on the basic predicate names: dc, ec, po, tpp, ntpp, tppi, ntppi,
eq. For each sequence p1, . . . , pn of basic predicates in canonical order (n ≥ 2), an
additional predicate of arity 2 is defined. The predicate has the name p1- · · · -pn

and we have (r1, r2) ∈ p1- · · · -pn
S2 iff (r1, r2) ∈ p1

S2 or . . . or (r1, r2) ∈ pn
S2 . The

predicate dc-ec-po-tpp-ntpp-tppi-ntppi-eq is also called spatially-related.

• A binary predicate inconsistent-relation with inconsistent-relationS2 = ∅ is the negation
of spatially-related.

Proposition 7.2 The concrete domain S2 is admissible.

Proof. This is proven in [Haarslev et al., 1999b]. �

The ALCRP(D) approach together with this concrete domain is more general than the
approach presented in Chapter 6 where the concept-forming operator © was restricted
to a set of special predicates. Moreover, ALCRP(D) supports defined roles based on
predicates. This is also not possible in the approach reported in Chapter 6.

109

Polygon-1

Polygon-2

spatial predicate
(e.g. g_inside)

has-area has-area
Abstract Domain

Spatial Domain

Individual-1 Individual-2

defined role
(e.g. is_g_inside)

Figure 7.1: Relationship between abstract and concrete domain

7.4 Examples for Spatioterminological Reasoning

How can predicates over the concrete domain of polygons be used to support spatioter-
minological inferences with the description logic ALCRP(D)? First of all, as an on-
tological commitment, we assume that each abstract domain object is associated with
its spatial representation via the feature (or attribute) has area (see Figure 7.1). For
better readability, we use the topological relations from Figure 6.2 as predicate names
instead of the original RCC-8 names. Now, we can use the concept-forming predicate
operator in combination with one-place predicates for restricting role fillers of has area
to be specific spatial regions. For instance, subsumption between concept terms such as
∃ has area . g insidepi

(with g insidepi
∈ ΦS2) resembles inclusion of regions because every

concept term ∃ has area . g insidepi
subsumes the term ∃ has area . g insidepj

iff pi g contains
(i.e. spatially subsumes) pj.

7.4.1 Reconsidering the Hamburg Example

We reconsider the Hamburg example, already introduced in Section 6.4, and apply the
above mentioned technique to modeling the regions of the German federal states, Northern
Germany, a district of the city of Hamburg, etc. The advancement compared to Section 6.4
is the use of defined roles. The restrictedness criterion (cf. Definition 7.7) for the following
set of TBox axioms is trivially fulfilled because they contain no nested exists or universal
quantifiers.

110 Spatioterminological Reasoning

northern german region
.
= ∃ has area . g insidep5

district of hh
.
= ∃ has area . g insidep2

� ∃ has area .¬equalp2

The concept northern german region is defined by an existential restriction for the attribute
has area whose filler is constrained to be any polygon that is g inside of p5 which defines
the area of Northern Germany (see Figure 6.5). In other words: The concept denoted by
∃ has area . g insidep5

subsumes every region of Northern Germany whose associated polygon
is g inside of p5. Therefore, district of hh is automatically classified as a subconcept of
northern german region.

german federal state
.
= federal state � (∃ has area . equalp2

 ∃ has area . equalp4

 . . .)

federal state hh
.
= german federal state � ∃ has area . equalp2

federal state sh
.
= german federal state � ∃ has area . equalp4

The concept definition of german federal state contains a disjunction of concept terms
that characterize the locations of all possible German federal states. Due to the defin-
ition of equal, the predicate equalp does not subsume arbitrary regions in Germany. As
a consequence, the area of, for instance, district of hh is not subsumed by the area of
german federal state.

We also define the concepts for the federal states Hamburg and Schleswig-Holstein. We
would like to emphasize that both concepts are subsumed by northern german region. This
is due to the definition of the spatial relations in the previous section. For instance, the
predicate equalp2

is subsumed by g insidep2
and, in turn, this predicate is subsumed by

g insidep5
because the region p5 g contains p2.

In many cases, restrictions about spatial relations have to be combined with additional
restrictions. For example, how can we define a concept that describes a district of Hamburg
that touches the federal state Hamburg from the inside? Note that it is not sufficient that
the corresponding district polygon (e.g. p3 in Figure 6.5) is inside any polygon that is equal
to the state polygon (e.g. p2). The domain object that refers to this polygon with the role
has area must also be subsumed by the concept federal state hh (see the example presented
in Figure 7.1). For modeling spatial relations we declare corresponding roles as part of the
TBox. The following TBox axioms fulfill the restrictedness criterion because the nested
concept terms employ only the ∃ f . P constructor.

is t inside
.
= ∃ (has area)(has area) . t inside

hh border district
.
= district of hh � ∃ is t inside . federal state hh

The concept hh border district is discussed as an example for the use of the role-forming
predicate restriction introduced by is t inside. The associated polygon of any individual

111

that is subsumed by this concept has to be in the t inside relationship with another polygon
that, in turn, is referred to by an instance that is subsumed by the concept federal state hh.

While the subsumption relationships discussed above are quite obvious, the advantages of
TBox reasoning with spatial relations become apparent if we consider more complex cases,
e.g. the following axiom is computed by other (non-DL) components and added to our
TBox (e.g. imagine a scenario employing machine learning techniques). The restrictedness
criterion is fulfilled.

unknown
.
= district of hh �

∃ (∃ (has area)(has area) . spatially related) . federal state hh �
∃ (∃ (has area)(has area) . touching) . federal state sh

If the polygon of district of hh touches the polygon of federal state sh, then the polygon of
district of hh is also t inside the polygon of federal state hh. Therefore, it can be proven
that unknown is subsumed by hh border district (see Appendix A). The spatial constella-
tion defined by the concept unknown could also be characterized as a “Hamburg border
district to Schleswig-Holstein.” Note however, if district of hh had only been defined by
the term ∃ has area . g insidep2

(see above), unknown would not have been subsumed by
hh border district because an abstract individual whose associated polygon had been equal
to p2 would have been a member of unknown but not a member of hh border district.

7.4.2 ABox Reasoning for GIS Applications Concerning Environmental
Planning

Environmental information systems can benefit from spatioterminological reasoning in
many ways. First, queries can be posed as concepts composed with respect to an on-
tology underlying a certain TBox. The description logic reasoner will answer the query
by finding all instances that are subsumed by the query concept. Second, the ability to
test ABox instances for consistency can be used to implement a planning system which is
based on hypothesize and test strategies. For instance, let us assume that the following
TBox fragment is used to model domain objects shown in the map of Figure 7.2. The
restrictedness criterion for TBoxes is fulfilled.

is touching
.
= ∃ (has area)(has area) . touching

is connected
.
= ∃ (has area)(has area) . connected

dangerous object
.
= freeway
 chemical plant
 . . .

insecure object
.
= dangerous object
 (unfenced object � ∃ is connected . dangerous object)

secure playground
.
= playground � ∀ is touching .¬insecure object

We suppose that the objects depicted in Figure 7.2 are represented in an ABox as instances
of general concepts such as building, region, road etc. These concepts directly model the

112 Spatioterminological Reasoning

A

Can this area be used as a playground?

Figure 7.2: A subsection from the Öjendorf map (see text).

information given in the underlying database. The geometry is assumed to be represented
by corresponding polygons as fillers for the attribute has area as required by the ontology
underlying our TBox domain model. In order to check whether, for instance, the region
area 1 which is indicated by an arrow in Figure 7.2 can be used as a secure playground, we
simply add the ABox axiom area 1 : secure playground.2 If the description logic reasoner
computes that the ABox is consistent, all constraints imposed by secure playground are
satisfied. Hence, according to our (simple) domain model, area 1 might be suitable for a
playground. Note that these inferences are correct only if the semantics of spatial relations
is adequately considered by the TBox reasoner as described before.

7.5 Summary

Based on the description logic ALCRP(D), we have shown how spatial and terminological
reasoning can be combined in the TBox and ABox. Thus, the fruitful research on descrip-
tion logics has been extended to cope with qualitative spatial relations between spatial
objects. A first prototype implementation of ALCRP(D) is described in [Turhan, 1998].
The ALCRP(D) approach demonstrates how constraint reasoning and description logics
complement each other. The examples presented in this article indicate that conceptual
knowledge formalized with a description logic and spatial knowledge concerning topological

2ABox statements can be automatically generated by a graphical interface (see Chapter 3 on GenEd).

113

relations provides solutions for important problems, for instance in GIS applications. An
important application of description logic theory in this context is, for instance, schema
reasoning for data integration in GIS systems. Defined relations provide a bridge from spa-
tial to conceptual knowledge and support more extensive reasoning services to be exploited
for solving practical problems. The next chapter applies the research result on ALCRP(D)
to visual language theory. Using ALCRP(D) a first semantics for visual spatial queries is
sketched.

Part IV

Visual Language Theory Revisited

Chapter 8

Visual Spatial Query Languages: A
Semantics Using Description Logic

The previous chapter motivated the integration of spatial reasoning into descriptions logics
and presented with ALCRP(D) a description logic that supports spatial reasoning. This
is the reason why ALCRP(D) is a good starting point for developing a semantics for visual
spatial query languages. The use of ALCRP(D) extends the work described in Chapter
3 where the logic ALCQ was used for specifying diagrams. The description logic ALCQ
is in some sense more expressive than ALCRP(D) since it allows qualified number restric-
tions but also less expressive than ALCRP(D) since it offers no concrete domains and
no defined roles . Furthermore, the approach from Chapter 3 considered spatial relations
(e.g. touching, containing, etc.) as uninterpreted (primitive) binary relations with respect
to description logic theory (see Section 8.2.2 for a discussion of the problems). In order
to correctly deal with spatial objects we needed an external geometric reasoner about the
factual world asserting proper spatial relationships and object properties in an ABox. This
was a feasible approach but its terminological reasoning about space was incomplete in the
sense that the semantics of qualitative spatial relations were not fully captured. With the
use of ALCRP(D) it is now possible to better capture the semantics of spatial relationships
using appropriate concrete domains and defined roles.

The work presented in the following is a first treatment that uses ALCRP(D) as a suitable
description logic in order to deal with the semantics of visual spatial query languages for
geographic information systems. The work is based on [Haarslev, 1998b; Haarslev, 1999;
Haarslev et al., 1999d; Haarslev et al., 2000c].

8.1 Introduction

In the context of visual language (VL) theory ALCRP(D) can be considered as a decidable
formalism for spatial and/or temporal knowledge representation if appropriate concrete do-
mains are provided. Suitable candidates for concrete domains can be based on theories

117

118

about qualitative spatial reasoning (e.g. Egenhofer’s work [Egenhofer, 1991] or RCC8 [Ran-
dell et al., 1992]) or about time (e.g. Allen’s interval logic [Allen, 1983]). These concrete
domains could provide a basis for specifying visual procedural semantics (time) or for spec-
ifying qualitative and quantitative (e.g. geometric) relationships about space. However, the
following investigation focusses on spatial reasoning.

ALCRP(D) instantiated with a domain for qualitative spatial reasoning is well suited to
deal with truly visual representations. In the scope of this chapter we consider represen-
tations as ‘truly visual’ that exploit geometric and/or depictional constraints permitted
by the plane. A good example is the domain of visual spatial query languages for GIS,
where query languages usually deal with geographic entities such as lakes, rivers, forests,
etc. that are represented as two-dimensional elements in the query language. We motivate
the application of this spatial formalism to visual spatial query languages with the spatial
query system VISCO presented in the chapters 4 and 5. The formalism can be used to define
the semantics of visual spatial queries, to reason about query subsumption, and to deal
with multiple worlds or query completion with the help of default reasoning. Examples for
these kinds of reasoning are discussed later on in this chapter.

8.2 Modeling in VL Theory with Concrete Domains

Why is the use of description logics with concrete domains so important for VL theory?
As already mentioned above the description logic ALCQ can neither deal with concepts
defined with the help of arithmetic nor with roles defined by predicates. For instance, it
is not possible to specify in ALCQ a defined concept normal cottage that represents every
conceivable cottage whose space is between 30 m2 and 70 m2. It is only possible to rely
on an external reasoner that has to assert the concept membership for normal cottage in
the ABox. This is illustrated with the following example where ALC as a sublanguage of
ALCQ is used to define some ‘cottage concepts’ as primitives.

small cottage � normal cottage

normal cottage � spacious cottage

spacious cottage � cottage � ∃ has space .�

With these definitions we can declare an ABox containing an individual c1 which represents
a cottage with a floor space of 65 m2. Suppose an external reasoner asserts for c1 the
concept membership for small cottage1. However, an ALC ABox reasoner cannot catch the
intended “domain contradiction” that the same cottage cannot have both a floor space
which is equal to 65 m2 and less than 30 m2.

c1 : cottage, (c1, 65) : has space, c1 : small cottage

1A small cottage has a floor space of less than 30 m2.

119

An ALC reasoner correctly classifies this ABox as consistent although one would like to
catch this as an invalid entry. This is the motivation behind our notion of unintended
models . We define a model as unintended in a description logic, if the logic cannot fully
capture the intended semantics of a particular domain and thus its reasoner correctly clas-
sifies a TBox or ABox as coherent that should turn out as incoherent in a more expressive
logic.

The deficiency of the logic ALC to deal with concepts defined with the help of algebra was
a primary motivation for the ‘concrete domain’ approach realized by the description logic
ALC(D). The interesting question for VL theory is “what can be already modeled with
ALC(D) and when and why do we need ALCRP(D)?” In order to answer this question
we investigate in the following sections the spatial modeling capabilities of ALC(D) and
ALCRP(D) in detail.

8.2.1 Reasoning with ALC(D)

ALC(D) extends the logic ALC by concrete domains. The six concept-forming operators
of ALCRP(D) (see Definition 7.3) but not the role-forming predicate operator are exactly
the language elements of ALC(D). The basic logic ALC, is a true subset of ALC(D) that,
in turn, is a true subset of ALCRP(D).

The notion of a concrete domain was formally introduced in Definition 7.1. Informally
speaking, a concrete domain can be understood as a device providing a bridge between
conceptual reasoning with abstract entities and (qualitative) constraint reasoning with
concrete or qualitative data. Examples for admissible concrete domains are R (over the set
R of all real numbers with predicates built by first order means from (in)equalities between
integer polynomials in several indeterminates, see [Tarski, 1951]) or S2 (over the set of all
two-dimensional polygons with topological relations from Figure 6.2 as predicates, see also
Definition 7.8). The name ‘concrete domain’ is in some sense misleading since it suggests
that a concrete domain realizes reasoning about ‘concrete’ (e.g. numeric) data. This kind
of reasoning is sometimes supported (e.g. in the domain R) but in our application we
mainly use concrete domains for reasoning about the satisfiability of finite conjunctions of
qualitative predicates. For instance, the domain S2 qualitatively decides the satisfiability
of conjunctions such as touching(I1 , I2) ∧ contains(I2 , I3) ∧ touching(I1 , I3) without any
notion for ‘concrete’ polygons. This is a well-known example for a constraint satisfaction
problem.

Without loss of generality we introduce a λ-like notation for anonymous predicates of the
domain R. Formally, each anonymous predicate and its negation could be replaced by
unique names for the λ-term and its negated counterpart and, moreover, the negation sign
in front of a λ-term can be safely moved inside of this term.

The fact that ALC(D) (and ALCRP(D)) can be parameterized by only one concrete
domain is not a limitation because in [Haarslev et al., 1999b] it is shown that the union
of two admissible concrete domains again results in an admissible concrete domain. For
instance, the union of the concrete domainsR and S2 is a useful domain providing tools for

120

expressing both spatial and arithmetic constraints. This domain is used in the remainder
of this chapter.

Let us reconsider the previous cottage example using ALC(D). We now define the ‘cottage
concepts’ with concrete domain predicates expressing the appropriate constraints for the
floor space.

small cottage
.
= cottage � ∃ has space . λRx . (x < 30)

normal cottage
.
= cottage � ∃ has space . λRx . (x < 70)

spacious cottage
.
= cottage � ∃ has space . λRx . (x < 200)

A reasoner forALC(D) immediately recognizes the subsumption relationship between these
concepts, i.e. spacious cottage subsumes normal cottage that, in turn, subsumes small cottage.
Using the following ABox assertions, an ALC(D) reasoner recognizes the individual c1 as a
member of spacious cottage and c2 as a member of both spacious cottage and normal cottage.

c1 : cottage, (c1, 80) : has space

c2 : cottage, (c2, 60) : has space

Let us consider an alternative definition for the concepts small cottage, normal cottage, and
spacious cottage, which are part of our GIS scenario.

cottage � building

small cottage
.
= cottage � ∃ has space . λRx . (x < 30)

normal cottage
.
= cottage � ∃ has space . λRx . (x ≥ 30 ∧ x < 70)

spacious cottage
.
= cottage � ∃ has space . λRx . (x ≥ 70)

The first axiom defines a cottage as a specialization of a building. The next three concepts
define cottages of various sizes using the predicate exists restriction. These three definitions
are mutually exclusive due to their size-restricting predicates.

8.2.2 Unintended Models in ALC(D)

Characteristics of visual languages very often depend on spatial relationships between lan-
guage elements. For instance, the topological relations used by GenEd (see Chapter 3)
cannot be adequately defined in ALC(D). With ALC(D) one can only define concepts
describing individuals which are dependent on properties reachable via feature chains orig-
inating from a single individual and expressed with concrete predicates. It is not possi-
ble to define roles specified by predicates that express relationships between individuals.
Therefore, TBox and ABox reasoning in ALC(D) is spatially incomplete2 for the intended
semantics of spatial relations.

2We use the informal term spatially incomplete for referring to unintended models that are allowed in
ALC(D) but not intended by the spatial domain. Of course, TBox and ABox reasoning in ALC(D) is
sound and complete with respect to the semantics of ALC(D).

121

Using the concrete domain R ∪ S2 we illustrate the spatial incompleteness of ALC(D)
with an example demonstrating unintended models. As an ontological commitment we
use a feature has area that may have a spatial region as concrete filler describing the
occupied space of an individual. The unintended models are possible because ALC(D)
cannot appropriately capture the semantics of spatial relations. Note that in contrast to
the following sections we have to consider the roles is touching, is connected, and is g inside
as primitive in this subsection since ALC(D) has no means to express defined roles, e.g.
has area(i1, r1) ∧ has area(i2, r2) ∧ touching(r1, r2) �⇒ is touching(i1, i2).

fishing cottage
.
= cottage � ∃ is touching . river

mosquito free forest
.
= forest � ∀ is connected .¬river

paradise cottage
.
= fishing cottage � ∃ is g inside . forest � ∀ is g inside . mosquito free forest

We define a paradise cottage as a fishing cottage located in a mosquito-free forest, i.e. the
forest is not spatially connected with a river. However, a fishing cottage is defined as a
cottage that touches a river. It follows that the forest containing a fishing cottage must
also be spatially connected with this river. Obviously, the paradise cottage is only a dream
that cannot exist in the real world. This is due to the intended semantics of the underlying
spatial relations:

A situation where a region r1 (cottage) is g inside another region r2 (forest)
and this region r1 is also touching a third region r3 (river) implies that r2 is
connected to r3, i.e. g inside(r1, r2) ∧ touching(r1, r3) ⇒ connected(r2, r3).

Thus, the concept paradise cottage should be recognized as incoherent. This is not possible
in ALC(D) due to the absence of defined roles capturing the semantics of the spatial
predicates. With ALC(D) these roles can only be defined as primitive, i.e. they cannot
interact with one another.

This deficiency also holds for ABox reasoning. The following assertions describe a spatial
constellation in correspondence with the TBox defined above.

c : normal cottage, (c, 60) : has space, (c, Sc) : has area

r : river, (r, Sr) : has area, (c, r) : is touching

f : forest, (f, Sf) : has area, (c, f) : is g inside

If we pose the query “Is the forest f spatially connected with the river r?” using the TBox
and ABox declarations as defined above, an ALC(D) reasoner correctly answers no. Even
adding the assertion

f : ∃ is touching . river

to the previous ABox would not cause a contradiction for the individual f because the rea-
soner has no knowledge about the interaction between the roles is touching and is connected.

122

8.2.3 Reasoning with ALCRP(D)

A solution for this ‘unintended model’ problem is possible in ALCRP(D) with defined roles
using the role-forming predicate restriction. With this operator one can define roles that
properly reflect spatial relationships. The role-forming predicate operator of ALCRP(D)
significantly extends the expressivity of the language. Moreover, the possible union of
concrete domains enhances ALCRP(D)’s expressiveness due to the role-forming predicate
restriction that can be used to relate pairs of individuals in a way that is not possible in
ALC(D) (see also [Haarslev et al., 1999b]). This is in contrast to ALC(D) where the union
of two concrete domains can be reduced to syntactic transformations.

In the following we demonstrate with the same scenario as above that these unintended
models cannot exist with ALCRP(D). Note that the roles is g inside et cetera are now
defined via spatial predicates.

cottage � building

small cottage
.
= cottage � ∃ has space . λRx . (x < 30)

normal cottage
.
= cottage � ∃ has space . λRx . (x ≥ 30 ∧ x < 70)

spacious cottage
.
= cottage � ∃ has space . λRx . (x ≥ 70)

is g inside
.
= ∃ (has area)(has area) . g inside

cottage in forest
.
= cottage � ∃ is g inside . forest

is touching
.
= ∃ (has area)(has area) . touching

fishing cottage
.
= cottage � ∃ is touching . river

is connected
.
= ∃ (has area)(has area) . connected

mosquito free forest
.
= forest � ∀ is connected .¬river

paradise cottage
.
= fishing cottage � ∃ is g inside . forest � ∀ is g inside . mosquito free forest

A reasoner for ALCRP(D) will recognize that paradise cottage is incoherent, i.e. no indi-
vidual can ever be a member of this concept. This is due to the spatial inference that a
mosquito-free forest has to be connected with a river since it contains a cottage that is
touching a river (see also the previous section). However, the definition of a mosquito-free
forest requires that anything that is spatially connected to the forest must not be a river.
This is an obvious contradiction in the TBox.

c : cottage, (c, 60) : has space, (c, Sc) : has area

r : river, (r, Sr) : has area, (Sc, Sr) : touching

f : forest, (f, Sf) : has area, (Sc, Sf) : g inside

Using an ABox as shown above, the reasoner will also correctly answer the query “Is
the forest f spatially connected with the river r?” with yes , i.e. adding the assertion

123

f : ¬∃ is connected . river

to the following ABox would cause a contradiction for f and thus validate the query. The
contradiction with the negated query can be explained with the same spatial inference as
the one used in the TBox. Adding for the individual f the assertion f :¬∃ is connected . river
(that is equivalent to f :∀ is connected .¬river) will cause a clash with the entailed relation-
ship (f, r) : is connected since r is asserted as a member of river.

We would like to emphasize that no assertions about role memberships for is g inside,
is connected, and is touching have to be supplied. These relationships are automatically
established by an ALCRP(D) reasoner with respect to the fillers of has area.

8.3 Semantics of Spatial Queries

The previous sections motivated the development of the description logic ALCRP(D)
and demonstrated its usefulness for spatial reasoning with visual representations. We
introduced semantic entities such as buildings, cottages, forests, rivers, etc. These entities
are suitable candidates for elements of visual spatial query languages. This is motivated
by the development of the VISCO system. In VISCO we assume that basic map objects are
predefined in a GIS. Furthermore, spatial areas are defined by polygons. Map elements
(e.g. polylines, polygons) are annotated with labels such as “forest”, “building”, “river”
etc. that directly correspond to the semantic entities characterized above.

We imagine a VISCO application scenario for querying a GIS as follows. Instead of textually
writing a complicated SQL query, a user simply draws a constellation of spatial entities
which resemble the intended constellation of interest. Using the basic vocabulary provided
by the GIS, the user has to annotate drawing elements by concept names (e.g. this polygon
represents a forest). The parser of VISCO would analyze the drawing and create a corre-
sponding ABox as semantic representation. Thus, the semantics of a query is defined by
an ABox derived from a spatial constellation.

Sometimes it might be hard for users to fully specify a query. For instance, in VISCO it is
possible to select the meaning of a query element from a list containing hundreds predefined
concept descriptions. However, it might be possible to dramatically reduce the number of
choices, if additional knowledge about the query is known. Therefore, a completion facility
is needed to resolve semantic ambiguities or to complete underspecified information by
using default rules for further specialization. The next subsections describe the usefulness
of spatial default reasoning and the query processing and reasoning process.

8.3.1 Completion of Queries

Default knowledge is used to make queries complete in the absence of precise information,
if it can be applied in a consistent way. For the sake of brevity we do not discuss the

124

?

A

B

Forest

A

B

Forest

Cottage

A

B

Lake

Forest

A

B

Forest

Forest

(a) Incomplete query (b) Completion 1 (c) Completion 2 (d) Inconsistency

Figure 8.1: Automatic completion of visual queries by application of default rules.

formal representation of default knowledge and its rules of inference. The integration of
default and terminological reasoning is discussed in [Baader and Hollunder, 1995a; Baader
and Hollunder, 1995b]. Its application to spatial reasoning with ALCRP(D) is formally
analyzed in [Möller and Wessel, 1999].

In order to analyze the modeling problems in this context, we begin with a more detailed
discussion of a visual query example. Let us assume, a person is interested in buying a
cottage located in a forest. In Figure 8.1(a) the user just started to formulate the query.
After (s)he has specified that the type of the surrounding polygon A should be a forest,
the type of the small polygon B must be specified. A smart interface should use formal
derivation processes for computing plausible candidates for object “type” specifications.
For narrowing the set of possibilities we assume that two default rules are applicable: one
says the interior small polygon B could be a cottage (Figure 8.1(b)) and another one states
that B could be a lake (Figure 8.1(c)) if this does not lead to inconsistencies. Since an
object can be either a lake or a cottage, there is no way to believe in both possibilities at
the same time. This kind of default rule interaction is a simple example demonstrating
the necessity of considering different possible worlds which must be maintained by the
reasoning system. Depending on the default rule being used to conclude new knowledge,
different subsequent conclusions might be possible.

Other potentially active default rules might produce only inconsistencies with the set of
current assertions. For instance, if a default rule is applied which says the small polygon
B is also a forest (Figure 8.1(d)), we will get a contradiction if an axiom (as part of our
conceptual background knowledge) states that a forest can never contain another forest.
Thus, in our query context, the latter default cannot be applied and, as a consequence
of computing and appropriately interpreting the set of possible worlds, we can compose a
situation-adapted menu for the graphical user interface and the user can select between
meaningful concepts for object B. In our specific example, the menu will contain items for
cottage and lake but not for forest.

If more than one possible world is computed, an intuitive criterion would be to select the
world originating from a default with the more specific precondition or conclusion. For
instance, in the query shown in Figure 8.2(a) we would prefer a default concluding that

125

Lake

?

Lake

River

River

Lake

Lake

River

River

Lake

(a) (b) (c) (d) (e)

Figure 8.2: Scenarios for situation-adapted completion of queries (see text).

the thin graphical object might be a ‘river flowing into a lake’ (which might be a useful
concept in our scenario) instead of a more general default concluding only that the object
is an ordinary river.

The automatic augmentation of visual queries by conclusions of applied default rules can
be seen as a specialization process. Therefore, this process might not only be useful during
the construction of a visual query, but also useful as a tool for query refinement after a
query has been executed which returned too many results. In our GIS context we also have
to consider how to extend knowledge about spatial relationships between domain objects.

In the context of sketch-based visual querying, on the one hand it is sometimes useful
to leave some spatial relations between graphical objects unspecified because they are
unknown or simply because the user is not willing to specify them. On the other hand, in
order to actually draw a picture, the user must specify each spatial relation, even if it is just
one of several possible (base) relations. The problem of how to specify “don’t care relations”
or “example relations” is well known and inherent in diagrammatic representations. It is
similar to the problem of displaying visual disjunctions.

For example, in the query shown in Figure 8.2b, we have a visible disjoint relation be-
tween the river and the lake. If we intended the river to be disjoint from the lake, the
query answering system would not find any rivers flowing into this lake. The problem
is to specify that the river should be strictly inside the forest, but to leave the relation
to the lake unspecified. As a possible solution to this problem, we could simply ignore
each visible disjoint relation. But, with this interpretation, we can now no longer state a
query searching for rivers not flowing into this specific lake, which might be a very useful
concept. We propose the following solution. For objects like the river that are drawn with
a specific drawing attribute such as dashing, the universal spatial relation to other objects
(disjunction of all base relations) is asserted. Dashed objects introduce no spatial query
constraints. However, in some cases this would usually not match the users intention be-
cause the answer set of the query will be too large. With the help of default knowledge we
can automatically refine the query in a way that is appropriate according to the semantics
of the objects involved in a query. So, we can guide the interpretation of spatial aspects by

126

cottage
~60 m2

river

estate
350 - 450 m2

forest

highway
exit

Figure 8.3: Spatial sketch for first query.

the help of conceptual background knowledge and by the application of defaults, returning
different hypotheses as possible worlds. A river flows into a lake or not, i.e. graphically
both objects are either touching (see also Figure 8.2c) or they are disjoint (see Figure 8.2d).
With respect to a lake, there are no other possibilities. In our world model a river never
overlaps with a lake (see also Figure 8.2e). This is assumed to be stated as an axiom as
part of our general conceptual background knowledge. Besides defaults involving concept
constraints we also have to take care of default rules with conclusions yielding new relation
constraints. For instance, one rule could conclude the relationship touching and the other
one the relationship disjoint (see [Möller and Wessel, 1999] for a discussion).

8.3.2 Reasoning about Visual Spatial Queries

The applicability of ALCRP(D) is demonstrated by extending the GIS example. We imag-
ine a scenario for a GIS query where somebody is planning to acquire a nice cottage. We
assume the existence of a GIS offering information about suitable areas in the countryside.
The buyer intends to use the cottage for weekends and short holidays. However, the po-
tential buyer is living and working in a major city and is only interested in real estate that
can be conveniently reached via a highway. A short travel distance by car from a highway
exit to the cottage is the first precondition. Furthermore, the cottage should be located
in a forest with a river in the immediate vicinity. The buyer and its family also want a
cottage that provides at least 75 m2 floor space. The estate itself should have about 400
m2. Having these requirements in mind a query (see Figure 8.3) is sketched reflecting the
topological and geometric constraints.3 A parser can translate the sketch into a semanti-
cally equivalent description using a GIS taxonomy containing concept descriptions for the
spatial vocabulary of this domain. The following ABox A0 is derived from Figure 8.3.

3We are aware of the scaling problems with drawings and offer first solutions with VISCO’s query
language. However, in this chapter we deliberately ignore these problems.

127

c : cottage � ∃ has space . λRx . (x > 75), (c, e) : is g inside

e : estate � ∃ has space . λRx . (x > 350 ∧ x < 450)

r : river, (r, e) : is touching

f : forest, (e, f) : is g inside

h : highway exit, (h, f) : is touching

We use concept and role expressions as defined in the previous TBoxes. The cottage is
described by the individual c with a predicate-exists restriction asserting a floor space of
more than 75 m2. The cottage c has to be inside of an estate with a size between 350 and
450 m2. As a simplification we assume that the river r has to touch the estate e that is
inside of a forest f. The short driving distance from the highway exit h to the cottage c is
represented by the condition that h has to touch the borderline of the forest f.4 For sake
of simplicity we deliberately abstracted away the distance constraints. Of course, it is also
possible to express these constraints with the domain R.

Additionally, we assume the following new or revised concept definitions (�R names the
predicate required for testing the membership in the domain R for a concrete individual
x, see also Definition 7.3).

estate � spatial area � ∃ has space . λRx . (�R(x))

estate in forest
.
= estate � ∃ is g inside . forest

cottage in forest
.
= cottage � ∃ is g inside . estate in forest

fishing cottage
.
= cottage � ∃ is g inside . (estate � ∃ is touching . river)

The realizing component of the ALCRP(D) reasoner will compute the following most spe-
cific subsuming concepts (also referred to as parents) of the cottage c: expensive cottage and
fishing cottage. The parents of the estate e will be estate in forest. The other individuals
r, f, h keep their asserted concepts as parents.

With the help of an abstraction process (e.g. see [Hollunder, 1994]) we can replace Abox A0

by an Abox A1 containing a single assertion for c with the synthesized5 concept description
cottagec1 . The other two concept definitions are only used to enhance the readability of
cottagec1 .

4This is a simplification again since the extent of a forest can easily cause a long driving distance.
5The name of a synthesized concept description contains as index the individual name from which the

description was derived. In order to distinguish between several abstractions, the individual itself is also
indexed.

128

cottage
~60 m2

river

estate
350 - 450 m2

forest

highway
exit

garage

Figure 8.4: Spatial sketch for second query.

forestf1
.
= forest � ∃ is touching . highway exit

estatee1

.
= estate � ∃ has space . λRx . (x > 350 ∧ x < 450) �
∃ is g inside . forestf1 � ∃ is touching . river

cottagec1

.
= cottage � ∃ has space . λRx . (x > 75) � ∃ is g inside . estatee1

The revised ABox A1 now consists only of the assertion c : cottagec1 . The newly created
concept cottagec1 is classified by the reasoner and integrated into the concept taxonomy.
The semantic validity of this query is automatically verified during classification, i.e. to
check whether the concept is coherent. For instance, if the forest f were required to
be ‘mosquito-free’ (see above), the ALCRP(D) reasoner would immediately recognize the
incoherence of cottagec1 . This information could be used by the spatial parser for generating
an explanation to the user and for identifying the source of the contradiction.

Let us assume that the executed query c : cottagec1 returns more than 100 matches. The
next step for the user might be to refine the query by adding more constraints.6 One could
add more requirements to the estate, e.g. we ask for a garage connected to the cottage.
The extended sketch (see Figure 8.4) corresponds to the ABox A2 that results from adding
the following new assertions to ABox A0.

g : garage, (c, g) : is touching

The abstraction process reduces ABox A2 to ABox A3 consisting only of the assertion
c : cottagec2 using the following synthesized concept description.

cottagec2

.
= cottage � ∃ has space . λRx . (x > 75) � ∃ is g inside . estatee1 �
∃ is touching . garage

6Of course, one of the most important criteria is the price of the estate. This is neglected due to the
non-spatial nature of this part of the query.

129

The ALCRP(D) reasoner recognizes the relationship in the taxonomy that cottagec1 sub-
sumes cottagec2 . It can be rewritten as cottagec3 that even textually demonstrates the
subsumption relationship.

cottagec3

.
= cottagec1 � ∃ is touching . garage

For executing the refined query the optimizer can benefit from the detected query sub-
sumption and reduce the search space to the set of query matches already computed for
ABox A1. Note that these query matches are members of the concept cottagec1 . This type
of query optimization is an important aspect in applying description logics to database
theory (see [Borgida, 1995] for an introduction to these topics).

The benefits of computing a concept subsumption taxonomy can be even more subtle.
Imagine a query from another user looking for a cottage located in a forest that is connected
to a river. The ABox A4 derived from the sketch might be structured as follows.

c : cottage, e : estate area, (c, e) : is g inside

r : river, f : forest, (f, r) : is connected, (e, f) : is g inside

The abstraction process creates the following concept definitions.

forestf2
.
= forest � ∃ is connected . river

estatee2

.
= estate � ∃ is g inside . forestf2

cottagec4

.
= cottage � ∃ is g inside . estatee2

The resulting ABox A4 consists only of the assertion c : cottagec4 . It turns out that the
concept cottagec4 subsumes the other concepts cottageci although the concept descriptions
are textually different. This is a rather complex proof also based on the spatial inference
already explained above: g inside(e, f) ∧ touching(e, r) ⇒ connected(f, r).

The abstraction process is applicable to ABoxes containing no joins or cycles. If joins or
cycles are present in an ABox, i.e. the same individual is a filler of several roles or even
related to itself through a cycle of role assertions, it depends on the expressiveness of the
description logic whether an ABox can be reduced to a single concept membership assertion.
For instance, joins can be expressed by restricting the number of possible role fillers or by
equality restrictions for feature fillers. As mentioned above, other DLs also support the
definition of cyclic concepts that might be required to fully reduce some ABoxes. Due
to unknown decidability results ALCRP(D) currently does not allow cyclic concepts or
number restrictions. Therefore, in case of ABoxes with joins or cycles, we can only partially
reduce these ABoxes. This is illustrated in Figure 8.5 by adding a lake. The river has to
flow into the lake and the same lake is touching the forest. This is an example for a join
in a corresponding ABox. However, the reasoning with ALCRP(D) as described above is
still valid and usable for query processing. Only the subsumption between ABox queries
requires a more sophisticated approach.

130

cottage
~60 m2

river

estate
350 - 450 m2

forest

highway
exit

lake

garage

Figure 8.5: Spatial sketch for second query refined by an additional lake.

8.4 Using ABox Patterns for n-ary Queries

We have demonstrated that the abstraction process of rewriting a query ABox to a concept
term provides a means to specify the semantics of a visual query. Unfortunately, there are
also some drawbacks with this approach. First of all, since the semantics of a concept
description is only the set of individuals that satisfy the concept, no n-ary query results
can be returned. This is not surprising, since concept descriptions correspond to first-order
formulae with only one free variable. Thus, the abstraction process is only successfully
applicable to ABoxes where it can select exactly one primary “target individual” from the
query. The target individual remains as the single individual and the other individuals
are represented by the query concept derived by the abstraction process. In the case of
the cottage example, the target object of the query is the cottage the user is looking for.
However, considering VISCO, the semantics of a VISCO query is a set of n-tuples, so one
would need more than one free variable to fully specify the semantics of VISCO’s query
language which can handle aggregates.

As a solution to this problem we have developed so-called ABox patterns , which are ordi-
naryALCRP(S2) ABoxes that may –in addition to ordinary individuals– contain variables ,
e.g. x?, y?. Intuitively speaking, given a “database ABox” A and a query ABox Q that
contains variables, the ABox pattern retrieval service returns a set σ of substitutions which
are mappings from variables in Q to ABox individuals in the database ABox A such that
A |=T σ(Q) (w.r.t. the TBox T).

abox pattern retrieval(A,Q) := {σ | A |=T σ(Q)}.
σ(Q) applies the given substitution σ to the query ABox Q, replacing its variables with
individuals from A. As a subproblem, we need to decide the ABox entailment problem,
e.g. the question whether A |=T σ(Q). This problem is decidable for ALCRP(S2) (see
[Möller and Wessel, 1999]). The substitutions can simply be enumerated as mappings from
Vars(Q) → Individuals(Q)‖Vars(Q)‖ and applied to Q yielding σ(Q). If σ(Q) is entailed
by A, then the range (image) of σ is the n-ary query result. Note that computing the

131

set of individuals which are members of a concept C is a special case of an ABox pattern
retrieval.

concept members(A, C) := abox pattern retrieval(A, {x? :C}).
As an example, we reconsider the query where a user is looking for a cottage in a for-
est. Obviously, the price of the estate as well as the cottage and the forest itself are of
interest, so instead of returning just the cottage the query should return triplets such as
〈cottage, estate, forest〉 which can be further inspected. The corresponding query ABox Q
might be defined as

Q = {x? :cottage, y? :estate, z? : forest, (x?, y?) :g inside, (y?, z?) :g inside}.
The user can also refer to specific individuals, e.g.

Q = {x? :cottage, y? :estate, (x?, y?) :g inside, (y?, black forest) :g inside}, where black forest
is a specific database ABox individual. Obviously, joins can easily be specified. Sup-
pose we are looking for two cottages within the same estate that are located at the same
river:

Q = {x? :cottage, y? :cottage, x? � .= y?, z? :estate, (x?, z?) :g inside,
(y?, z?) :g inside, r? : river, (x?, r?) : touching, (y?, r?) : touching}.

Since the unique name assumption also does not hold for variables, we introduce an addi-
tional assertion x? � .= y? in order to ensure that σ(x?) �= σ(y?). This simply constrains the
substitution σ and has no impact on ALCRP(S2).

8.5 Related Work

The experience with VISCO (see Chapter 4 and 5) has motivated the research presented
in this chapter. VISCO can be classified as a visual query system for spatial information
systems that uses ‘sketched’ queries combined with deductive reasoning. An operational
semantics for VISCO can be found in [Wessel, 1998]. However, this chapter presented a
proposal defining a descriptive semantics using description logics. A survey on visual query
systems for database systems handling conventional data can be found in [Catarci et al.,
1997]. Other relevant work [Meyer, 1994; Egenhofer, 1997] reviews especially visual query
system for spatial information systems. A related approach that also uses spatial relations
[Del Bimbo et al., 1994] deals with symbolic descriptions and retrieval in image databases.
Another approach deals with pictorial query specifications for spatially referenced image
databases [Soffer and Samet, 1998]. We refer to Section 4.3 for a review of the four
approaches (see [Meyer, 1994; Calcinelli and Mainguenaud, 1994; Lee and Chin, 1995;
Egenhofer, 1997]) which come closest to the ideas and concepts behind VISCO and to
Section 3.6 for a review of other approaches related to VL theory.

[Meyer, 1994] also gives formal semantics for visual spatial queries using a mapping to the
Datalog language, but there exists no formalization of topological relations or conceptual
knowledge. To the best of our knowledge there exists no other approach or (visual) spatial
query language addressing the semantics of spatial queries and their subsumption using a
spatial logic such as ALCRP(D).

132

Meyer’s recent work [Meyer, 1997] presents picture logic, a visual language for the specifi-
cation of diagrams and diagram transformations. Picture logic is based on constraint logic
programming handling constraints over real intervals. ALCRP(D) can also be instantiated
with a similar concrete domain and it might be possible to also specify transformations
over time if we utilize Allen’s interval logic [Allen, 1983]. However, this is currently an
open issue.

[Marriott and Meyer, 1997; Marriott and Meyer, 1998a] present a classification of visual
languages by grammar hierarchies on the basis of copy-restricted constraint multiset gram-
mars. We believe that constraint multiset grammars and the ALCRP(D) approach are
getting quite close to each other since constraint specification and solving is now available
in ALCRP(D) via concrete domains. However, this has to be more thoroughly analyzed.

For formalizing reasoning about spatial structures themselves many specific approaches
have been published (see e.g. [Stock, 1997] for an overview). Ignoring decidability, Borgo
et al. [Borgo et al., 1996] have developed a first order theory of space which formalizes
different aspects such as mereology etc. An algebraic (but still undecidable) theory about
space has been proposed by [Pratt and Lemon, 1997; Pratt and Schoop, 1997]. Research
on the RCC theory is also summarized in [Cohn et al., 1997]. While first axiomatizations
used first-order logic, recently, the spatial relations used in RCC have been defined in terms
of intuitionistic logic and propositional modal logic [Bennett, 1995]. Although qualitative
reasoning with RCC can be used in many applications, in GIS also conceptual knowledge
combined with qualitative relations has to be considered. This problem is not addressed
in the above-mentioned related work but a first solution was presented in this chapter.

We refer to Section 3.6 for a discussion of related work concerned with visual language
theory and to [Marriott et al., 1998] for an extensive review of visual language theory.

8.6 Summary

The formalism presented in this chapter can be used to define the semantics of visual
spatial queries and to reason about query validity and subsumption. We would like to
emphasize that this approach has no restrictions about the ordering of input and the type
of allowed relations, provided the corresponding concrete domain is admissible. It does not
rely on special parsing techniques because this approach is purely declarative. It can even
deal with ambiguous specifications since a DL reasoner can compute every model satisfying
the specifications. This is addressed with the help of default reasoning. A problem with
the approach presented in this chapter could be the worst-case time complexity of the
underlying classification algorithms. However, almost every logical or constraint-oriented
approach with an interesting expressiveness has to deal with tractability and decidability.
It is also important to note that complexity issues of DLs are very well understood and
analyzed.

Based on recent findings [Horrocks, 1997; Horrocks, 1998; Horrocks and Patel-Schneider,
1999; Haarslev and Möller, 1999b; Horrocks et al., 2000a] about optimizing DL reasoners

133

for the average case we investigated optimization techniques for ALCRP(D) reasoners
(see [Turhan, 2000; Turhan and Haarslev, 2000]) as a first step towards an optimized
implementation of ALCRP(D). The next chapters present our research on developing
optimization techniques for the description logic ALCNHR+ .

Part V

Practical Reasoning with Description
Logics

The fifth part of this monograph presents research about practical reasoning with expres-
sive description logics. Chapter 9 introduces a new tableaux calculus deciding the ABox
consistency problem for the expressive description logic ALCNHR+ . Prominent language
features of ALCNHR+ are number restrictions, role hierarchies, transitively closed roles,
and generalized concept inclusions. This chapter is based on [Haarslev and Möller, 1999c;
Haarslev and Möller, 2000b].

Chapter 10 investigates novel optimization techniques for practical reasoning with expres-
sive ABox description logic (DL) systems. As an extension to state-of-the-art optimization
techniques new algorithms and data structures for implementing a DL system supporting
TBoxes and ABoxes are discussed. The new techniques can be divided into two major
approaches: (i) design of optimizations for the tableaux calculus and (ii) exploitation of
new transformation techniques for TBoxes and ABoxes in order to achieve improvements
in average case performance. The advances are demonstrated by an empirical analysis of
the DL system RACE. This chapter is based on [Haarslev et al., 1998c; Haarslev et al.,
1998b; Haarslev and Möller, 1999a; Haarslev and Möller, 1999d; Haarslev and Möller,
1999b; Haarslev and Möller, 2000a; Haarslev and Möller, 2000d; Haarslev et al., 2000a].

Chapter 11 presents techniques addressing the problem of TBoxes which contain a large
number of concept introduction axioms. This is demonstrated with an empirical analysis
of the performance of RACE applied to knowledge bases containing more than 100000
axioms. It is shown that description logic systems based on sound and complete algorithms
are particularly useful for simple but large knowledge bases consisting mainly of primitive
concept definitions. This chapter is based on [Haarslev and Möller, 2000c].

137

Chapter 9

Expressive ABox Reasoning with
Number Restrictions, Role
Hierarchies, and Transitively Closed
Roles

Experiences with concept languages indicate that description logics (DLs) with at least
negation and disjunction are required to solve practical modeling problems without resort-
ing to ad hoc extensions. The requirements derived from practical applications of DLs ask
for even more expressive languages. For instance, in [Sattler, 1996] the need for transi-
tive roles is demonstrated for representing part-whole relations, family relations or partial
orderings in general. It is argued that the trade-off between expressivity and complexity
favors the integration of transitively closed roles instead of a transitive closure operator for
roles. Other examples are given in [Horrocks, 1998], where the area of medical terminology
is discussed. Design studies for the Galen project identified the need for modeling transitive
part-whole, causal and compositional relations, and for organizing these relations into a
hierarchy. Moreover, generalized concept inclusions were also required as a modeling tool,
e.g. for expressing sufficient conditions for named concepts.

Motivated by the above-mentioned requirements we introduce in this chapter an ABox
tableaux calculus for the description logic ALCNHR+ . It augments the basic logic ALC
[Schmidt-Schauss and Smolka, 1991] with number restrictions, role hierarchies, and tran-
sitively closed roles. Note that these language features imply the presence of generalized
concept inclusions and cyclic concepts. The use of number restrictions in combination
with transitive roles and role hierarchies is syntactically restricted: no number restrictions
are possible for (i) transitive roles and (ii) for any role which has a transitive subrole.
Furthermore, we assume that the unique name assumption holds for ABox individuals.

ALCNHR+ is an extension ofALCNH that itself can be polynomially reduced toALCNR
[Buchheit et al., 1993] and vice versa. It is possible to rephrase every hierarchy of role

139

140 The Description Logic ALCNHR+

names with a set of role conjunctions and vice versa [Buchheit et al., 1993]. Thus, our
work on ALCNHR+ extends the work on ALCNR by additionally providing transitively
closed roles. ALCNHR+ also extends other related description logics such as ALCR+

[Sattler, 1996] and ALCHfR+ [Horrocks, 1998]. Recently, the work on these logics has
been extended for the language ALCQHIR+ [Horrocks et al., 1999; Horrocks et al., 2000b].
Another approach is presented in [De Giacomo and Lenzerini, 1996] where the logic CIQ
for reasoning with TBoxes and ABoxes is introduced. The reasoning procedures developed
for CIQ are based on a polynomial encoding of CIQ TBoxes into sublanguages of CIQ.
A similar approach is taken for ABoxes of the languages CI and CQ. In comparison to
ALCNHR+ and the other approaches mentioned above CIQ offers more operators (e.g.
the transitive closure) but does not support role hierarchies and allows number restrictions
only for primitive roles.

9.1 Defining the Language

The next subsections introduce the syntax and semantics of the concept language and the
assertional language of ALCNHR+ .

9.1.1 The Concept Language

Definition 9.1 (Role Hierarchy) Let us assume a set of role names R. The disjoint
subsets P , T , and F of R denote non-transitive, transitive role names, and feature names,
respectively (R = P ∪ T ∪ F). If R, S ∈ R are role names, then R � S is called a role
inclusion axiom. A role hierarchy R is a finite set of role inclusion axioms. We define �∗

R
as the reflexive transitive closure of � over the role hierarchy R.

Additionally we define the set of ancestors and descendants of a role.

Definition 9.2 (Role Descendants/Ancestors) Given �∗
R, the following definitions

are introduced.

• R↓ = {S ∈ R | S �∗
R R} (descendants of a role R)

• R↑ = {S ∈ R |R �∗
R S} (ancestors of a role R)

• RS ↑ =
⋃

R∈RS R↑ (ancestors of a role set RS)

• RS ↓ =
⋃

R∈RS R↓ (descendants of a role set RS)
• S := {R ∈ P |R↓ ∩ T = ∅} (simple roles that are neither transitive nor have a tran-

sitive role as descendant)

Definition 9.3 (Concept Terms) Let C be a set of concept names that is disjoint from
R. Any element of C is a concept term. If C and D are concept terms, R ∈ R is an arbitrary
role, S ∈ S is a simple role, n > 1, and m > 0 (n, m ∈ N), then the following expressions
are also concept terms:

• � (top concept)

Defining the Language 141

• ⊥ (bottom concept)
• C � D (conjunction)
• C
 D (disjunction)
• ¬C (negation)
• ∀R . C (concept value restriction)
• ∃R . C (concept exists restriction)
• ∃≤m S (at most number restriction)
• ∃≥n S (at least number restriction).

Note that � (⊥) can also be expressed as C
 ¬C (C � ¬C). For an arbitrary role R, the
term ∃≥1 R can be rewritten as ∃R .�, ∃≥0 R as �, and ∃≤0 R as ∀R .⊥. Thus, we do not
consider these terms as number restrictions in our language.

The concept language is syntactically restricting the combination of number restrictions
and transitive roles. Number restrictions are only allowed for simple roles. This restriction
is motivated by an undecidability result [Horrocks et al., 1999] in case of an unrestricted
combinability.

Definition 9.4 (Generalized Concept Inclusions) If C and D are concept terms, then
C � D (generalized concept inclusion or GCI) is a terminological axiom. A finite set of
terminological axioms TR is called a terminology or TBox w.r.t. to a role hierarchy R.1

GCIs can be used to represent terminological cycles. There exist at least two ways to deal
with GCIs in a tableaux calculus. The “internalization” approach (e.g. see in [Horrocks
and Sattler, 1999]) makes use of the fact that the expressiveness of GCIs is already implied
by the combination of role hierarchies and transitive roles. For instance, this allows one to
introduce an internal transitive role U as a superrole of all other roles. Then, a GCI C � D
can be internalized as ∀U . (¬C
 D) and there is no need to adapt a tableaux calculus w.r.t.
GCIs. However, with the presence of arbitrary ABoxes one has also to consider unrelated
individuals. For instance, in this case the internalization approach could introduce a new
internal root individual that is related with every other individual in the ABox via the
superrole U. Then, the all-concepts corresponding to the internalized GCIs are added to
the root individual. Alternatively, one could directly add the corresponding assertions
to all ABox individuals (e.g. i :∀U . (¬C
 D)) instead of creating a root individual. We
decided to pursue a different and more direct approach. An ABox tableaux calculus is
presented which offers new constructs and rules for dealing with GCIs (see Definition 9.7).

The next definition gives a set-theoretic semantics to the language introduced above.

Definition 9.5 (Semantics) An interpretation I = (∆I , ·I) consists of a set ∆I (the
domain) and an interpretation function ·I . The interpretation function maps each concept
name C to a subset CI of ∆I , each role name R to a subset RI of ∆I×∆I . Let the symbols
C, D be concept expressions, R be a role name, S be simple role name, n > 1, and m > 0

1The reference to R is omitted in the following if we use T .

142 The Description Logic ALCNHR+

(n, m ∈ N). Then the interpretation function can be extended to arbitrary concept and
role terms as follows (‖ · ‖ denotes the cardinality of a set):

�I := ∆I

⊥I := ∅
(C � D)I := CI ∩ DI

(C
 D)I := CI ∪ DI

(¬C)I := ∆I \ CI

(∃R . C)I := {x ∈ ∆I | ∃ y ∈ ∆I : (x, y) ∈ RI , y ∈ CI}
(∀R . C)I := {x ∈ ∆I | ∀ y ∈ ∆I : (x, y) ∈ RI ⇒ y ∈ CI}
(∃≥n S)I := {x ∈ ∆I | ‖{y | (x, y) ∈ SI}‖ ≥ n}
(∃≤m S)I := {x ∈ ∆I | ‖{y | (x, y) ∈ SI}‖ ≤ m}

An interpretation I is a model of a TBox T (w.r.t. to a role hierarchy R) iff it satisfies

• CI ⊆ DI for all terminological axioms C � D in T ,

• RI ⊆ SI for all role inclusion axioms R � S in R,

• RI = (RI)
+

for every R ∈ T , and

• ∆I ⊆ (∃≤1 F)I for every F ∈ F

A concept term C subsumes a concept term D w.r.t. a TBox T (written D 5T C), iff
DI ⊆ CI for all models I of T . A concept term C is satisfiable w.r.t. a TBox T iff there
exists a model I of T such that CI �= ∅.

One of the basic reasoning services for a description logic formalism is computing the
subsumption relationship between named concepts (i.e. elements from C). This inference
is needed in the TBox to build a hierarchy of concept names w.r.t. specificity. Satisfiability
and subsumption can be mutually reduced to each other since C 5T D iff C � ¬D is not
satisfiable w.r.t. T and C is unsatisfiable w.r.t. T iff C 5T ⊥.

9.1.2 The Assertional Language

In the following, the language for representing knowledge about individuals is introduced.
An ABox A is a finite set of assertional axioms which are defined as follows.

Definition 9.6 (ABox Assertions) Let O = OO ∪ON be a set of individual names,
where the set OO is disjoint to the set ON (see also below). If C is a concept term, R
a role name, and a, b ∈ O are individual names, then the following expressions are asser-
tional axioms :

Defining the Language 143

• a :C (concept assertion),

• (a, b) :R (role assertion).

The interpretation function ·I of the interpretation I for the concept language can be
extended to the assertional language by additionally mapping every individual name from
O to a single element of ∆I in a way such that for a, b ∈ OO , aI �= bI if a �= b (unique
name assumption). This ensures that different individuals in OO are interpreted as dif-
ferent objects. The unique name assumption does not hold for elements of ON , i.e. for
a, b ∈ ON , aI = bI may hold even if a �= b, or if we assume without loss of generality that
a ∈ ON , b ∈ OO .2 An interpretation I w.r.t. to a TBox T satisfies an assertional axiom
a :C iff aI ∈ CI and (a, b) :R iff (aI , bI) ∈ RI .

An interpretation I is a model of an ABox A (or satisfies A) w.r.t. a TBox T and a role
hierarchy R iff it is a model of T ,R and furthermore satisfies all assertional axioms in A.3

An ABox is consistent w.r.t. a TBox T iff it has a model w.r.t. T . An individual b is called
a direct successor of an individual a in an ABox A iff A contains the assertional axiom
(a, b) :R. An individual b is called a successor of a if it is either a direct successor of a or
there exists in A a chain of assertions (a, b1) :R1, (b1, b2) :R2, . . . , (bn, b) :Rn+1. In case that
Ri = Rj or Ri ∈ R↓ for all i, j ∈ 1..n + 1 we call b the (direct) R-successor of a. A (direct)
predecessor is defined analogously. An individual a is called an instance of a concept term
C in an interpretation I iff aI ∈ CI . The direct types of an individual are the most specific
atomic concepts which the individual is an instance of.

The ABox consistency problem is to decide whether a given ABox A is consistent w.r.t.
a TBox T . Satisfiability of concept terms can be reduced to ABox consistency as follows:
A concept term C is satisfiable iff the ABox {a :C} is consistent. Instance checking tests
whether an individual a is an instance of a concept term C w.r.t. an ABox A and a TBox
T , i.e. whether A entails a :C w.r.t. T . This problem is reduced to the problem of deciding
if the ABox A ∪ {a :¬C} is inconsistent.

9.2 ABox Reasoning versus Concept Consistency

ABox reasoning truly extends the usefulness of description logics in practical applications.
The increase of expressiveness is also reflected in an increase of the complexity of the
tableaux rules (see Section 9.4.1 for more details). An alternative might be the so-called
“precompletion approach” originally developed for the language ALCQ [Hollunder, 1994]
and extended to the logic ALCHR+ [Tessaris and Gough, 1999]. The idea behind the pre-
completion approach is to transform given ABoxes such that ABox consistency is reduced
to concept satisfiability. This is achieved by generating a precompletion of an ABox where

2The set of “old” individuals names characterizes all individuals for which the unique name assumption
holds while the set of “new” names denotes individuals which are constructed during a proof.

3For sake of brevity we may omit the reference to T if we use I.

144 The Description Logic ALCNHR+

all role filler relationships between ABox individuals (e.g. i1, . . . , in) have been absorbed into
corresponding concept terms (e.g. C1, . . . , Cn). Then, ABox consistency can be reduced to
testing the satisfiability of a concept conjunction (e.g. C1 � . . . � Cn). The advantage of this
approach is that it allows one to reuse existing tableaux provers for concept consistency.
However, there currently exist no calculi for computing the precompletion of ABoxes for
languages such as ALCNHR+ or even ALCQHIR+ . Moreover, for practical applications
one can argue that a translational approach via precompletion techniques might raise prob-
lems for relating results from the concept consistency tester (e.g. concept incoherence) to
corresponding ABox individuals and their assertions (e.g. ABox incoherence).

Another difficulty results from applying the optimization technique called dependency-
directed backtracking (see Section 10.2.2 for a discussion of this technique). The transla-
tional approach will need similar information from a concept consistency tester in order to
avoid unnecessary backtracking. An ABox tableaux calculus can easily avoid this problem
as illustrated with the following ABox A.

A = {i : ∀R . A
 ∀R . B, (i, k) : R, (j, k) : R, j : C
 D, k : ¬A � ¬B}

To deal with disjunctions the ALCNHR+ ABox tableaux calculus (see below for details)
non-deterministically generates new ABoxes. An effective search procedure has to use back-
tracking to exhaustively explore all possible alternatives. For instance, the case i :∀R . A
must be explored. Another choice point is the disjunction j :C
 D. Without loss of gener-
ality, the system tries j :C before considering constraints for k (note that C might contain
concept value restrictions). Afterwards, the concept constraint i :∀R . A is treated in com-
bination with the role constraint (i, k) :R. After some additional expansion steps, this part
of the search tree will lead to a clash because k :A and k :¬A will be elements of the ABox.
Now, if the system backtracks to the choice point j :C
 D and tries j :D it is bound to detect
the same clash for k again. Since D can be a very complex concept term, many expansion
steps are definitely wasted. Using dependency-directed backtracking, one detects that j :C
is not involved in the clash and backtracking is set up again for trying i :∀R . B.

9.3 An ABox Example

Before we continue with the calculus for ALCNHR+ , we illustrate in the following the
expressiveness of ALCNHR+ with a TBox and ABox example about family relationships.
This example uses prominent features of ALCNHR+ such as transitive roles, role hierar-
chies, number restrictions and generalized concept inclusions.

In the TBox family we assume a role has descendant which is declared to be transitive,
has gender which is declared as a feature, and a role has sibling. The TBox family contains
the following role axioms.

An ABox Example 145

has child � has descendant

has sister � has sibling

has brother � has sibling

The TBox family contains concept axioms specifying the domain and/or range of the roles
introduced above (the domain A of a role R can be expressed by the axiom ∃≥1 R � A and
the range B by � � ∀R . B).

∃≥1 has descendant � human

� � ∀ has descendant . human

∃≥1 has child � parent

∃≥1 has sibling � sibling

� � ∀ has sibling . sibling

� � ∀ has sister . sister

� � ∀ has brother . brother

� � ∀ has gender . (female
male)

The next axioms guarantee the disjointness between the concepts female, male, and human.

female � ¬(human
male)

male � ¬(human
 female)

human � ¬(female
male)

After these preliminaries we start with axioms expressing basic knowledge about family
members. We use C

.
= D as an abbreviation for C � D and D � C.

human � ∃≥1 has gender

woman
.
= human � ∀ has gender . female

man
.
= human � ∀ has gender . male

parent
.
= ∃≥1 has child

mother
.
= woman � parent

father
.
= man � parent

The next axioms describe some aspects of relatives of a family. Note the inferred equiva-
lences between the concept pairs “mother with . . ./mother of . . .” and “mother having . . .”
as shown in Figure 9.1.

146 The Description Logic ALCNHR+

mother having only female kids
.
= mother � ∀ has child .∀ has gender . female

mother having only daughters
.
= mother � ∃≥1 has child � ∀ has child . woman

mother with kids
.
= mother � ∃≥2 has child

grandpa
.
= man � ∃ has child . parent

great grandpa
.
= man � ∃ has child . (∃ has child . parent)

grandma
.
= woman � ∃ has child . parent

great grandma
.
= woman � ∃ has child . (∃ has child . parent)

aunt
.
= woman � ∃ has sibling . parent

uncle
.
= man � ∃ has sibling . parent

sibling
.
= sister
 brother

sister
.
= woman � ∃≥1 has sibling

brother
.
= man � ∃≥1 has sibling

mother of siblings
.
= mother � ∀ has child . sibling

There still exists no formal relationship between the notions “mother having kids” and
“mother of siblings.” This is expressed by the next two axioms. The last axiom defines
a concept mother of sisters which has the other specific “mother . . .” concepts as parents
(see Figure 9.1).

∃≥2 has child � ∀ has child . sibling

∃ has child . sibling � ∃≥2 has child

mother of sisters
.
= mother � ∀ has child . (sister � ∀ has sibling . sister)

Using the TBox family , the ABox smith family is specified. It consists of several assertions
about the individuals alice, betty, charles, doris, and eve. The individual alice is the mother
of her two children betty and charles.

alice : woman � ∃≤2 has child

(alice, betty) : has child

(alice, charles) : has child

The individual betty is the sibling of charles and the mother of doris and eve, who are the
only siblings of each other. The individual charles is the only brother of betty.

An ABox Example 147

top

femalehuman

parent man

father

grandpa

great-grandpa

sibling

brother

uncle

woman

sister

aunt

mother

grandma

great-grandma

mother-having-only-daughters /
mother-having-only-female-kids

mother-with-kids /
mother-of-siblings

male

evedoris

betty

mother-of-sisters alice charles

Figure 9.1: Concept hierarchy of the TBox family augmented with the individuals from
the ABox smith family . Ovals represent atomic concepts, rectangles denote ABox individ-
uals, solid lines show the direct subsumption relationship, and dashed lines the instance
membership of the individuals for their direct types.

betty : woman � ∃≤2 has child � ∃≤1 has sibling

(betty, doris) : has child

(betty, eve) : has child

(betty, charles) : has sibling

charles : brother � ∃≤1 has sibling

(charles, betty) : has sibling

doris : ∃≤1 has sibling

eve : ∃≤1 has sibling

(doris, eve) : has sister

(eve, doris) : has sister

148 The Description Logic ALCNHR+

Figure 9.1 also shows the inferred direct types of the individuals in the ABox smith family .
The individual alice has as direct types {mother of siblings, grandma}, the individual betty
has {mother of sisters, sister}, charles has {uncle}, and doris and eve have {sister}. These
inferences clearly demonstrate the expressiveness of ALCNHR+ .

9.4 A Tableaux Calculus for ALCNHR+

In the following we devise a tableaux algorithm to decide the consistency of ALCNHR+

ABoxes. The algorithm is characterized by a set of tableaux or completion rules and by a
particular completion strategy ensuring a specific order for applying the completion rules
to assertional axioms of an ABox. The strategy is essential to guarantee the completeness
of the ABox consistency algorithm. The purpose of the calculus is to generate a so-called
completion for an initial ABox A in order to prove the consistency of A or its inconsistency
if no completion can be found.

The treatment of features is omitted in the following because any ABox A w.r.t. a TBox
T can be transformed such that features are declared as roles and for every feature name
F an axiom � � ∃≤1 F is added to T . Obviously, the new ABox w.r.t. the new TBox is
consistent iff A is consistent w.r.t. T .

First, we have to introduce new assertional axioms needed to define the augmentation of
an ABox.

Definition 9.7 (Additional ABox Assertions) Let C be a concept term, the individ-
ual names a, b ∈ O , and x �∈ O , then the following expressions are also assertional axioms:

• ∀ x . (x :C) (universal concept assertion),

• a � .= b (inequality assertion).

An interpretation I satisfies an assertional axiom ∀ x . (x :C) iff CI = ∆I and a � .= b iff
aI �= bI .

Given the new ABox assertions we define for any concept term its negation normal form.

Definition 9.8 (Negation Normal Form) We assume the same naming conventions as
in Definition 9.3. The negation normal form is defined by applying the following trans-
formations in such a way that a negation sign may occur only in front of concept names.
This transformation is possible in linear time.

• ¬� → ⊥
• ¬⊥ → �
• ¬¬C → C
• ¬(C � D) → ¬C
 ¬D
• ¬(C
 D) → ¬C � ¬D

A Tableaux Calculus 149

• ¬∀R . C → ∃R .¬C
• ¬∃R . C → ∀R .¬C
• ¬∃≤m S → ∃≥m+1 S
• ¬∃≥m S → ∃≤m−1 S

We are now ready to define an augmented ABox as input to the tableaux rules.

Definition 9.9 (Augmented ABox) For an initial ABox A w.r.t a TBox T and a role
hierarchyR we define its augmented ABox or its augmentation A′ by applying the following
rules to A. For every GCI C � D in T the assertion ∀ x . (x : (¬C
 D)) is added to A′.
Every concept term occurring in A is transformed into its negation normal form. Let
OO = {a1, . . . , an} be the set of individuals mentioned in A, then the following set of
inequality assertions is added to A′: {ai � .= aj | ai, aj ∈ OO , i, j ∈ 1..n, i �= j}. From this point
on, if we refer to an initial ABox A we always mean its augmented ABox. Obviously, if A′

is an augmentation of A then A′ is consistent iff A is consistent.

The tableaux calculus also requires the notion of blocking the applicability of tableaux
rules. This is based on so-called concept sets, an ordering for individuals, and on the
notion of blocking individuals.

Definition 9.10 (Concept Sets) Given an ABox A and an individual a occurring in A,
we define the concept set of a as σ(A, a) := {�} ∪ {C | a :C ∈ A}.

Definition 9.11 (Individual Ordering) We define an individual ordering ‘≺’ for new
individuals (elements of ON) occurring in an ABox A. If b ∈ ON is introduced in A, then
a ≺ b for all new individuals a already present in A.

Definition 9.12 (Blocking Individual, blocked) Let A be an ABox and a, b ∈ O be
individuals in A. We call a the blocking individual of b if the following conditions hold:

1. a, b ∈ ON

2. σ(A, a) ⊇ σ(A, b)
3. a ≺ b

If there exists a blocking individual a for b, then b is said the be blocked (by a).

9.4.1 Completion Rules

We are now ready to define the completion rules that are intended to generate a so-called
completion (see also below) of an ABox A w.r.t. a TBox T .

Definition 9.13 (Completion Rules)

150 The Description Logic ALCNHR+

R� The conjunction rule.
if 1. a :C � D ∈ A, and

2. {a :C, a :D} �⊆ A
then A′ = A ∪ {a :C, a :D}
R
 The disjunction rule (nondeterministic).
if 1. a :C
 D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}
R∀C The role value restriction rule.
if 1. a :∀R . C ∈ A, and

2. ∃ b ∈ O , S ∈ R↓ : (a, b) :S ∈ A, and
3. b :C �∈ A

then A′ = A ∪ {b :C}
R∀+C The transitive role value restriction rule.
if 1. a :∀R . C ∈ A, and

2. ∃ b ∈ O , T ∈ R↓, T ∈ T , S ∈ T↓ : (a, b) :S ∈ A, and
3. b :∀T . C �∈ A

then A′ = A ∪ {b :∀T . C}
R∀x The universal concept restriction rule.
if 1. ∀ x . (x :C) ∈ A, and

2. ∃ a ∈ O : a mentioned in A, and
3. a :C �∈ A

then A′ = A ∪ {a :C}
R∃C The role exists restriction rule (generating).
if 1. a :∃R . C ∈ A, and

2. a is not blocked, and
3. ¬∃ b ∈ O , S ∈ R↓ : {(a, b) :S, b :C} ⊆ A

then A′ = A ∪ {(a, b) :R, b :C} where b ∈ON is not used in A
R∃≥n The number restriction exists rule (generating).
if 1. a :∃≥n R ∈ A, and

2. a is not blocked, and
3. ¬∃ b1, . . . , bn ∈ O , S1, . . . , Sn ∈ R↓ :

{(a, bk) :Sk | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j} ⊆ A
then A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j}

where b1, . . . , bn ∈ON are not used in A
R∃≤n The number restriction merge rule (nondeterministic).
if 1. a :∃≤n R ∈ A, and

2. ∃ b1, . . . , bm ∈ O , S1, . . . , Sm ∈ R↓: {(a, b1) :S1, . . . , (a, bm) :Sm} ⊆ A
with m > n, and

3. ∃ bi, bj ∈ {b1, . . . , bm} : i �= j, bi � .= bj �∈ A
then A′ = A[bi/bj], i.e. replace every occurrence of bi in A by bj

A Tableaux Calculus 151

We call the rules R
 and R∃≤n nondeterministic rules since they can be applied to the
same set of assertions in different ways. The remaining rules are called deterministic rules.
Moreover, we call the rules R∃C and R∃≥n generating rules since they are the only rules
that introduce new individuals in an ABox.

The increase of expressiveness in ALCNHR+ gained by supporting ABox reasoning is re-
flected in tableaux rules that are more complex than in comparable approaches for concept
consistency. The universal concept restriction rule takes care of GCIs and usually causes
additional complexity by adding disjunctions to an ABox. The generating rules have a
more complex premise since they may test only for a blocking situation if they are applied
to new individuals, i.e. a blocking situation can never occur for old individuals. The ne-
cessity of this additional precondition is illustrated by the following example. We define a
concept D where R is a transitive superrole of S.

D
.
= C � ∃ S . C � ∃≤1 S � ∀R .∃ S . C

A := {(i, j) : S, (j, k) : S, i : D, j : D, k : ¬C}

Then, we define an ABoxA which is obviously unsatisfiable due to a clash for the individual
k with C � ¬C. However, if blocking were allowed for old individuals, the R∃C-rule would
not create a S-successor with qualification C for the individual j. As a consequence, the
number restriction merge rule would never merge this successor with the individual k which
causes the inconsistency of A.

The next proposition proves that the completion rules given above preserve the satisfiability
of ABoxes.

Proposition 9.1 (Invariance) LetA be an augmented ABox andA′ be an ABox derived
from A. Then:

1. If A′ is derived from A by applying a deterministic rule, then A is satisfiable iff A′

is satisfiable.

2. If A′ is derived from A by applying a nondeterministic rule, then A is satisfiable if A′

is satisfiable. Conversely, if A is satisfiable and a nondeterministic rule is applicable
to A, then it can be applied in such a way that it yields a satisfiable ABox A′.

Proof. 1. “⇐” Due to the structure of the deterministic rules one can immediately verify
that A is a subset of A′. Therefore, A is satisfiable if A′ is satisfiable.

“⇒” In order to show that A′ is satisfiable after applying a deterministic rule to the
satisfiable ABox A, we examine each applicable rule separately. We assume that I =
(∆I , ·I) satisfies A. It is an obvious consequence that RI ⊆ SI iff R �∗

R S.

If the conjunction rule is applied to a :C � D ∈ A, then we get A′ = A ∪ {a :C, a :D}. Since
I satisfies a :C � D, I satisfies a :C and a :D and therefore A′.

152 The Description Logic ALCNHR+

If the role value restriction rule is applied to a :∀R . C ∈ A, then there must be a role
assertion (a, b) :S ∈ A with S ∈ R↓ such that A′ = A ∪ {b :C}. Since I satisfies A, it holds
that (aI , bI) ∈ SI ⊆ RI . Since I satisfies a :∀R . C, it holds that bI ∈ CI . Thus, I satisfies
b :C and therefore A′.

If the transitive role value restriction rule is applied to a :∀R . C ∈ A, there must be an
assertion (a, b) :S ∈ A with S ∈ T↓ ⊆ R↓, T ∈ T such that we get A′ = A ∪ {b :∀T . C}.
Since I satisfies A, we have aI ∈ (∀R . C)I and (aI , bI) ∈ SI ⊆ TI ⊆ RI . Since I satisfies
a :∀T . C and T ∈ T , T ∈ R↓, it holds that bI ∈ (∀T . C)I unless there exists a successor c
of b such that (b, c) :S′ ∈ A, (bI , cI) ∈ S′I ⊆ TI and cI �∈ CI . It follows from (aI , bI) ∈ TI ,
(bI , cI) ∈ TI , and T ∈ T that (aI , cI) ∈ TI ⊆ RI and aI �∈ (∀R . C)I in contradiction to
the assumption. Thus, I satisfies b :∀T . C and therefore A′.

If the universal concept restriction rule is applied to an individual a in A because of
∀ x . (x :C) ∈ A, then A′ = A ∪ {a :C}. Since I satisfies A, it holds that CI = ∆I . Thus,
it holds that aI ∈ CI and I satisfies A′.

If the role exists restriction rule is applied to a :∃R . C ∈ A, then we get the new ABox
A′ = A ∪ {(a, b) :R, b :C}. Since I satisfies A, there exists a y ∈ ∆I such that (aI , y) ∈ RI

and y ∈ CI . We define the interpretation function ·I′
such that bI′

:= y and x I′
:= x I for

x �= b. It is easy to show that I ′ = (∆I , ·I′
) satisfies A′.

If the number restriction exists rule is applied to a :∃≥n R ∈ A, then we get the new ABox
A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j}. Since I satisfies A, there must
exist n distinct individuals yi ∈ ∆I , i ∈ 1..n such that (aI , yi) ∈ RI . We define the inter-
pretation function ·I′

such that bi
I′

:= yi and x I′
:= x I for x �∈ {b1, . . . , bn}. It is easy to

show that I ′ = (∆I , ·I′
) satisfies A′.

2. “⇐” Assume that A′ is satisfied by I ′ = (∆I , ·I′
). We show that A is also satisfiable

by examining the nondeterministic rules.

If A′ is obtained from A by applying the disjunction rule, then A is a subset of A′ and
therefore satisfied by I ′.

If A′ is obtained from A by applying the number restriction merge rule to a :∃≤n R ∈ A,
then there exist bi, bj in A such that A′ = A[bi/bj]. We define the interpretation function

·I such that bi
I := bj

I′
and x I := x I′

for every x �= bi. Obviously I = (∆I , ·I) satisfies A.

“⇒” We suppose that I = (∆I , ·I) satisfies A and a nondeterministic rule is applicable to
an individual a in A.

If the disjunction rule is applicable to a :C
 D ∈ A andA is satisfiable, it holds aI ∈ (C
 D)I .
It follows that either aI ∈ CI or aI ∈ DI (or both). Hence, the disjunction rule can be ap-
plied in a way that I also satisfies the ABox A′.

If the number restriction merge rule is applicable to a :∃≤n R ∈ A and A is satisfiable, it
holds aI ∈ (∃≤n R)I and ‖{x | (x, y) ∈ RI}‖ ≤ n. However, it is also ‖{b | (aI , bI) ∈ RI}‖ > m
with m ≥ n.4 Thus, we can conclude by the Pigeonhole Principle (e.g. see [Lewis and Pa-
padimitriou, 1981, page 26]) that there exist at least two R-successors bi, bj of a such that

4Without loss of generality we only need to consider the case that m = n + 1.

A Tableaux Calculus 153

bi
I = bj

I . Since I satisfies A, we have bi � .= bj �∈ A and at least one of the two individu-
als must be a new individual. Let us assume that bi ∈ ON and bi = bj, then I obviously
satisfies A[bi/bj]. �
Given an initial ABox A, more than one rule might be applicable to A. This is controlled
by a completion strategy in accordance with the ordering for new individuals (see Definition
9.11).

Definition 9.14 (Completion Strategy) We define a completion strategy that must ob-
serve the following restrictions.

• Meta rules:

– Apply a rule to an individual b ∈ ON only if no rule is applicable to an individual
a ∈ OO .

– Apply a rule to an individual b ∈ ON only if no rule is applicable to another
individual a ∈ ON such that a ≺ b.

• The completion rules are always applied in the following order. A step is skipped in
case the corresponding set of applicable rules is empty.

1. Apply all nongenerating rules (R�, R
, R∀C, R∀+C, R∀x, R∃≤n) as long as
possible.

2. Apply a generating rule (R∃C, R∃≥n) and restart with step 1 as long as possible.

In the following we always assume that rules are applied in accordance with this strategy.
It ensures that the rules are applied to new individuals w.r.t. the ordering ‘≺’.

Definition 9.15 (Clash Triggers) We assume the same naming conventions as used
above. An ABox A is called contradictory if one of the following clash triggers is ap-
plicable. If none of the clash triggers is applicable to A, then A is called clash-free.

• Primitive clash:
a :⊥ ∈ A or {a :C, a :¬C} ⊆ A, where C is a concept name.

• Number restriction merging clash:
∃ S1, . . . , Sm ∈ R↓ : {a :∃≤n R} ∪ {(a, bi) :Si | i ∈ 1..m} ∪ {bi � .= bj | i, j ∈ 1..m, i �= j} ⊆ A
with m > n.

A clash-free ABox A is called complete if no completion rule is applicable to A. A complete
ABox A′ derived from an ABox A is also called a completion of A. Any ABox containing
a clash is obviously unsatisfiable. In the following we have to show that a model can be
constructed for any complete ABox.

154 The Description Logic ALCNHR+

9.4.2 Decidability of the ABox Consistency Problem

The following lemma proves that whenever a generating rule has been applied to an indi-
vidual a, the concept set σ(·, a) of a does not change for succeeding ABoxes.

Lemma 9.1 (Stability) Let A be an ABox and a ∈ ON be mentioned in A. Let a gen-
erating rule be applicable to a according to the completion strategy. Let A′ be any ABox
derivable from A by any (possibly empty) sequence of rule applications. Then:

1. No rule is applicable in A′ to an individual b ∈ ON with b ≺ a.

2. σ(A, a) = σ(A′, a), i.e. the concept set of a remains unchanged in A′.

3. If b ∈ ON is in A with b ≺ a then b is an individual in A′, i.e. the individual b is not
substituted by another individual.

Proof. 1. By contradiction: Suppose A = A0 →∗ · · · →∗ An = A′, where ∗ is element of
the completion rules and a rule is applicable to an individual b with b ≺ a in A′. Then
there has to exist a minimal i with i ∈ 1..n such that this rule is also applicable in Ai. If
a rule is applicable to a in A then no rule is applicable to b in A due to our strategy. So
no rule is applicable to any individual c such that c ≺ a in A0, . . . ,Ai−1. It follows that
from Ai−1 to Ai a rule is applied to a or to a d such that a ≺ d. Using an exhaustive case
analysis of all rules we can show that no new assertion of the form b :C or (b, e) :R can be
added to Ai−1. Therefore, no rule is applicable to b in Ai. This is a contradiction to our
assumption.

2. By contradiction: Suppose σ(A, a) �= σ(A′, a). Let b be the direct predecessor of a with
b ≺ a. A rule must have been applied to a and not to b because of point 1. Due to our
strategy only generating rules are applicable to a that cannot add new elements to σ(·, a).
This is an obvious contradiction.

3. This follows from point 1 and the completion strategy. �
The next lemma guarantees the uniqueness of a blocking individual for a blocked individual.
This is a precondition for defining a particular interpretation from A.

Lemma 9.2 Let A′ be an ABox and a be a new individual in A′. If a is blocked then

1. a has no direct successor and
2. a has exactly one blocking individual.

Proof. 1. By contradiction: Suppose that a is blocked in A′ and (a, b) :R ∈ A′. There must
exist an ancestor ABox A where a generating rule has been applied to a in A. It follows
from the definition of the generating rules that for every new individual c with c ≺ a in A
we had σ(A, c) �⊇ σ(A, a). Since A′ has been derived from A we can use Lemma 9.1 and
conclude that for every new individual c with c ≺ a in A′ we also have σ(A′, c) �⊇ σ(A′, a).

A Tableaux Calculus 155

Thus there cannot exist a blocking individual c for a in A′. This is a contradiction to our
hypothesis.

2. This follows directly from condition 3 in Definition 9.12. �

Definition 9.16 Let A be a complete ABox generated by the calculus. We define the
canonical interpretation IA = (∆IA , ·IA) w.r.t. A as follows:

1. ∆IA := {a | a is an individual in A}

2. aIA := a iff a is mentioned in A

3. a ∈ AIA iff a :A ∈ A

4. (a, b) ∈ RIA iff ∃ c0, . . . , cn, d0, . . . , dn−1 mentioned in A such that5

(a) n ≥ 1, c0 = a, cn = b, and

(b) (a, c1) :S1, (d1, c2) :S2, . . . , (dn−2, cn−1) :Sn−1, (dn−1, b) :Sn ∈ A, and

(c) ∀i ∈ 0..n− 1 :

i. di = ci, or

ii. di is a blocking individual for ci and (di, ci+1) :Si+1 ∈ A, and

(d) if n > 1
∀ i ∈ 1..n : ∃R′ ∈ T , R′ ∈ R↓, Si ∈ R′↓

else
S1 ∈ R↓.

The construction of the canonical interpretation for the case 4 is illustrated with two
examples in Figure 9.2. The following two cases can be seen as special cases of case 4
introduced above (n = 1, c0 = a, c1 = b):

• c0 = d0 : (a, b) ∈ RI iff (c0, c1) :S1 ∈ A for a role S1 ∈ R↓,

• c0 �= d0 : (a, b) ∈ RI iff d0 is a blocking individual for c0, and
(d0, c1) :S1 ∈ A, for a role S1 ∈ R↓.

Due to Lemma 9.2 the canonical interpretation is well-defined because there exists a unique
blocking individual for each blocked individual.

Theorem 9.1 (Soundness) Let A be a complete ABox generated by the calculus, then
A is satisfiable.

5Note that the variables c0, . . . , cn, d0, . . . , dn−1 not necessarily denote different individual names.

156 The Description Logic ALCNHR+

R

R'

S1 S2 S3 S4 S5

R

R'

S1 S2 S4 S5

a c1 c2 c3 c4 b

a c1 = d1 c2 c3 = d3 c4 = d4 b

S3d2

Figure 9.2: Construction of the canonical interpretation (two examples for case 4). In the
lower example we assume that the individual d2 is a blocking individual for c2 (see text).

Proof. Let IA = (∆IA , ·IA) be the canonical interpretation for the ABox A.6

All role inclusion axioms in the role hierarchy R of T are satisfied: For every S � R in R
it holds that SIA ⊆ RIA . This can be shown as follows. If (a, b) ∈ SIA , case 4 of Definition
9.16 must be applicable. Hence, there exists a chain of subroles possibly with gaps and
blocking individuals. Thus, the corresponding case for the construction of IA, which adds
(a, b) to SIA , is also applicable to R since S ∈ R↓ (see 4d). Therefore, there is also the tuple
(a, b) ∈ RIA .

All transitivity axioms are satisfied, i.e. transitive roles are interpreted in the correct way:
∀R ∈ T : RIA = (RIA)

+
. If there exist (a, b) ∈ RIA and (b, c) ∈ RIA then case 4 in Defin-

ition 9.16 must have been applied for each tuple. But then, there also exists a chain of
roles from a to c (possibly with gaps and blocking individuals) such that (a, c) is added to
RIA as well.

In the following we prove that IA satisfies every assertion in A.

For any (a, b) :R ∈ A or a � .= b ∈ A, IA satisfies them by definition. Next we consider
assertions of the form a :C. We show by induction on the structure of C that a ∈ CIA .

6For sake of brevity we denote the interpretation of individual names by their names (e.g. a instead of
aI due to the fact that IA is the canonical interpretation and a = aI .

A Tableaux Calculus 157

If C is a concept name, then a ∈ CIA by definition of IA. If C = �, then obviously a ∈ �IA .
The case C = ⊥ cannot occur since A is clash-free.

If C = ¬D, then D is a concept name since all concepts are in negation normal form (see
Definition 9.9). A is clash-free and cannot contain a :D. Thus, a �∈ DIA , i.e. a ∈ ∆IA \ DIA .
Hence a ∈ (¬D)IA .

If C = C1 � C2 then (since A is complete) a :C1 ∈ A and a :C2 ∈ A. By induction hypoth-
esis, a ∈ C1

IA and a ∈ C2
IA . Hence a ∈ (C1 � C2)

IA .

If C = C1
 C2 then (since A is complete) either a :C1 ∈ A or a :C2 ∈ A. By induction
hypothesis, a ∈ C1

IA or a ∈ C2
IA . Hence a ∈ (C1
 C2)

IA .

If C = ∀R . D, then we have to show that for all b with (a, b) ∈ RIA it holds that b ∈ DIA .
If (a, b) ∈ RIA , then according to Definition 9.16, b is a successor of a via a chain of roles
Si ∈ R↓ or there exist corresponding blocking individuals as domain elements of Si ∈ R↓, i.e.
the chain might contain “gaps” with associated blocking individuals (see Figure 9.2). Since
(a, b) ∈ RIA and Si

IA ⊆ RIA there exists tuples (ci, ci+1) ∈ Si
IA . Due to Definition 9.16 it

holds that ∀ i ∈ 1..n : ∃R′ ∈ T , R′ ∈ R↓, Si ∈ R′↓. Therefore ck :∀R′ . D ∈ A, (k ∈ 1..n− 1)
because A is complete. For the same reason b :D ∈ A. By induction hypothesis it holds
that b ∈ DIA . As mentioned before, the chain of roles can have one or more “gaps” (see
Figure 9.2). However, due to Definition 9.16 in case of a “gap” there exists a blocking
individual such that a similar argument as in case 4 can be applied, i.e. in case of a gap
between ci and ci+1 with di as blocking individual for ci, the blocking condition ensures
that the concept set of the blocking individual is a superset of the concept set of the
blocked individual. Since it is assumed that (di, ci+1) :Si+1 ∈ A and A is complete it holds
that ci+1 :∀R′ . D ∈ A. Applying the same argument inductively, we can conclude that
cn−1 :∀R′ . D ∈ A and again, we have b ∈ DIA by induction hypothesis.

If C = ∃R . D, then we have to show that there exists an individual b ∈ ∆IA with (a, b) ∈ SIA ,
S ∈ R↓, and b ∈ DIA . Since ABox A is complete, we have either (a, b) :S ∈ A, S ∈ R↓, and
b :D ∈ A, or a is blocked by an individual c and (c, b) :S ∈ A with S ∈ R↓. In the first case
we have (a, b) ∈ RIA by the definition of IA (case 4, n = 1, ci = di) and b ∈ DIA by induction
hypothesis. In the second case there exists the blocking individual c with c :∃R . D ∈ A. By
definition c cannot be blocked and by hypothesis A is complete. So we have an individual
b with (c, b) :S ∈ A and b :D ∈ A. By induction hypothesis we have b ∈ DIA and by the
definition of IA (case 4, n = 1, ci �= di) we have (a, b) ∈ RIA .

If C = ∃≥n R, we prove the hypothesis by contradiction. We assume that a �∈ (∃≥n R)IA .
Then there exist at most m (0 ≤ m < n) distinct S-successors of a with S ∈ R↓. Two cases
can occur: (1) the individual a is not blocked in IA. Then we have less than n S-successors
of a in A and the R∃≥n-rule is applicable to a. This contradicts the assumption that A is
complete. (2) a is blocked by an individual c but the same argument as in case (1) holds
and leads to the same contradiction.

For C = ∃≤n R we show the goal by contradiction. Suppose that a �∈ (∃≤n R)IA . Then there
exist at least n + 1 distinct individuals b1, . . . , bn+1 such that (a, bi) ∈ RIA , i ∈ 1..n + 1.
According to Definition 9.16 the following two cases can occur. (1) The individual a is not

158 The Description Logic ALCNHR+

blocked. Then, we have n + 1 (a, bi) :Si ∈ A with Si ∈ R↓ and Si �∈ T , i ∈ 1..n + 1. The
R∃≤n rule cannot be applicable since A is complete and the bi are distinct, i.e. bi � .= bj ∈ A,
i, j ∈ 1..n+1, i �= j. This contradicts the assumption that A is clash-free. (2) There exists
a blocking individual c with (c, bi) :Si ∈ A, Si ∈ R↓, and Si �∈ T , i ∈ 1..n+1. This leads to
an analogous contradiction. Due to the construction of the canonical interpretation in case
of a blocking condition (with c being the blocking individual) and a non-transitive role R
(R is required to be a simple role, see the syntactic restrictions for number restrictions and
role hierarchies), there is no (a, bk) ∈ RIA if there is no (c, bk) ∈ RIA (k ∈ 1..n + 1).

If ∀ x . (x :D) ∈ A, then –due to the completeness of A– for each individual a in A we have
a :D ∈ A and, by the previous cases, a ∈ DIA . Thus, IA satisfies ∀ x . (x :D). Finally, since
IA satisfies all assertions in A, IA satisfies A. �

Theorem 9.2 (Completeness) Let A be an augmented ABox which is satisfiable, then
there exists at least one completion of A computed by applying the completion rules to A.

Proof. By contraposition: Obviously, an ABox containing a clash is unsatisfiable. If there
does not exists a completion of A, then it follows from Proposition 9.1 that ABox A is
unsatisfiable. �

Definition 9.17 For any augmentation of an initial ABox A, we define the concept size
nA as the number of concepts or subconcepts occurring inA.7 Note that nA is bound by the
length of the string expressing A. The size of an ABox A is defined as nA × ‖T‖+ ‖OO‖.

Lemma 9.3 Let A be an ABox and let A′ be a completion of A. In any set X consisting
of individuals occurring in A′ with a cardinality greater than 2nA there exist at least two
individuals a, b ∈ X whose concept sets are equal.

Proof. Each assertion a :Ci ∈ A′ may contain at most nA different concepts Ci. So there
cannot exist more than 2nA different concept sets for the individuals in A′. �

Lemma 9.4 Let A be an ABox and let A′ be a completion of A. Then there occur at
most 2nA non-blocked new individuals in A′.

Proof. Suppose we have 2nA + 1 non-blocked new individuals in A′. From Lemma 9.3 we
know that there exist at least two individuals a, b in A′ such that σ(A′, a) = σ(A′, b). By
Definition 9.11 we have either a ≺ b or b ≺ a. Assume without loss of generality that a ≺ b
holds. The fact σ(A′, a) = σ(A′, b) implies σ(A′, a) ⊇ σ(A′, b). Then we have either b is
blocked by a or there exists an individual c with b blocked by c and c ≺ a. Both cases
contradict the hypothesis. �

Theorem 9.3 (Termination) Let AT be the augmented ABox w.r.t a TBox T and let
n be the size of AT . Every completion of AT is finite and its size is O(24n).

7We have to increase nA by 1 if � does not occur in A.

A Tableaux Calculus 159

Proof. Let A′ be a completion of AT . From Lemma 9.4 we know that A′ has at most 2n

non-blocked new individuals. Therefore, a total of at most m × 2n new individuals may
exists in A′, where m is the maximum number of direct successors for any individual in
A′.

Note that m is bound by the number of ∃R . C concepts (≤ n) plus the total sum of numbers
occurring in ∃≥n R. Since numbers are expressed in binary, their sum is bound by 2n. Hence,
we have m ≤ 2n + n. Since the number of individuals in the initial ABox is also bound by
n, the total number of individuals in A′ is at most m× (2n + n) ≤ (2n + n)× (2n + n), i.e.
O(22n).

The number of different assertions of the form a :C or ∀ x . (x :C) in which each individual
in A′ can be involved, is bound by n and each assertion has a size linear in n. Hence, the
total size of these assertions is bound n× n× 22n, i.e. O(23n).

The number of different assertions of the form (a, b) :R or a � .= b is bound by (22n)2, i.e.
O(24n). In conclusion, we have a size of O(24n) for A′. �

Theorem 9.4 (Decidability) Let AT be an ABox w.r.t. a TBox T . Checking whether
AT is satisfiable is a decidable problem.

Proof. This follows immediately from the Theorems 9.1, 9.2, and 9.3. �

9.5 Summary

In this chapter we presented a tableaux calculus deciding the ABox consistency problem
for the description logic ALCNHR+ . A highly optimized variant of this calculus is already
implemented in the ABox description logic system RACE demonstrating the practical
usefulness of ALCNHR+ . Although TBox reasoners for logics such as ALCQHIR+ are
available, the development of ALCNHR+ and its optimized implementation in RACE
is a novel approach. The next two chapters present the design and evaluation of major
optimization techniques some of which are especially suited for ALCNHR+ .

Chapter 10

Optimization Techniques for
Reasoning with Expressive ABox and
Concept Expressions

This chapter investigates novel optimization techniques for practical reasoning with expres-
sive ABox description logic (DL) systems. As an extension to state-of-the-art optimization
techniques the chapter discusses new algorithms and data structures for implementing a
DL system supporting TBoxes and ABoxes. The new techniques can be divided into two
major approaches: (i) design of optimizations for the tableaux calculus and (ii) exploitation
of new transformation techniques for TBoxes and ABoxes in order to achieve improvements
in average case performance. The advances are demonstrated by an empirical analysis of
the DL system RACE.

10.1 Introduction

In order to empirically evaluate optimization techniques for the ALCNHR+ tableaux cal-
culus, the DL system RACE has been developed [Haarslev et al., 1999c; Haarslev and
Möller, 2000a]. RACE implements an ALCNHR+ reasoner for answering queries con-
cerning ABoxes and TBoxes. RACE is a successor of HAM-ALC [Haarslev and Möller,
1999a] and employs a large variety of well-known as well as novel optimization techniques.
The techniques described in this chapter are fully implemented in RACE which is freely
available for research purposes [Haarslev and Möller, 1999e].

The main contributions of this chapter can be summarized as follows:

• It is demonstrated that optimization techniques developed for testing concept con-
sistency and concept subsumption [Horrocks and Patel-Schneider, 1999] scale up for
testing ABox consistency and can be successfully integrated into an ABox reasoning
architecture.

161

162 Optimizing TBox and ABox Reasoning

• We introduce and analyze several optimization techniques which are either novel or
which significantly extend the techniques presented in [Horrocks and Patel-Schneider,
1999]. The new techniques being investigated are called deep model merging , sig-
nature calculus , GCI transformation, role path contraction, and individual model
merging (see the detailed discussion below).

The new techniques are empirically evaluated using TBoxes derived from actual applica-
tions. In addition, the algorithms are analyzed with a set of synthetic TBox and ABox
benchmark problems. The empirical results indicate a performance gain of up to several
orders of magnitude.

10.2 Optimizing TBox and ABox Reasoning

The tableaux calculus introduced in the previous chapter is of theoretical interest for
proving the decidability of the ABox consistency problem. For practical purposes such
calculi are highly inefficient. Therefore, the development of optimization techniques is a
very important research topic. This section briefly summarizes some of the already es-
tablished optimization techniques in order to demonstrate the effectiveness of additional
optimization techniques that are integrated into the architecture of the RACE system.
RACE uses a highly optimized variant of the calculus for ALCNHR+ supported by corre-
sponding data structures. In addition to well-known optimized TBox reasoning algorithms
described in [Baader et al., 1992; Baader et al., 1994b], the RACE architecture incorpo-
rates the following established optimization techniques (see also [Horrocks, 1997; Horrocks
and Patel-Schneider, 1999; Horrocks et al., 2000a] for a detailed explanation): lexical nor-
malization, lazy unfolding, dependency-directed backtracking, semantic branching, BCP
constraint propagation, heuristics guided search, subtableaux caching, model caching and
model merging tests. These techniques form the basis of other ‘modern’ DL system imple-
mentations (e.g. FaCT and DLP [Horrocks and Patel-Schneider, 1999]). The techniques
were developed for reasoners deciding only the concept consistency problem. With our
RACE architecture we demonstrate that these techniques scale up and can be integrated
into an ABox reasoning architecture [Haarslev and Möller, 1999b]. In order to explain the
effect of our new optimizations and for sake of completeness, some of the known techniques
need to be reviewed in the following paragraphs.

10.2.1 Semantic Branching

In contrast to syntactic branching, where redundant search spaces may be repeatedly
explored, semantic branching uses a splitting rule which replaces the original problem
by two smaller subproblems (see also [Freeman, 1995]). Semantic branching is usually
supported by various techniques intending to speed-up the search.

A lookahead algorithm or constraint propagator tries to reduce the order of magnitude
of the open search space. Thus, after every expansion step the truth value of the newly

163

added assertions is propagated into all open disjuncts of all unexpanded or-assertions. As
a result of this step, or-assertions might be become satisfied (i.e. one disjunct is satisfied),
deterministic (i.e. exactly one disjunct remains open), or might even clash (all disjuncts
are unsatisfied).

Various heuristics are used to select the next unexpanded or-assertion and disjunct. A
dynamic selection scheme is often employed. The oldest-first strategy is used for selecting
one or-assertion with at least two open disjuncts. In order to select a disjunct the heuristic
counts the number of negated and unnegated occurrences for each open disjunct from
the selected assertion in all other unexpanded or-assertions. These numbers are used
as input for a priority function that selects the disjunct. The priority function achieves
the following goals. It prefers disjuncts that occur frequently in unexpanded binary or-
assertions and balanced or-assertions (i.e. containing a similar number of negated and
unnegated occurrences of the same disjunct) but discriminates between unbalanced or-
assertions. In order to perform the counting very quickly, RACE precomputes for every
or-assertion two lists cross-referencing or-assertions that contain the assertions’ concept in
negated or unnegated form. Once a disjunct is selected, the priority function is also used
to determine whether the disjunct is first tried in negated or unnegated form. In case of a
failure, the other alternative is explored.

10.2.2 Dependency-directed Backtracking

Naive backtracking algorithms often explore regions of the search space rediscovering the
same contradictions repeatedly. Dependency-directed backtracking records the dependen-
cies of expanded assertions and in case of a clash backtracks to or-assertions that are
responsible for at least one of the clash-causing assertions in the subtree (see [Freeman,
1995]). When an assertion is expanded, its dependencies are recorded, i.e. its precondition
assertions are saved as a dependency set. In the RACE architecture, every or-assertion
which is element of a dependency set of a precondition assertion is also an element of the
dependency set of the resulting assertion (dependency propagation).

When a clash occurs, a so-called clash set which is the union of the dependency sets of the
clash culprits (i.e. possibly containing the or-assertions that generated these assertions) is
stored and backtracking is started. This idea is due to FaCT [Horrocks, 1997]. Whenever
a semantic branching point is encountered during backtracking, it is checked whether this
or-assertion is responsible for a clash culprit, i.e. whether it is a member of the clash
set. If the or-assertion is not found in the clash set, one can safely bypass this branching
point. In case the or-assertion is found, either the remaining semantic alternative is tried
or this disjunct is considered as unsatisfiable in the current subtree. The backtracking
continues but removes the current or-assertion from the clash set and adds the saved clash
dependencies of the previously unsatisfiable alternative.

The dependency-directed backtracking technique is illustrated in Figure 10.1. Let us as-
sume the satisfiability of the concept (C1
 D1) � . . . � (Cn
 Dn) � ∃R . (C � D) � ∀R .¬C

164 Optimizing TBox and ABox Reasoning

x0

x2

x1

xn

y1

A0 = {a:(C1 D1),...,a:(Cn Dn),
 a:(∀R.¬C), ∃R.(C D)}

A1 = A0 ∪ {a:C1}

A2 = A1 ∪ {a:C2}

An = An-1 ∪ {a:Cn}

R

{b:(C D), b:C,
 b:D, b:¬C}

clash

y2
n

clash

...

A1 = A0 ∪ {a:D1}

A2 = A1 ∪ {a:D2}

A3 = A2 ∪ {a:D3}

{b:(C D), b:C,
 b:D, b:¬C}

x0

x2

x1

xn

y1

R

clash

y2
n

clash

...

(a) Search tree for ABox A0 (b) Backjumping to root

Figure 10.1: Illustration of the dependency-directed backtracking technique. The satisfi-
ability of the concept term (C1
 D1) � . . . � (Cn
 Dn) � ∃R . (C � D) � ∀R .¬C has to be
checked. Using dependency-directed backtracking only n steps are required in contrast to
the case without dependency-directed backtracking where 2n steps are needed.

has to be checked.1 The tableaux calculus (see previous chapter) will expand the initial
ABox as shown in Figure 10.1a. After applying the R�-rule it creates the ABox A0. Then,
the R
-rule is applied until a disjunct has been selected for all disjunctions.2 A new
subtableaux for (C � D) � ¬C is created and the primitive clash for C is discovered. An
uniformed search (i.e. without dependency-directed backtracking) would now backtrack to
the last branching point and would always rediscover the same clash for the R-successor.
Thus, the satisfiability test for the original concept term would require 2n expansion steps.
Of course, after the discovery of the first clash, the other 2n−1 expansion steps are definitely
wasted because the clash culprits for the R-successor (i.e. a :∃R . (C � D) and a :∀R .¬C)
depend on the initial ABox. Therefore, as illustrated in Figure 10.1b the remaining al-
ternatives may be safely skipped due to the dependencies of the clashing assertions if the
dependency-directed backtracking technique is used.

1In general, we can assume that the clash for the R-successor might be hard to detect.
2For sake of simplicity we assume a selection scheme in accordance with the syntactic ordering and no

semantic branching, i.e. the first disjunct is selected for the left-most path.

165

10.2.3 Subtableaux Caching

In tableaux calculi for testing concept consistency (see e.g. [Horrocks, 1998] for a cal-
culus for deciding concept consistency for ALCHfR+), sets of concepts representing a
conjunction are manipulated.3 For instance, let us assume a concept set L contains the set
{∃R . C,∀R . D,∀R . E} as a subset and there are no other all-concepts for the Role R in
L. The tableaux rule for treating some-concepts identifies corresponding all-concepts4 and
checks if a so-called “subtableaux” for {C, D, E} can be found that contains no clash. The
concepts in the original concept set L are not relevant for this test. It can be shown that
this so-called ‘trace technique’ [Schmidt-Schauss and Smolka, 1991] can be also applied to
ALCHfR+ . In other words, concept sets resulting from some-concepts (and corresponding
all-concepts) can be independently tested for consistency because there is no interaction
with the original concept set which contains the some- and all-concepts. For brevity, in
this context we also call a concept set for which consistency is to be tested a “subtableau.”

Once the solution for the consistency problem for a set of concepts has been computed, the
answer is stored in a cache. The key of the cache is the set of concepts being considered.5

The cache value indicates whether the conjunction of the key is satisfiable. Now, given such
a cache, an “expensive” tableaux proof can be avoided if a “cheap” cache lookup indicates
whether a set of concepts has already been proven to be consistent or inconsistent.

For concept consistency , the cache technique described above is sketched in [Horrocks and
Patel-Schneider, 1999]. However, in an implementation of a tableaux calculus for deciding
ABox consistency , the technique cannot be directly applied since it might be possible that
the new individual which is generated by applying the rule for treating some-assertions must
be identified with an old individual, i.e. additional assertions are imposed. Furthermore,
if we consider the logic ALCNHR+ , number restrictions can also require the identification
of individuals. However, when there are neither role assertions nor at-most restrictions
imposed for the corresponding role, the above-mentioned situations can be ruled out and
the trace technique becomes applicable. The assertions for the new individual do not
interact with assertions in the original ABox and the consistency of the new assertions
can be tested by checking whether the new “partition” (a fresh ABox containing just the
concept assertions for the new individual) is consistent. Since there is only one individual
and no role assertions, the set of concepts of the corresponding concept assertions can
be checked against a cache, i.e. the same “subtableaux caching technique” as used in
implementations for concept consistency algorithms can be employed.

It is always safe to cache the inconsistency of a subtableau. In case the consistency of a sub-
tableau is also cached one has to take care that the caching technique remains sound. This
is illustrated with the following example. Solving the consistency problem for the ABox

3These concept sets are also called “labels.”
4For brevity, in the explanation of subtableaux caching we neglect the correct treatment of features

and role hierarchies.
5In many cases, sets are implemented as lists. Thus, in order to preserve the set semantics when using

the key for cache retrieval, the list has to be sorted such that the elements in the list are in a canonical
order.

166 Optimizing TBox and ABox Reasoning

1 2 3

45

i5

i0 i1 i2 i3

i4

R R R

SR

R

1. {i0 :E}
2. {i0 :E, i0 :∃R . C} ∨ {i0 :E, i0 :∃R . D}
3. {i1 :C}
4. {i1 :C, i1 :∃R . D, i1 :∃ S . X, i1 :∀ S .¬X � A}
5. {i2 :D}
6. {i2 :D, i2 :∃R . C}
7. {i3 :C}
8. {i4 :X, i4 :A, i4 :¬X}
9. {i5 :D}

Figure 10.2: Caching example with blocking (see text).

{i0 :E} w.r.t. the following (cyclic) inclusion axioms demonstrates that caching depends on
the context when a cache entry is generated.

C � (∃R . D) � (∃ S . X) � ∀ S . (¬X � A)

D � ∃R . C

E � (∃R . C)
 (∃R . D)

The proof steps are presented in Figure 10.2 where the sequence of “expansion” steps is
indicated with numbers. In step 1, the initial problem {i0 :E} is presented. Since there is
an axiom for E involving a disjunction we get two (alternative) ABoxes (see step 2). Let us
assume the first alternative is tried first. This leads to a subtableau (step 3). The assertion
from step 3 is expanded w.r.t. the axioms and we get the ABox in step 4. The assertion
i1 :∃R . D is expanded first. In step 5 the corresponding subtableau is considered. The right-
hand side of the axiom for D is inserted (step 6). The assertion i2 :∃R . C yields another
subtableau (step 7). Due to the blocking strategy (see Definition 9.12), the constraint
system in step 7 is not expanded (see the ABox in step 3 with the blocking individual i1).
In Figure 10.2 the canonical interpretation is indicated with a dashed arrow.

An often-employed strategy is to cache intermediate results, e.g. the satisfiability of D is
stored as a cache entry at the end of step 7. In our example, there are some proof steps
pending. In step 8 the remaining assertions from step 4 are considered. Obviously, the
subtableau for the role S causes a clash. Therefore, the second alternative in step 2 has to
be considered. The corresponding subtableau is presented in step 9. If the consistency of
D is checked by examining a cache entry for D, the overall result will be “E is consistent.”
Obviously, this is erroneous. The reason is that the caching principle described above does
not consider the dependency on the satisfiability of C. Therefore, a dependency tracking
mechanism for cache entries has to be provided in order to guarantee the soundness of
caching. This mechanism is implemented in RACE. Once the unsatisfiability of a concept
(or the inconsistency of a constraint system) on which a cached pseudo model is dependent
is detected, the corresponding cache entries have to be (recursively) removed.

167

Although memory consumption might lead to problems and cache management strategies
might be necessary, empirical tests indicate that the subtableaux caching technique is very
effective for many ABox consistency problems (see below for a discussion of the effects
when subtableaux caching is disabled). However, there are some benchmark problems
where cache management techniques are needed in order to preserve an upper bound on
memory consumption.

10.2.4 Lazy Unfolding

In the previous section it was explained that the tableaux calculus treats axioms by trans-
forming them into universal concept restrictions. Obviously, this adds additional assertions
to every subtableaux. Even worse, in most cases the additional assertions contain disjunc-
tions, i.e. the search space is extended. Although techniques for efficiently managing the
search space are integrated into modern DL architectures (e.g. semantic branching, BCP
constraint propagation and heuristic search), in the average case it is always advantageous
to reduce the number of assertions the prover has to deal with. Therefore, a technique
called “lazy unfolding” is employed.6 The idea is to exploit special forms of GCIs in the
TBox. If there is a GCI A � C (¬A � C) in the TBox where A is a concept name and
(i) there is no other GCI with A or ¬A on the left-hand side, (ii) there is no GCI C � A
(C � ¬A) in the TBox and (iii) the GCI A � C (¬A � C) is not cyclic, then the GCI A � C
is called a primitive concept definition (i.e. a definition with only necessary conditions) or,
in case of ¬A � C, a negated primitive concept definition. If there exists an additional GCI
C � A (C � ¬A), the set {A � C, C � A} ({¬A � C, C � ¬A}) is called a concept definition
(i.e. a definition with necessary and sufficient conditions). As usual we also write A

.
= C

(A
.
= ¬C). In the following, GCIs that represent (negated) primitive concept definitions

are called simple GCIs.

Now, given a TBox where concept definitions and primitive concept definitions are iden-
tified, then, by the introduction of additional rules the DL prover “expands” assertions of
the form i :A and i :¬A in a lazy way. Let us discuss the first case. If for A there exists a
(negated) primitive concept definition A � C (¬A � C), the definition of A (¬A) is inserted
into the ABox as an assertion i :C. Alternatively, if there exists a concept definition for
A, i :A is “expanded” in the same way as for primitive concept definitions. For concept
definitions, assertions of the form i :¬A are treated in a similar way, i.e. the assertion is
“expanded” by inserting i :¬C into the ABox. However, if there exists a primitive con-
cept definition for A but no negated primitive concept definition, then i :¬A need not be
“expanded” using the above-mentioned technique.

Empirical tests indicate a significant speedup if the lazy unfolding technique is implemented
in a prover architecture.

6The KRIS system also uses lazy unfolding in order to avoid unfolding [Baader et al., 1992; Baader
et al., 1994b]. However, with GCIs, unfolding has to take care of terminological cycles.

168 Optimizing TBox and ABox Reasoning

10.2.5 GCI transformation

The general idea of this technique is a transformation or compilation process that tries to
eliminate GCIs in a preprocessing phase [Horrocks, 1997; Horrocks and Tobies, 2000].
The GCI transformation is illustrated by the following example where the two GCIs
{A � E
 F, A � B � C � D} can be transformed into the single concept inclusion axiom
A � (E
 F) � (¬B
 (C � D)). Due to the transformation there remains only one concept
inclusion with A on the left-hand side. Thus, we have a simple GCI.

Any non-simple GCI that cannot be absorbed has to be represented by universal concept
restrictions (see the corresponding rule in Definition 9.13). These restrictions usually add
disjunctions to every subtableau and are a major source of complexity (see the discussion
about lazy unfolding). As we have discussed before, for simple GCIs it is not necessary
to introduce universal concept restrictions if the lazy unfolding technique is used. In
summary, the goal of this compilation process is to keep the structure of the GCIs as
“simple as possible” and, furthermore, to keep their number as small as possible.

10.2.6 Benchmark Problems used for Evaluation

The next sections discuss five techniques which are either novel or can be called extensions
of optimization techniques discussed before. The effectiveness of these techniques is eval-
uated with TBoxes and ABoxes derived from actual applications and a set of synthetic
TBox and ABox benchmark problems [Haarslev et al., 1999a].

• The ‘Galen’ TBoxes (named Galen2, Galen1, Galen) were already used in [Horrocks,
1997; Horrocks, 1998; Horrocks and Patel-Schneider, 1999]. The original TBox is
named Galen and uses the logic ALCHfR+ . The other two TBoxes were derived
from the original one, Galen2 uses ALE and Galen1 uses ALC.

• The ‘bike’ TBoxes (using ALCNH with GCIs) contain configuration knowledge
about various types of bicycles. Several ABoxes for the ‘bike’ TBoxes were also
developed and used for benchmarking.

• The TBoxes ‘BCS3’ and ‘BCS4’ (using ALC with GCIs) are derived from a telecom-
munication application [Areces et al., 1999]. They are automatically generated with
an exponentially increasing size and difficulty and make heavy use of terminological
cycles and GCIs.

• The set of synthetic ABox benchmark problems was already used in [Haarslev and
Möller, 1999b]. The new set of synthetic TBox problems evaluates the efficiency of
the generating completion rules and the number merging rule. The runtimes for both
problem sets (with problems between level 1−21) are supposed to grow exponentially.

New Transformations on GCIs 169

10.3 New Transformations on GCIs

Based on [Horrocks, 1997], we developed an extended scheme for transforming GCIs. These
transformations are motivated by a heuristics trying to maximally simplify GCIs and to
absorb GCIs (elements of a set G) into a setD (‘concept definitions’ and ‘primitive concept
definitions’) whose elements are specially treated in RACE by the lazy unfolding technique
(see above). The transformation scheme starts with the sets D ,G defined as follows. Let
us assume that all concepts are in negation normal form and the terms ‘concept definition’
and ‘primitive concept definition’ are defined as above.

D := {A � C |A � C in T , A ∈ C} ∪ {A .
= C |A .

= C in T , A ∈ C}
G := {C � D ∈ T } \D

The procedure enhanced gci absorption specifies the absorption process implemented in
RACE. It is called with a tuple consisting of the sets D ,G and returns a new tuple with
possibly modified sets. The transformation process employs six steps as described in the
following. Note that the steps 4-5 repeat the steps 2-3 with a different value for the second
parameter value.

Procedure 1 enhanced gci absorption(〈D, G〉)
1: 〈D′, G′〉 ← absorb defined concepts(〈D′, G′〉)
2: 〈D′, G′〉 ← absorb gcis(〈D′, G′〉,false)
3: 〈D′, G′〉 ← transform absorb gcis(〈D′, G′〉,false)
4: 〈D′, G′〉 ← absorb gcis(〈D′, G′〉,true)
5: 〈D′, G′〉 ← transform absorb gcis(〈D′, G′〉,true)
6: 〈D′, G′〉 ← regroup gcis(〈D′, G′〉)
7: return 〈D′, G′〉

The procedure absorb gcis (whose definition is not shown here) is called with two parame-
ters. The first parameter is the tuple containing the sets D ,G , the second one is named
use unfolding and explained below. The procedure absorb gcis iteratively transforms the
GCIs in G and/or removes them from G and adds them to D . The process stops and re-
turns G and D if no GCI transformation rule is applicable anymore. The process basically
employs the transformation rules as given in [Horrocks, 1997]. We extended this scheme
with the parameter use unfolding controlling whether defined concepts may be unfolded
by the transformation rules.

The procedure absorb defined concepts recognizes in G pairs of inclusions of the form
{C � D, D � C} where C is a concept name. These pairs are removed from G and appro-
priate concept definitions are added to D provided the concepts C, D are not cyclic.

The procedure transform absorb gcis also has a second parameter controlling whether un-
folding may be applied. It iteratively transforms elements from D or G by splitting defined

170 Optimizing TBox and ABox Reasoning

Procedure 2 absorb defined concepts(〈D, G〉)
D′ ← D; G′ ← G
for all {C � D, D � C} ∈ G do

if C ∈ C ∧ ¬cyclic({C, D}) then
G′ ← G′ \ {C � D}
D′ ← D′ ∪ {C .

= D}
end if

end for
return 〈D′, G′〉

Procedure 3 transform absorb gcis(〈D, G〉,use unfolding)

D′ ← D; G′ ← G
while G ′ �= ∅ do

G′′ ← G′

〈D′, G′〉 ← split concept definitions(〈D′, G′〉)
〈D′, G′〉 ← absorb gcis(〈D′, G′〉,use unfolding)
〈D′, G′〉 ← split gcis(〈D′, G′〉)
〈D′, G′〉 ← absorb gcis(〈D′, G′〉,use unfolding)
until G′ = G′′

end while
return 〈D′, G′〉

New Transformations on GCIs 171

concepts into two equivalent GCIs or by splitting a GCI (e.g. C � D1 � . . . � Dn) from G
into its equivalent parts (e.g. {C � D1, . . . , C � Dn}) using the distributive law.

The procedure split concept definitions splits a definition of the form C
.
= D1 � . . . � Dn

into two GCIs provided there exists a Di � E ∈ G .

Procedure 4 split concept definitions(〈D, G〉)
D′ ← D; G′ ← G
for all C

.
= D1 � . . . � Dn ∈ D do

if Di � E ∈ G then
D′ ← D′ \ {C .

= D1 � . . . � Dn}
G′ ← G′ ∪ {C � D1 � . . . � Dn, D1 � . . . � Dn � C}

end if
end for
return 〈D′, G′〉

The procedure split gcis splits a GCI of the form C � D1 � . . . � Dn into {C � D1, . . . ,
C � Dn} if there exists a Di (1 ≤ i ≤ n) of the form ¬E or E1
 . . .
 Em. In the first case
the GCI C � ¬E can be rewritten as E � ¬C and possibly be absorbed. In the second case
the gci C � E1
 . . .
 Em might be subject to further transformations.

Procedure 5 split gcis(〈D, G〉)
G′ ← G
for all C � D1 � . . . � Dn ∈ G do

if ∃Di : i ∈ 1..n, ((Di = ¬E) ∨ (Di = E1
 . . .
 Em)) then
G′ ← (G′ \ {C � D1 � . . . � Dn}) ∪ {C � D1, . . . , C � Dn}

end if
end for
return 〈D, G′〉

The procedure regroup gcis applies the distributive law to elements of G in order to com-
bine GCIs with identical right parts. This heuristics is advantageous for the Jeroslav-Wang
technique (see [Freeman, 1995]) used to select a disjunct from a disjunction.

Procedure 6 regroup gcis(〈D, G〉)
G′ ← G
for all {C1 � D, . . . , Cn � D} ⊆ G do

G′ ← G′ \ {C1 � D, . . . , Cn � D}
G′ ← G′ ∪ {C1 � . . . � Cn � D}

end for
return 〈D, G′〉

The procedure standard gci absorption uses none of the enhanced techniques.

172 Optimizing TBox and ABox Reasoning

0

50

100

150

200

250

300

Galen2 Galen1 Galen Bike1 Bike2 Bike3 Bike4 Bike5 Bike6 Bike7 Bike8 Bike9

Runtime in seconds for selected application TBoxes

Setting 1
Setting 2

Figure 10.3: Evaluation of the enhanced GCI absorption technique. Setting 1 with en-
hanced gci absorption; Setting 2 with standard gci absorption.

Procedure 7 standard gci absorption(〈D, G〉)
return absorb gcis(〈D, G〉,true)

The enhanced GCI absorption technique is empirically evaluated with selected application
TBoxes. The results are shown in Figure 10.3. Two settings were used: ‘Setting 1’ has
all optimizations enabled, i.e. the procedure enhanced gci absorption is used. ‘Setting 2’
is identical to ‘Setting 1’ except the procedure standard gci absorption is used instead
of enhanced gci absorption. The application of the enhanced GCI absorption technique
indicates a speed gain of at least one order of magnitude for the ‘Bike’ TBoxes. A slight
speed gain for the Galen TBox is observed, while the other two ‘Galen’ TBoxes demonstrate
a minor slow down due to an increased overhead since they do not contain GCIs. The
other application TBoxes as described in Section 10.2.6 are either not affected by this
optimization technique or show only a slight improvement.

10.4 Signature Calculus for ALCNHR+

This section investigates a novel optimization technique, the so-called signature calculus,
for the description logic ALCNHR+ . The signature calculus addresses a major source of
inefficiency in the original tableaux calculus (see Chapter 9) that is caused by large numbers
occurring in at-least or at-most concepts. Due to the expressivity of role hierarchies, it is not

Signature Calculus for ALCNHR+ 173

possible to deal with number restrictions in a simple way by considering one representative
individual instead of a number of individuals.

This source of inefficiency is illustrated with the following TBox (let S1, S2, S3, R be role
names).

S1 � R

S2 � R

S3 � R

C � ∃≥10 S1 � ∃≥10 S2 � ∃≥10 S3 � ∀ S1 . (A � B) � ∀ S2 .¬A � ∀ S3 . (¬A � ¬B) � ∃≤2 R

In order to test the satisfiability of the concept C, the calculus from Section 9.4 creates for
each role Si, i ∈ 1..3 10 Si-successors, i.e. we get 30 R-successors but only 2 R-successors
are allowed. The all-restrictions ensure that only S2-successors and S3-successors can be
successfully merged by the R∃≤n-rule from Section 9.4.1. The concept C is still satisfiable if
we replace in the example TBox every occurrence of 10 by 100, or by 1000, etc. However, the
R∃≤n-rule has to be applied to an increasing number of individuals causing a combinatorial
explosion.

The signature calculus is advantageous since it offers a compact representation for large
numbers of role successors caused by at-least concepts. Informally speaking, the new
calculus is based on the idea to generate only a single proxy role successor for roles (and
their “conjunctions”) occurring in number restrictions. Due to the complexity caused by
the combination of role hierarchies and number restrictions there is already a dramatic
speed-up for values below of ten occurring in number restrictions.

The signature calculus for deciding the ABox consistency for ALCNHR+ is introduced
in the following. The presentation is very much oriented at the one given in Chapter 9.
Some of the definitions and the completion rules dealing with role successors as described
in Chapter 9 are replaced by new or adapted definitions or completion rules. The calculus
is characterized by a set of tableaux or completion rules and by a particular completion
strategy ensuring a specific order for applying the completion rules to assertional axioms
of an ABox. The strategy is essential to guarantee the completeness of the ABox consis-
tency algorithm. First, we have to introduce new assertional axioms needed to define the
augmentation of an ABox.

Definition 10.1 (Additional ABox Assertions) Let C ∈ C , a, b ∈ O , RS ⊆ R, n ≥ 0,
and x /∈ O , then the following expressions are also assertional axioms:

• ∀ x . (x :C) (universal concept assertion), and

• (a, b) :〈n,RS 〉 (signature assertion).

In order to deal with the fact that a proxy individual represents a set of individuals, a
slightly modified definition of an interpretation is used. The interpretation function ·I of

174 Optimizing TBox and ABox Reasoning

the interpretation I can be extended by additionally mapping every individual name from
O to a subset of ∆I in a way such that it satisfies

• ‖aI‖ = 1 if a ∈ OO ,

• aI �= bI if a, b ∈ OO and a �= b (unique name assumption),

• a :C iff aI ⊆ CI ,

• (a, b) :R iff ∀ x ∈ aI , y ∈ bI : (x , y) ∈ RI ,

• ∀ x . (x :C) iff CI = ∆I ,

• (a, b) :〈n,RS 〉 iff ∀x ∈ aI , y ∈ bI : (x , y) ∈
⋂

R∈RS RI and ‖bI‖ = n.

The completion rules for signature assertions require a dedicated operator ‘�̃’ for well-
formed sets of role names.

Definition 10.2 (Role Set, Role Conjunction) A well-formed role set contains either
a single role name or the direct parents of an anonymous (most specific) “role conjunction”
whose canonical name is represented by this set. The set resulting from ‘�̃’ represents the
“role conjunction” of its operands. Let RS1 ,RS2 ⊆ R and RS = RS1 ∪ RS2 , then the role
conjunction is defined as RS1 �̃RS2 = {R ∈ RS | ¬∃ S ∈ RS : S ∈ (R↓ \ {R})}, i.e. the “role
conjunction” is the union of both role sets without implied superroles.

For instance, consider the role hierarchy example introduced above. The “role conjunction”
{R} �̃ {S1 , S2} yields {S1, S2}, i.e. R is not a member of the new set because R is already
implied by at least one member of the new set (e.g. S1 � R), while {S1} �̃ {S2 , S3} yields
{S1, S2, S3}. We are now ready to define an augmented ABox as input to the new tableaux
rules.

Definition 10.3 (Augmented ABox) For an initial ABox A w.r.t a TBox T we define
its augmented ABox A′ by applying the following rules to A. For every GCI C � D in
T the assertion ∀ x . (x : (¬C
 D)) is added to A′. Every concept term occurring in A is
transformed into its negation normal form. Every assertion of the form (a, b) :R is replaced
by (a, b) :〈1 , {R}〉 and every pair of assertions of the form (a, b) :〈1 ,RS1 〉, (a, b) :〈1 ,RS2 〉,
RS1 �= RS2 is replaced by (a, b) :〈1 ,RS1 �̃RS2 〉 as long as possible. From this point on, if
we refer to an initial ABox A we always mean its augmented ABox.

The tableaux rules also require the notion of blocking their applicability. This is based
on so-called concept sets, an ordering for new individuals, and blocking individuals (see
Definitions 9.10-9.12).

Signature Calculus for ALCNHR+ 175

10.4.1 Completion Rules

The completion rules create and merge signature assertions. If a signature assertion
(a, b) :〈n,RS 〉 is element of an ABox A, we say it represents n “identical” role succes-
sors whose proxy is named as b.

Definition 10.4 (Potential R-successors) Given an ABox A, ,(a, R)A defines the num-
ber of potential R-successors for an individual a mentioned in A.

,(a, R)A =
∑
α∈A

count(a, R, α)

count(a, R, α) =

{
n if α = (a, b) :〈n,RS 〉, R ∈ RS ↑,

0 otherwise.

Definition 10.5 (Lower and Upper Bound for R-successors) For a given ABox A,
min(a, R)A defines the minimal number of required and max(a, R)A the maximal number
of allowed R-successors for an individual a mentioned in A.

min(a, R)A = max({0} ∪ {n | a :∃≥n S ∈ A, S ∈ R↓}∪
{1 | ∃ S ∈ R↓ : a :∃ S . C ∈ A}∪
{‖{b ∈ OO | (a, b) :〈1 ,RS 〉 ∈ A, R ∈ RS ↑}‖})

max(a, R)A = min({∞} ∪ {n | a :∃≤n S ∈ A, S ∈ R↑})

Due to the unique name assumption for old individuals, the number of old R-successors
has to be considered by the definition of min(a, R)A.

We are now ready to define the completion rules that are intended to generate a so-called
completion (see also below) of an ABox A w.r.t. a TBox T .

Definition 10.6 (Completion Rules)

SigEmpty The signature cleanup rule.
if (a, b) :〈0 ,RS 〉 ∈ A
then A′ = A \ ({(a, b) :〈0 ,RS 〉} ∪ {b :C | b :C ∈ A})
R� The conjunction rule.
if 1. a :C � D ∈ A, and

2. {a :C, a :D} �⊆ A
then A′ = A ∪ {a :C, a :D}
R
 The disjunction rule (nondeterministic).
if 1. a :C
 D ∈ A, and

2. {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}

176 Optimizing TBox and ABox Reasoning

R∀C The role value restriction rule.
if 1. a :∀R . C ∈ A, and

2. ∃ b ∈ O : (a, b) :〈n,RS 〉 ∈ A, R ∈ RS ↑, and
3. b :C /∈ A

then A′ = A ∪ {b :C}

R∀+C The transitive role value restriction rule.
if 1. a :∀R . C ∈ A, and

2. ∃ b ∈ O , T ∈ R↓ ∩ RS ↑ ∩ T : (a, b) :〈n,RS 〉 ∈ A, and
3. b :∀T . C /∈ A

then A′ = A ∪ {b :∀T . C}

R∀x The universal concept restriction rule.
if 1. ∀ x . (x :C) ∈ A, and

2. ∃ a ∈ O : a mentioned in A, and
3. a :C �∈ A

then A′ = A ∪ {a :C}

R∃C The role exists restriction rule (for signatures).
if 1. a :∃R . C ∈ A, and

2. a is not blocked, and
3. ¬∃ b ∈ O : {(a, b) :〈n,RS 〉, b :C} ⊆ A, R ∈ RS ↑

then A′ = A ∪ {(a, b) :〈1 , {R}〉, b :C}, b ∈ ON new in A.

R∃≥n The number restriction exists rule (for signatures).
if 1. a :∃≥n R ∈ A, and

2. a is not blocked, and
3. ,(a, R)A < n

then A′ = A ∪ {(a, b) :〈n, {R}〉}, b ∈ ON new in A.

Signature Calculus for ALCNHR+ 177

SigMerge The signature merge rule.
if 1. ∃ a mentioned in A, R ∈ P : ,(a, R)A > max(a, R)A, and

2. MR = {α ∈ A |α = (a, b) :〈n,RS 〉, R ∈ RS ↑}
then select {(a, b1) :〈n1 ,RS1 〉, (a, b2) :〈n2 ,RS2 〉} ⊆ MR such that

1. b1 �= b2, and
2. if RS1 = RS2 then ∀ S ∈ RS1 : ,(a, S)A > min(a, S)A, and
3. either b1, b2 ∈ ON or b1 ∈ ON , b2 ∈ OO

if b1, b2 ∈ ON

then
if ∃ i , j ∈ 1 ..2 : RSi ⊆ RSj , i �= j
then (case a: decrement superrole signature)
A′ = (A \ {(a, bi) :〈ni ,RSi〉}) ∪ {(a, bi) :〈ni−1,RSi〉} ∪ {bj :C |C ∈ σ(A, bi)}
elsif ∃ c ∈ ON : (a, c) :〈n,RS1 �̃RS2 〉 ∈ MR

then (case b: increment common subrole signature)
A′ = (A \ {(a, b1) :〈n1 ,RS1 〉, (a, b2) :〈n2 ,RS2 〉, (a, c) :〈n,RS1 �̃RS2 〉})∪

{(a, b1) :〈n1−1,RS1 〉, (a, b2) :〈n2−1,RS2 〉, (a, c) :〈n+1,RS1 �̃RS2 〉}∪
{c :C |C ∈ σ(A, b1) ∪ σ(A, b2)}

else (case c: create common subrole signature)
A′ = (A \ {(a, b1) :〈n1 ,RS1 〉, (a, b2) :〈n2 ,RS2 〉})∪

{(a, b1) :〈n1−1,RS1 〉, (a, b2) :〈n2−1,RS2 〉, (a, c) :〈1 ,RS1 �̃RS2 〉}∪
{c :C |C ∈ σ(A, b1) ∪ σ(A, b2)}, c ∈ ON new in A

else (case d: merge with old individual)
A′ = (A \ {(a, b1) :〈n,RS1 〉, (a, b2) :〈1 ,RS2 〉})∪

{(a, b1) :〈n−1,RS1 〉, (a, b2) :〈1 ,RS1 �̃RS2 〉} ∪ {b2 :C |C ∈ σ(A, b1)}

Empty signatures and the corresponding concept assertions for their role successors are
removed by the clean-up rule SigEmpty. We call the rules R
 and SigMerge nondeter-
ministic rules since they can be applied in different ways to the same set of assertions.
The remaining rules are called deterministic rules. Moreover, we call the rules R∃C and
R∃≥n generating rules since they are the only rules that increase in an ABox the total
number of role successors of already existing individuals. If the signature merge rule has
been applied to an individual a and a non-transitive role R in an ABox A, then it holds
that ,(a, R)A′ = ,(a, R)A − 1.

The rule SigMerge is quite complex and needs an explanation. The rule SigMerge is
applicable to an individual a if a has more potential R-successors than allowed by applicable
at most restrictions and there exists a set MR containing the signature assertions for the
descendants of the role R. Then, a pair of assertions is indeterministically selected such
that the following conditions hold. If the role sets of the two signature assertions are equal,
it is necessary that the number of successors for all members of the role sets is greater than
the required minimum. Otherwise the rule SigMerge (case a) would decrease the number
of successors and violate a minimum restriction. The second condition restricts the set of
eligible pairs to assertions where the proxy individuals are either both new individuals or
one is a new individual and the second one is an old individual. Due to the unique name

178 Optimizing TBox and ABox Reasoning

assumption two signature assertions for old “proxy” individuals may never be merged.

If these conditions are met for a selected pair of signature assertions, then the SigMerge
rule distinguishes four mutually exclusive cases (a-d). If both proxy individuals are new
ones, then the cases a-c are considered, otherwise the case d is applicable.

Case a: If one role set is a subset or equal to the second role set, then the counter of
the (super)role signature (with the smaller set) is decremented by 1 and the concept
assertions for the proxy individual of the (super)role signature are added to the proxy
individual of the (sub)role signature.

Case b: If there already exists a role conjunction signature, then decrement the counters
of the signature pair, increment the counter of the role conjunction signature, and
add the concept assertions of the proxy individuals of the signature pair to the proxy
individual of the role conjunction signature.

Case c: This case corresponds to case b but a new role conjunction signature with counter
value 1 is added.

Case d: The proxy individual b2 is an old individual and due to the unique name assump-
tion the counter of the signature assertion with the proxy individual b1 is decremented
and the concept assertions for b1 are added to b2.

Given an initial ABox A, more than one rule might be applicable to A. This is controlled
by a completion strategy in accordance with the ordering for new individuals (see Definition
9.11).

Definition 10.7 (Completion Strategy) We define a completion strategy that must ob-
serve the following restrictions.

• Meta rules:

– Apply a rule to an individual b ∈ ON only if no rule is applicable to an individual
a ∈ OO .

– Apply a rule to an individual b ∈ ON only if no rule is applicable to another
individual a ∈ ON such that a ≺ b.

• The completion rules are always applied with the following order (decreasing prece-
dence). A rule may only be applied if no rule with a higher precedence is applicable.

1. Apply the SigEmpty rule as long as possible.

2. If possible, apply a nongenerating rule (R�, R
, R∀C, R∀+C, R∀x, SigMerge)
and return to step 1.

3. If possible, apply a generating rule (R∃C, R∃≥n) and return to step 1.

Signature Calculus for ALCNHR+ 179

In the following we always assume that rules are applied in accordance with this strategy.
It ensures that the rules are applied to new individuals w.r.t. the ordering ‘≺’. The strategy
guarantees the tableaux expansion w.r.t. role successors in breadth-first order.

The calculus also has to check whether so-called clash triggers are applicable.

Definition 10.8 (Clash Triggers) We assume the same naming conventions as used
above. Let A be an ABox and A′ be its augmented ABox. The ABoxes A,A′ are called
contradictory if one of the following clash triggers is applicable to A′. If none of the clash
triggers is applicable to A′, then A and A′ are called clash-free.

• Primitive clash: a :⊥ ∈ A′ or {a :A, a :¬A} ⊆ A′, where A is a concept name

• Number restriction clash: ∃ a mentioned in A′, R ∈ P : min(a, R)A′ > max(a, R)A′

A clash-free ABox A′ is called complete if no completion rule is applicable to A′. A
complete ABox A′ derived from an ABox A is also called a completion of A. Any ABox
whose augmented ABox contains a clash is obviously inconsistent. The purpose of the
calculus is to generate a completion for an initial ABox A in order to prove the consistency
of A or the inconsistency of A if no completion can be derived.

10.4.2 Decidability of the ABox Consistency Problem

A careful analysis of the new tableaux rules presented in this section supports the conjecture
that this new calculus is sound, complete, and terminates for any initial ABox. The formal
proof of this conjecture is subject to ongoing work (see [Haarslev et al., 2000a]).

10.4.3 Further Enhancements

The actual implementation of the signature calculus in RACE is more advanced than
described above. The signature merge rules are only applied to partitioned ABoxes (see
below). The generating rules create no “redundant” signature assertions (e.g. if the asser-
tions {a :∃≥2 R, a :∃≥3 R} are a subset of an ABox, it is sufficient to create only a signature
assertion for the second concept assertion). The signature calculus also takes care of
dependency-directed backtracking whenever it is applicable.

The signature calculus can safely split a “subtableaux ABox” A (mentioning no old indi-
viduals) into independent partitions or subtableaux7 w.r.t. concept assertions of the form
a :∃ S . C or a :∃≥n S, if a concept assertion of the form a :∃≤n R with R ∈ S↑ is present. A
partition PR̂ is constrained by a “root role” R̂ ∈ R̂ where R̂ is defined as follows.

R̂ = {R ∈ R | a :∃≤m R ∈ A, ,(a, R)A > max(a, R)A}
7See also Section 10.2.3 on subtableaux caching.

180 Optimizing TBox and ABox Reasoning

R

R1 R2

R3 R4 R5 R6 R7

Figure 10.4: Role hierarchy.

A partition PR̂ of an ABox A with R̂ ∈ R̂ can be defined as

PR̂ = {α ∈ A | ∃ S ∈ R̂↓ : (α = a :∃ S . C) ∨ (α = a :∃≥n S)}.

The partition scheme is illustrated by the following ABox A with a role hierarchy as given
in Figure 10.4.

A =

a :∃≥2 R3, a :∃≥3 R4, a :∃≥4 R5, a :∃≥3 R6, a :∃≥2 R7,
a :∃≤n R1, a :∃≤m R2,
a :∀R3 . P1, a :∀R4 . P1, a :∀R5 .¬P1, a :∀R6 . P1, a :∀R7 .¬P1

This ABox is consistent for values of n, m ≥ 7 and inconsistent otherwise. The partitioning
scheme applied to A results in R̂ = {R1, R2} and the following partitions PR1 ,PR2 .

PR1 =
{
a :∃≥2 R3, a :∃≥3 R4, a :∃≥4 R5

}
PR2 =

{
a :∃≥4 R5, a :∃≥3 R6, a :∃≥2 R7

}
The following two ABoxes A1 and A2 correspond to the partitions PR1 ,PR2 and can be
proven independently from each other. The ABox A is consistent iff both A1 and A2 are
consistent.

A1 =

{
a :∃≥2 R3, a :∃≥3 R4, a :∃≥4 R5, a :∃≤n R1,
a :∀R3 . P1, a :∀R4 . P1, a :∀R5 .¬P1

}
A2 =

{
a :∃≥4 R5, a :∃≥3 R6, a :∃≥2 R7, a :∃≤m R2,
a :∀R5 .¬P1, a :∀R6 . P1, a :∀R7 .¬P1

}
10.4.4 Evaluation

In order to evaluate the effectiveness of an implemented version of the signature calculus,
a set of four dedicated benchmark problems has been generated. The increased difficulty
of the problems is caused by exponentially increasing the size of numbers used in at-least

Signature Calculus for ALCNHR+ 181

0.01

0.1

1

10

>100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number merging problem size (1-21; 4 problems in 2 variants: U=Unsatisfiable, S=Satisfiable)

secs

Lines without dots
indicate use of
signature calculus

Problem 1 (U)
Problem 1 (S)
Problem 2 (U)
Problem 2 (S)
Problem 3 (U)
Problem 3 (S)
Problem 4 (U)
Problem 4 (S)

Figure 10.5: RACE: benchmark problems w/out signature calculus.

and at-most concepts which, in turn, cause an exponentially growing number of new con-
cept and role assertions. Each of the four problems exists in two variants (a ‘test concept’
is satisfiable vs. unsatisfiable). The problems use role hierarchies and number restric-
tions. A problem basically employs concept terms of the form ∃≤n R � ∃≥m1 R1 � ∃≥m2 R2 �
∃≥m3 R3 � ∀R2 . C � ∀R3 .¬C with Ri � R, i ∈ 1..3. The (un)satisfiability of these terms
has to be proven. A term is made satisfiable by choosing values for n, mi such that
max(m1, m2 + m3) ≤ n or unsatisfiable if max(m1, m2 + m3) > n. For instance, num-
bers occurring in at-least or at-most concepts of problem size 3 are usually below 7. Figure
10.5 (using a logarithmic scale) demonstrates the result of this benchmark with RACE.
The use of the signature calculus indicates a dramatic performance gain of several orders
of magnitude.

10.4.5 Summary and Discussion

In this chapter we presented an ALCNHR+ calculus for dealing with number restrictions
more efficiently. The signature calculus has been implemented in the ABox description logic
system RACE. The signature calculus provides a better encoding of the same information

182 Optimizing TBox and ABox Reasoning

as the encoding given in Chapter 9 and, as a consequence, reduces the number of assertions
the completion rules have to deal with. This, in turn, limits the combinatorial explosion
caused by the completion rule which tries to merge role successors.

In the literature, some other techniques for dealing with number restriction have been
discussed. In [Ohlbach and Köhler, 1999] an algebraic technique is introduced. The idea
is to use an algorithm for solving linear inequalities in order to to check whether number
constraints can be fulfilled. The algorithm requires that all possible role conjunctions in
the context of a role hierarchy are properly considered. For all role conjunctions, the
concept restrictions have to be computed. If, for a certain role conjunction, the imposed
concept constraints cannot be satisfied, then an additional equation is derived and the
system of inequalities might become unsatisfiable. Thus, in order to show the satisfiability
of a concept term an exponential number of concept satisfiability tests are required even in
the average case. To the best of our knowledge, an empirical analysis of the algorithm
has not been presented. Experiences with description logic applications indicate that
most satisfiability tests (e.g. for computing the concept hierarchy) return “satisfiable”,
and therefore, the costs of the appealing approach presented in [Ohlbach and Köhler,
1999] must not be underestimated.

It would be interesting to investigate a combination of both approaches: If the consistency
of the concept restrictions for all role conjunctions has been computed by applying the
rules of our signature calculus, then the approach presented in [Ohlbach and Köhler, 1999]
could be used to show that backtracking does not lead to a solution. However, in [Ohlbach
and Köhler, 1999] neither transitive roles nor ABoxes (nor axioms) are considered. Thus,
the adaption of the techniques presented in [Ohlbach and Köhler, 1999] and the integration
into the RACE architecture is left for future work.

We would like to emphasize that the signature calculus is also relevant in the context
of propositional modal logics (for a subclass of graded modalities and for reasoning with
nominals). We conjecture an easy adaption for dealing with so-called qualified number
restrictions that correspond to graded modalities in modal logics.

10.5 Role Path Contraction

In order to make ABox realization as fast as possible we devised a transformation tech-
nique for ABoxes that maximizes the effect of caching techniques. Informally, the idea is
the following. Let us assume, the direct types of a certain individual a have to be com-
puted. We transform the original ABox in such a way that acyclic “role paths” between
individuals in “tree-like” ABox structures are represented by an appropriate some-concept.
The corresponding concept and role assertions representing the role paths are deleted from
the ABox. In order to transform an ABox, the following transformation rule is applied as
often as possible (a is the individual being realized).

We illustrate this contraction idea by an example presented in Figure 10.6. The individual
a is represented by a gray circle. A some-concept “representing” a contracted role path is

Role Path Contraction 183

Example for a "chain"

a

a

i

i

i :

Figure 10.6: Example for ABox chain contraction (see text). The upper ABox is trans-
formed into the lower one.

added as a concept assertion to the individual i starting the contracted path.

RC1 Contraction Rule for ALC.
if 1. (i, j) :R ∈ A, j :C1 ∈ A, . . . , j :Cn ∈ A, i �= a, ¬∃ (j, k) :R′ ∈ A, and

2. ¬∃ (l, j) :R′′ ∈ A, l �= i, ¬∃ j :Cn+1 ∈ A : ∀ i ∈ 1..n : Cn+1 �= Ci

then A′ := (A \ {(i, j) :R, j :C1, . . . , j :Cn}) ∪ {i :∃R . (C1 � . . . � Cn)}

We define an algorithm contraction alc(A) that iteratively applies the rule RC1 to a consis-
tent input ABox A as long as possible. The computed ABox A′ is used as A in subsequent
steps. Finally, when RC1 is no longer applicable, the algorithm returns the ABox A′.

Proposition 10.1 The algorithm contraction alc transforms a consistent ALC ABox A
into an ABox A′ that is consistent iff A is consistent.

Proof. (Sketch) In every step RC1 removes a role assertion of the form (i, j) :R. In the
premise of RC1 a role assertion is used as a precondition for applying the rule. Thus,
if there are n role assertions in the original ABox A, the algorithm contraction alc(A)
terminates after n steps, at the latest. It is easy to see that, if the rule RC1 is applied, the
ABox A′ does not contain assertions for the individual j. However, considering the new
some-concept assertion for i and the sound and complete rules of the underlying tableaux
calculus we can see that the tableaux rules will create a new individual j′ with the same
concept assertions as for j in the original ABox. The additional assertion j′ : (C1 � . . . � Cn)
is expanded into j′ :C1, . . . , j

′ :Cn. �

The contraction rule RC1 can be used for ALC ABoxes (whose associated TBoxes are
also ALC TBoxes). In the presence of number restrictions, the contraction is not applied
to an ABox if there exist more than one role filler for a certain role R. The reason is
that individuals explicitly mentioned in the ABox must not be eliminated due to the
unique name assumption. If these individuals are “represented” by some-concepts, their
uniqueness information is lost. Thus, for ALCNHR+ ABoxes we need a more conservative
contraction rule RC2.

184 Optimizing TBox and ABox Reasoning

0.01

0.1

1

10

100

>500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ABox problem size (1-21)

secs

Lines without dots
indicate use of
role path contraction

k_branch
k_d4

k_dum
k_grz
k_lin

k_path
k_ph

k_poly
k_t4p

Figure 10.7: RACE: ABox realization w/out role path contraction.

RC2 Contraction Rule for ALCNHR+ .
if 1. (i, j) :R ∈ A, j :C1 ∈ A, . . . , j :Cn ∈ A, i �= a, ¬∃ (j, k) :R′ ∈ A, and

2. ¬∃ (l, j) :R′′ ∈ A, ¬∃ (i, o) :S ∈ A, o �= j, R↑ ∩ S↑ �= ∅, and
3. ¬∃ j :Cn+1 ∈ A : ∀ i ∈ 1..n : Cn+1 �= Ci

then A := (A \ {(i, j) :R, j :C1, . . . , j :Cn}) ∪ {i :∃R . (C1 � . . . � Cn)}

In the same way as above, we define an algorithm contraction alcnhr+(A) that iteratively
applies RC2 to a consistent input ABox A.

Proposition 10.2 The algorithm contraction alcnhr+(A) transforms a consistent ABox
A into an ABox A′ that is consistent iff A is consistent.

Proof. (Sketch) Given the proof sketch for contraction alc(A) it is easy to see that the
algorithm terminates and is sound and complete. The additional requirement in the premise
guarantees that role assertions are not transformed into some-concept assertions if there
exist more than one role assertion (i, j) :R for R where i occurs on the left-hand side. If
there exists a common superrole, number restrictions might be imposed. �
The role path contraction technique for ABoxes has several advantages:

Role Path Contraction 185

0.01

0.1

1

10

100

>500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ABox problem size (1-21)

secs

Lines without dots
indicate use of
role path contraction

k_branch
k_d4

k_dum
k_grz
k_lin

k_path
k_ph

k_poly
k_t4p

Figure 10.8: RACE: ABox instance checking w/out role path contraction.

1. The number of individuals and role assertions is reduced.

2. The some-concepts resulting from the contraction are automatically subject to the
subtableaux caching (see Section 10.2.3) and pseudo model caching and merging
techniques (see next section).

3. The ABox realization multiplies the savings effect due to iterated instance checking
tests for the same individual over all named concepts in a TBox.

The empirical tests with instance checking problems [Haarslev et al., 1999a] indicate that
the role path contraction technique is very effective. The graph in Figure 10.7 shows
the execution times for different problems with ABox realization and in Figure 10.8 with
instance checking. The problems have a size increasing from 1 to 21. The runtime is
supposed to grow exponentially if the problem size is incremented. It can be observed
that the number of ABox assertions is reduced by several orders of magnitude due to the
contraction technique. The improvement by this technique is indicated in Figures 10.7
and 10.8. It clearly shows that the contraction technique can give a speed gain of about
one order of magnitude. However, many of these problems are still too hard and ask for

186 Optimizing TBox and ABox Reasoning

the design of even more sophisticated optimization techniques. The performance gain by
using instance checking instead of realization is up to several orders of magnitude. Older
ABox DL systems such as KRIS [Baader et al., 1992; Baader et al., 1994b] are not able
to check ABox consistency (within 500 secs) for any of these problems except the simplest
level (size 1) and even time out for some problems of this level.

10.6 Exploiting Deep Pseudo Models for TBox Reasoning

Given a set of concepts representing a conjunction whose satisfiability is to be checked,
the model merging strategy tries to avoid a satisfiability test which relies on the “expen-
sive” tableaux technique. This idea was first introduced in [Horrocks, 1997] for the logic
ALCHfR+ . A model merging test is designed to be a “cheap” test operating on cached
“concept models.” It is a sound but incomplete satisfiability tester for a set of concepts.
The achievement of minimal computational overhead and the avoidance of any indeter-
minism are important characteristics of such a test. If the test returns false, a tableaux
calculus based on the rules as defined in Section 9.4 is applied. In order to be more precise,
we use the term pseudo model instead of “concept model.” A model is understood in the
sense of an interpretation and a pseudo model as a data structure containing recorded
information.

For testing whether the conjunction of a set of concepts {C1, . . . , Cn} is satisfiable, we
present and analyze a technique called deep model merging that that generalizes the original
model merging approach [Horrocks, 1997] in two ways.

• We extend the model merging technique to the logic ALCNHR+ , i.e. this technique
also deals with number restrictions.

• We introduce deep pseudo models (e.g. for the concepts {C1, . . . , Cn}) which are
recursively traversed and checked for possible clashes.

The deep model merging test is also applicable to every subsumption test. A concept C does
not subsume a concept D if the pmodels of ¬C and D can be merged. The application of this
technique is especially justified for computing the subsumption hierarchy of TBoxes. For
instance, in order to insert a concept C into the subsumption lattice of the (atomic) concepts
{D1, . . . , Dn} a sequence of concept satisfiability tests for ¬C � Di and C � ¬Di (i ∈ 1..n)
might be required. However, these concept conjunctions are proven to be satisfiable in
most cases, i.e. the satisfiability test is replaced by a model merging test. In case of the
application TBoxes from Section 10.2.6 less than 5% of all subsumption tests are successful,
i.e. discover a subsumption.

Since pseudo models for concepts are computed on demand, it might be possible that in
order to employ a merging test, it is necessary to first compute the model of a certain
concept which is given as one of the input concepts to the model merging test. However,
since it is a good heuristic to assume that cached concept models will be heavily reused when

Exploiting Deep Pseudo Models for TBox Reasoning 187

computing the subsumption hierarchy, exploiting the model merging optimization strategy
is very effective compared to using an “expensive” rule-based tableaux computation. This
is indicated by empirical tests presented in [Horrocks, 1997] and in this chapter.

Definition 10.9 (Pseudo Model) A pseudo model for a concept term C is defined as
follows. Let A ∈ C be a concept name, R ∈ R a role name, F ∈ F a feature name. The
consistency of A ={a :C} is tested. If A is inconsistent, the pseudo model8 of C is defined
as ⊥. If A is consistent, then there exists a set of completions C. A completion A′ ∈ C
is selected and a pmodel M for a concept C is defined as the tuple 〈M A,M ¬A,M ∃,M ∀〉 of
concept sets using the following definitions.

M A = {A | a :A ∈ A′}
M ¬A = {A | a :¬A ∈ A′}
M ∃ = {∃R . C | a :∃R . C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′}
M ∀ = {∀R . C | a :∀R . C ∈ A′} ∪ {∃≤n R | a :∃≤n R ∈ A′} ∪ {∃F . C | a :∃F . C ∈ A′}

The set M A (M ¬A) contains all (negated) atomic concept names occurring in the asser-
tions for an individual a in a completion A′. Analogously, the set M ∃ (M ∀) contains all
exists- and at-least concepts (at-most-, all-concepts, and exists-concepts for features). This
guarantees the correct treatment of features.

The procedure mergable shown in Procedure 8 implements the flat and deep model merg-
ing test. In case of deep merging it has to test for a blocking situation, i.e. whether the
actual pmodel set MS is a member of the set VM of visited pmodel sets. The initial call
of mergable has the empty set as value for VM . The third parameter D? controls whether
the deep or flat mode (see below) of mergable will be used.

We assume a procedure get pmodel that retrieves for a concept C its cached pmodel. In
case the pmodel does not yet exist, it is computed.

The procedure atoms mergable tests for a possible primitive clash between pairs of pmod-
els. It is applied to a set of pmodels MS and returns false if there exist {M1, M2} ⊆ MS
with (M A

1 ∩M ¬A
2) �= ∅ or (M ¬A

1 ∩M A
2) �= ∅. Otherwise it returns true.

The procedure critical at most tests for a potential number restriction clash in a set
of pmodels and tries to avoid true answers which are too conservative. It is applied to a
concept C of the form ∃ S . D or ∃≥n S, a pmodel M (the current model) and a set of pmodels
MS = {M1 , . . . ,Mk} and returns true if there exists a pmodel M ′ ∈ (MS \M) and a role
R ∈ S↑ with ∃≤m R ∈ M ′∀ such that

∑
E∈N numRS (E) > m, N = ∪i∈1 ..k M ∃

i , RS = S↑ ∩ R↓.
In all other cases critical at most returns false. The procedure numRS (E) returns 1 for
concepts of the form E = ∃R′ . D and n for E = ∃≥n R′, provided R′ ∈ RS .

8For brevity a pseudo model is called a pmodel .

188 Optimizing TBox and ABox Reasoning

Procedure 8 mergable(MS ,VM ,D?)

1: if MS = ∅ ∨MS ∈ VM then
2: return true
3: else if ⊥ ∈ MS ∨ ¬atoms mergable(MS) then
4: return false
5: else
6: for all M ∈ MS do
7: for all C ∈ M ∃ do
8: if critical at most(C,M ,MS) then
9: return false

10: else
11: MS ′ ← collect pmodels(C,MS)
12: if (¬D? ∧MS ′ �= ∅) ∨ ¬mergable(MS ′,VM ∪ {MS},D?) then
13: return false
14: end if
15: end if
16: end for
17: end for
18: end if
19: return true

The procedure collect pmodels is applied to a concept C of the form ∃ S . D or ∃≥n S and
a set of pseudo models MS . It computes the pmodels of the set Q of “qualifications.” We
define Q ′ = {D} if C = ∃ S . D and Q ′ = ∅ otherwise.

Q = Q ′ ∪ {E | ∃M ∈ MS , R ∈ S↑ : (∀R . E ∈ M ∀ ∨ ∃R . E ∈ M ∀)}∪
{∀T . E | ∃M ∈ MS , R ∈ S↑, T ∈ T ∩ S↑ ∩ R↓ : ∀R . E ∈ M ∀}

The procedure collect pmodels returns the set {get pmodel(C) |C ∈ Q}. Observe that
∃R . E ∈ M ∀ implies that R is a feature.

In the following we prove the soundness of the procedure mergable. Note that mergable
depends on the clash triggers (see Definition 9.15) of the particular tableaux calculus chosen
since it has to detect potential clashes in a set of pmodels. The structure and composition
of the completion rules might vary as long as the clash triggers do not change and the
calculus remains sound and complete.

Proposition 10.3 (Soundness of mergable) Let D? have either the value true or false,
CS = {C1, . . . , Cn}, MCi = get pmodel(Ci), and PM = {MCi | i ∈ 1..n}. If the procedure
call mergable(PM , ∅,D?) returns true, the concept C1 � . . . � Cn is satisfiable.

Proof. This is proven by contradiction and induction. Let us assume that the call
mergable(PM , ∅,D?) returns true but the ABox A = {a : (C1 � . . . � Cn)} is inconsistent,

Exploiting Deep Pseudo Models for TBox Reasoning 189

i.e. there exists no completion of A. Every concept Ci must be satisfiable, otherwise we
would have ⊥ ∈ PM and mergable would return false due to line 3 in Procedure 8. Let us
assume a finite set C containing all contradictory ABoxes encountered during the consis-
tency test of A. Without loss of generality we can select an arbitrary A′ ∈ C and make a
case analysis of its possible clash culprits.

1. We have a primitive clash for the “root” individual a, i.e. {a :D, a :¬D} ⊆ A′. Thus,
a :D and a :¬D have not been propagated to a via role assertions and there have
to exist Ci, Cj ∈ CS , i �= j such that a :D (a :¬D) is derived from a :Ci (a :Cj) due
to the satisfiability of the concepts Ci, i ∈ 1..n. It holds for the associated pmod-
els MCi ,MCj ∈ PM that D ∈ M A

Ci
∩M ¬A

Cj
. However, due to our assumption the

call of mergable(PM , ∅,D?) returned true. This is a contradiction since mergable
called atoms mergable with PM (line 3 in Procedure 8) which returned false since
D ∈ M A

Ci
∩M ¬A

Cj
.

2. A number restriction clash in A′ is detected for a, i.e. a :∃≤m R ∈ A′ and there ex-
ist l > m distinct R-successors of a.9 These successors can only be derived from
assertions of the form a :∃ Sj . Ej or a :∃≥nj Sj with Sj ∈ R↓, j ∈ 1..k1. The concepts
Ci ∈ CS , i ∈ 1..n are satisfiable and there has to exist CS ′ = {Ci1 , . . . , Cik2

} ⊆ CS

such that ∃≤m R ∈ ∪Ci∈CS ′M ∀
Ci

and
∑

E′∈N numRS (E′) ≥ l , with N = ∪Ci∈CS ′M ∃
Ci

and

RS = (∪j∈1..k1 Sj
↑) ∩ R↓. However, the call of mergable(PM , ∅,D?) returned true due

to our assumption. This is a contradiction since there exists an i′ ∈ 1..k2 and a con-
cept E′ ∈ M ∃

Ci′
such that mergable called critical at most(E′,MCi′ ,PM) (lines 6-8 in

Procedure 8) which returned true since
∑

E′∈N numRS (E′) ≥ l > m.

3. Let the individual an be a successor of a0 via a chain of role assertions (a0, a1) :R1, . . .,
(an−1, an) :Rn, n > 0 and we now assume that a clash for an is discovered.

(a) In case of a primitive clash we have {an :D, an :¬D} ⊆ A′. These clash culprits
are derived from assertions for an−1 of the form an−1 :∃≥m Rn or an−1 :∃Rn . E1,
and an−1 :∀ S . E2 and/or an−1 :∀ S′ . E3 with S, S′ ∈ Rn

↑. Due to the clash there
exists a pair Ei, Ej with D ∈ M A

Ei
∩M ¬A

Ej
for some i, j ∈ 1..3, i �= j. Each role

assertion in the chain between a0 and an−1 can only be derived from an assertion
of the form ak−1 :∃Rk . Ek or ak−1 :∃≥mk

Rk with k ∈ 1..n− 1. The call graph
of mergable(PM , ∅,D?) contains a chain of calls resembling the chain of role
assertions. By induction on the call graph we know that the node resembling
an−1 of this call graph chain contains the call mergable(PM ′,VM ′, true) such
that {MEi ,MEj } ⊆ PM ′ and atoms mergable has been called with a set MS ′

and {MEi ,MEj } ⊆ MS ′. The call of atoms mergable has returned false since
D ∈ M A

Ei
∩M ¬A

Ej
. This contradicts our assumption that mergable(PM , ∅,D?)

returned true.

9Due to our syntax restriction all elements of R↓ are not transitive.

190 Optimizing TBox and ABox Reasoning

(b) In case of a number restriction clash we can argue in an analogous way. Again,
we have a chain of role assertions where a number restriction clash is detected for
the last individual of the chain. It exists a corresponding call graph chain where
by induction the last call of mergable called critical at most with a set of pmod-
els for which critical at most returned true. This contradicts the assumption
that mergable(PM , ∅,D?) returned true.

It is easy to see that this proof also holds in the case the value of D? is false since the “flat
mode” is more conservative than the “deep” one, i.e. it will always return false instead of
possibly true if the set of collected pmodels M ′ is not empty (line 12 in Procedure 8) �
As shown above the so-called flat model merging technique is a special case of the deep
model merging technique. Instead of recursively traversing collected sets of pseudo sub-
models only the first level is considered. It is important to note that in an optimized
implementation it is sufficient to perform a pairwise test of pmodels for possible clashes or
role interactions.

If the flat model merging test returns false because of interacting all- and some-concepts,
this test might be too conservative. This is illustrated with a small example (C, D ∈ C ,
R, S ∈ R). For instance, the deep model merging test starts with the pseudo models
〈∅, ∅, {∃R .∃ S . C}, ∅〉 and 〈∅, ∅, ∅, {∀R .∀ S . D}〉. Due to the interaction on the role R, the
test is recursively applied to the pmodels 〈∅, ∅, {∃ S . C}, ∅〉 and 〈∅, ∅, ∅, {∀ S . D}〉. Eventu-
ally, the deep model merging test succeeds with the pmodels 〈{C}, ∅, ∅, ∅〉 and 〈{D}, ∅, ∅, ∅〉
and returns true.

The advantage of the deep vs. the flat mode of the model merging technique is demonstrated
by empirical tests using the ‘Galen’ and ‘Bike’ TBoxes. Figure 10.9 shows the runtimes
for computing the subsumption lattice of these TBoxes. Each TBox is iteratively classified
using 3 different parameter settings. The first setting has all optimization techniques
enabled, the second one the subtableaux caching technique [Horrocks and Patel-Schneider,
1999; Haarslev and Möller, 1999b] disabled. The third setting has both subtableaux caching
and the deep mode of model merging disabled but the flat mode of model merging is still
enabled.

The 3 different settings are justified by the order in which these optimization techniques are
applied in RACE if a “subtableaux” is tested for consistency. First, subtableaux caching
is applied. If no cache entry exists, (deep) model merging is tried. If it returns false the
standard tableaux test is invoked. Thus, tableaux caching might reduce the number of
encountered model merging tests and the advantage of the deep against the flat mode of
model merging can only be accurately evaluated if one compares the runtimes between
the second and third setting. The comparison between these settings indicates a speed-
up in runtimes of a factor 1.5 − 2 for almost all TBoxes if the deep mode is enabled.
The comparison between the first and second setting clearly demonstrates that the deep
mode can sometimes compensate the disabled subtableaux caching technique. However,
the BCS3 TBox introduced in Section 10.2.6 can be classified within less than 10 seconds
of runtime if subtableaux caching is enabled, but cannot be classified within 10000 seconds

Exploiting Flat Pseudo Models for ABox Reasoning 191

20

30

40

50

60

70

80

90

100

Galen2 Galen1 Galen

Setting 1
Setting 2
Setting 3

0

10

20

30

40

50

60

Bike1 Bike2 Bike3 Bike4 Bike5 Bike6 Bike7 Bike8 Bike9

Setting 1
Setting 2
Setting 3

(a) Galen TBoxes (b) Bike TBoxes

Figure 10.9: Evaluation of pseudo model merging techniques (3 runs for each TBox; Setting
1: all optimizations enabled, Setting 2: subtableaux caching disabled, Setting 3: both
subtableaux caching and the deep mode of model merging disabled).

of runtime if subtableaux caching is disabled and the flat or deep mode of model merging
is enabled.

10.7 Exploiting Flat Pseudo Models for ABox Reasoning

An ABox is realized through a sequence of instance checking tests. The realization of
an individual a occurring in an ABox A w.r.t to a TBox T computes the direct types of
a (w.r.t. A and T). For instance, in order to compute the direct types of a for a given
subsumption lattice of the concepts D1, . . . , Dn, a sequence of ABox consistency tests for
ADi

= A ∪ {a :¬Di} might be required. However, individuals are usually members of only a
small number of concepts and the ABoxes ADi

are proven as consistent in most cases. The
basic idea is to design a cheap but sound model merging test for the focused individual
a and the concept terms ¬Di without explicitly considering role assertions and concept
assertions for the other individuals mentioned in A since these interactions are reflected in
the “individual pseudo model” of a. This is the motivation for devising the novel individual
model merging technique.

192 Optimizing TBox and ABox Reasoning

Definition 10.10 (Individual Pseudo Model) A pseudo model for an individual a men-
tioned in a consistent ABox A w.r.t. a TBox T is defined as follows. Since A is consistent,
there exists a set of completions C of A. Let A′ ∈ C. An individual pseudo model M for
an individual a in A is defined as the tuple 〈M A,M ¬A,M ∃,M ∀〉 w.r.t. A′ and A using the
following definitions.

M A = {A | a :A ∈ A′}
M ¬A = {A | a :¬A ∈ A′}
M ∃ = {∃R . C | a :∃R . C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′} ∪ {∃≥1 R | (a, b) :R ∈ A}
M ∀ = {∀R . C | a :∀R . C ∈ A′} ∪ {∃≤n R | a :∃≤n R ∈ A′} ∪ {∃F . C | a :∃F . C ∈ A′}

The procedure get ind pmodel called with an individual a mentioned in a consistent
ABox A (w.r.t. a TBox T) either appropriately creates a pmodel for a or retrieves the
cached pmodel of a.

Proposition 10.4 (Soundness of individual model merging) Let a be an individual
mentioned in a consistent ABox A w.r.t. a TBox T , ¬C be a satisfiable concept, Ma (M¬C)
denote the pmodel returned by get ind pmodel(a) (get pmodel(¬C)), and the set PM be
defined as {Ma ,M¬C}. If the procedure call mergable(PM , ∅, false) returns true, the ABox
A ∪ {a :¬C} is consistent, i.e. a is not an instance of C.

Proof. This is proven by contradiction. Let us assume mergable({Ma ,M¬C}, ∅, false) is
called and returns true but the ABox A′ = A ∪ {a :¬C} is inconsistent, i.e. there exists no
completion of A′. Let us additionally assume a finite set C containing all contradictory
ABoxes encountered during the consistency test of A′. Without loss of generality we can
select an arbitrary A′′ ∈ C and make a case analysis of its possible clash culprits.

1. A clash is detected for an individual b in A′′ that is distinct to a. Since A is consistent
the individual b must be a successor of a via a chain of role assertions (a, b1) :R1, . . . ,
(bn, b) :Rn+1, n ≥ 0 and one of the clash culprits must be derived from the newly
added assertion a :¬C and propagated to b via the role assertion chain originat-
ing from a with (a, b1) :R1. Since ¬C is satisfiable and A is consistent we have
an “interaction” via the role or feature R1. This implies for the associated pmod-
els Ma ,M¬C that (M ∃

a ∩M ∀
¬C) ∪ (M ∀

a ∩M ∃
¬C) �= ∅. This contradicts the assumption

that mergable({Ma ,M¬C}, ∅, false) returned true since mergable eventually called
collect pmodels for Ma ,M¬C which returned a non-empty set (line 11 in Procedure
8).

2. In case of a primitive clash for a we have {a :D, a :¬D} ⊆ A′′. Since a :¬C is a concept
assertion we know that a :D and a :¬D cannot be propagated to a via role assertions.
Thus, either a :D or a :¬D must be derived from a :¬C and we have D ∈ (M A

a ∩M ¬A
¬C)∪

(M ¬A
a ∩M A

¬C). This contradicts the assumption that mergable({Ma ,M¬C}, ∅, false)
returned true since mergable called atoms mergable({Ma ,M¬C}) which returned false
(line 3 in Procedure 8) since D ∈ (M A

a ∩M ¬A
¬C)∪ (M ¬A

a ∩M A
¬C).

Exploiting Flat Pseudo Models for ABox Reasoning 193

5

10

20

30
40
50

75
100

200

500

1000

5000

>10000

A71 A72 A73 A74 A75 A81 A82 A83 A84 A85 A91 A92 A93 A94 A95

Three runs clustered in a group for each application ABox
(left-right order in clusters corresponds to top-bottom order in legend)

Setting 1
Setting 2
Setting 3

Figure 10.10: Evaluation of the individual model merging technique (3 runs for each TBox;
Setting 1: all optimizations enabled, Setting 2: ‘told disjoints’ disabled, Setting 3: both
‘told disjoints’ and individual model merging disabled).

3. A number restriction clash in A′′ is detected for a, i.e. a :∃≤m R ∈ A′′ and there exist
l > m distinct R-successors of a in A′′. This implies that the set N = M ∃

a ∪M ∃
¬C

contains concepts of the form ∃ Sj . Ej or ∃≥nj Sj,
10 Sj ∈ R↓ with j ∈ 1..k, such that∑

E′∈N numRS (E′) ≥ l with RS = (∪j∈1..k Sj
↑) ∩ R↓. This contradicts the assumption

that the call of mergable({Ma ,M¬C}, ∅, false) returned true since mergable called
critical at most (lines 6-8 in Procedure 8) which returned true since the condition∑

E′∈N numRS (E′) ≥ l > m was satisfied. �
The performance gain by the individual model merging technique is empirically evaluated
using a set of five ABoxes containing between 15 and 25 individuals. Each of these ABoxes
is realized w.r.t. to the application TBoxes Bike7-9 derived from a bike configuration task.
The TBoxes especially vary w.r.t. the number of disjointness declarations for atomic con-
cepts. Figure 10.10 shows the runtimes for the realization of the ABoxes 1-5. Each ABox
is realized with three different settings. The first setting has all optimization techniques
enabled, in the second one an optimization technique11 is disabled that exploits the dis-

10Any role assertion of the form (a, b) :R ∈ A implies that ∃≥1 R ∈ M ∃
a .

11This technique interacts with individual model merging since it prunes the search space for realization
and thus decreases the number of instance checking tests that can be solved by individual model merging.

194 Optimizing TBox and ABox Reasoning

AKB
Name

Gen.
Lev.

Solv.
Lev.

No. of
Inds

Time
Opt.

Solv.
Lev.

No. of
Inds

Time
No Opt.

k branch n 4 3 126 43.25s 3 126 77.25s
k d4 n 4 2 128 35.77s 2 128 40.57s
k dum n 21 13 145 391.19s 13 145 395.68s
k grz n 19 16 292 433.68s 15 264 414.41s
k lin n 11 11 2 151.70s 6 19 339.34s
k path n 4 3 94 350.95s 2 36 111.03s
k ph n 7 5 9 3.52s∗ 5 9 37.70s∗

k poly n 8 6 73 470.62s 5 65 384.34s
k t4p n 6 2 117 284.43s 2 117 319.13s
∗TBox of next level timed out after 500 secs.

Figure 10.11: Comparison for synthetic ABox benchmarks.

jointness between concepts, and the third setting has additionally disabled the individual
model merging technique. The comparison between setting two and three reveals a speed
gain of at least one order of magnitude if the individual model merging technique is used.
Note the use of a logarithmic scale.

We also evaluated the individual model merging technique with a set of synthetic ABox
benchmarks [Haarslev and Möller, 1999b] (timeout of 500 secs). The results (see Figure
10.11) indicate a speed gain of one order of magnitude for two third of the problems and
only a minor speed-up for the other third. However, we like to remark that these ABox
benchmarks are rather artificial since they were generated from models of concepts. The
ABoxes contain no role joins or cycles and the individuals are members of many concepts
which is rather unusual for realistic ABoxes.

An enhanced version of the individual model merging technique can be developed, which
additionally exploits the use of deep models. This is immediately possible if only ABoxes
containing no joins for role assertions are encountered. In case an ABox A contains a
join (e.g. {(a, c) :R, (b, c) :R} ⊆ A), one has to consider a graph-like instead of a tree-like
traversal of pseudo models reflecting the dependencies caused by joins. By analogy to
the comparison between flat and deep model merging for classification we conjecture a
moderate speed gain by using the proposed enhanced individual model merging technique.

It is explained in Section 11.4.

Chapter 11

High Performance Reasoning with
Very Large TBoxes

In application projects it is often necessary to deal with TBoxes containing thousands of
simple axioms. These TBoxes are usually automatically derived from databases or dictio-
naries. For instance, in the medical domain already exist very large databases describing
anatomical knowledge. In addition, in many applications only a small subset of the ax-
ioms are true generalized concept inclusions (GCIs). In most cases, axioms are concept
introduction axioms (or primitive concept definitions). The question arises whether the
optimization techniques introduced in the previous chapter scale up and allow one to cope
with these TBoxes. Furthermore, it has been argued that only systems based on incom-
plete calculi can deal with knowledge bases containing more than 100,000 axioms of this
kind.

It is shown in this chapter that these techniques still work quite well. However, new
optimization techniques are required which address the characteristics of these TBoxes. It is
also shown that DL systems based on sound and complete algorithms are particularly useful
for simple but large knowledge bases consisting mainly of primitive concept definitions. A
knowledge base is called simple if no meta constraints remain after the absorption phase
(see Section 10.2.5) and if there exist (almost) no defined concepts. The effectiveness of
the new techniques is demonstrated by an empirical analysis of the performance of RACE
applied to TBoxes of this size.

As an example we consider a reconstruction of important parts of the UMLS (Unified Med-
ical Language System) [McCray and Nelson, 1995] using description logic representation
techniques. The reconstruction is described in [Schulz and Hahn, 2000] and introduces a
specific scheme that uses several concept names to represent subset as well as composition
aspects of each word mentioned in the UMLS metathesaurus. For instance, for the notion
of a ‘heart’, the following axioms for heart structures (suffix ‘s’), heart parts (suffix ‘p’)
and heart entities (no suffix) are declared (see [Schulz and Hahn, 2000] for details):

195

196 High Performance Reasoning with Very Large TBoxes

ana heart � ana heart s � ana hollow viscus � umls body part organ or organ component

ana heart s � ana hollow viscus s � ana cardiovascular system p

ana heart p � ¬ana heart � ana heart s � ∃≥1 anatomical part of ana heart

Note the implicit disjointness between ana heart p and ana heart. The following role axiom
is generated as well.

anatomical part of ana heart � anatomical part of ana hollow viscus

It is beyond the scope of this chapter to discuss the pros and cons of specific modeling
techniques used in the UMLS reconstruction.

Modern DL systems such as RACE offer (at least) two operations for TBoxes: classifica-
tion and coherence checking. Classification is the process of computing the most-specific
subsumption relationships (“parents” and “children”) of every concept name to other con-
cept names mentioned in a TBox. Coherence checking determines that no concept name
is unsatisfiable. The following subsections introduce three techniques to speed up the
classification or coherence test of very large TBoxes.

11.1 Topological Sorting for Achieving Quasi Definition Order

For TBox classification the RACE system employs the marking and propagation tech-
niques introduced in [Baader et al., 1994a]. The parents and children of a certain concept
name are computed in so-called ‘top search’ and ‘bottom search’ traversal phases, respec-
tively. For large knowledge bases it is particularly important to avoid as many traversals
as possible. Let us assume, a TBox can be transformed such that all GCIs can be absorbed
but cyclic (primitive) concept definitions may still exist. Then, if concepts are classified in
a so-called ‘definition order’, the bottom search phase can be omitted for concept names
for which only a primitive concept definition exists [Baader et al., 1994a]. According to
[Baader et al., 1994a] we assume that a concept name A ‘directly uses’ a concept name
B if B occurs in the concept on the right-hand side of the definition of A. The relation
‘uses’ is the transitive closure of ‘directly uses’. If A uses B then B comes before A in
the definition order. For acyclic TBoxes (i.e. the uses relation is irreflexive) with concept
introduction axioms only, the set of concepts can be processed in definition order, i.e. a
concept is not classified until all of the concepts used in its definition are classified. In this
case the set of children of a concept name consists only of the bottom concept. Thus, a
common syntactical restriction for description logic systems is to accept only TBox dec-
larations that do not include so-called forward references. However, for a language such
as ALCNHR+ , which offers cyclic axioms and GCIs, in general, the bottom search phase
cannot be skipped [Horrocks, 1997, page 103].

High Performance Reasoning with Very Large TBoxes 197

Unfortunately, in the UMLS examples there are many forward references involved in value
restrictions and existential restrictions (i.e. modalities). Thus, the definition order of con-
cept names has to be computed in a preprocessing step. In addition, a slightly less strict
notion of definition order has been developed. We assume a relation ‘directly uses non-
modal’ similar to ‘directly uses’ but with references occurring in the scope of quantifiers not
considered. Again ‘uses non-modal’ is the transitive closure of ‘directly uses non-modal’.
For acyclic concepts the ‘uses non-modal’ relation induces a partial order relation on con-
cept names. All concept names involved in a cycle are treated as one node (i.e. a set Si)
w.r.t. the partial order. Using a topological sorting algorithm the partial order can be
serialized such that a total order between concept names (or sets of concept names) is
defined. We call the serialization a “quasi definition order”.

During classification of a TBox with RACE the concept names are processed in the order
given by the linearization w.r.t. topological sorting. For each primitive concept that is not
a member of a set Si, we claim that the bottom search can be disabled. The ‘uses non-
modal’ relation and the quasi definition order serialization ensures that either all concepts
which are potential subconcepts of a certain primitive concept A are inserted after A has
been inserted into the subsumption lattice or the bottom search is indeed performed. The
quasi definition order is conservative w.r.t. the potential subsumers (note that ALCNHR+

does not support inverse roles). Moreover, in a basic subsumption test the subsumption
lattice under construction is never referred to. Thus, strict definition order classification
is not necessary.

Topological sorting is of order n + e where e is the number of given ‘uses non-modal’
relationships. Thus, we have approximately O(n log n) steps while the bottom search
procedure requires O(n2) steps in the worst case. Note that in [Baader et al., 1994a] no
experiments are discussed that involve the computation of a serialization given a TBox
with axioms not already in (strict) definition order.

11.2 TBox Clustering

A problem with large TBoxes is that the set of children of some concept names can get
very large (e.g. some concepts in the UMLS TBoxes have more than 20000 children). Thus,
the top search and bottom search procedures each exhibit worst case performance, i.e. the
optimization techniques presented in [Baader et al., 1994a] and in the previous chapter are
not effective enough in this case. Therefore, a clustering technique had to be developed in
order to keep the number of traversals in the concept hierarchy and the number of needed
subsumption tests as small as possible. The technique works as follows.

If a certain concept name gets more than θ children assigned, these children are grouped into
a so-called bucket Anew, i.e. a (virtual) concept definition Anew

.
= A1
 . . .
 Aθ is assumed

and Anew is inserted into the subsumption lattice with A1 . . . Aθ being the children of Anew.
Note that bucket concepts are virtual concepts in the sense that they are not referred to
in the set of children or parents of the concept names mentioned in a TBox.

198 High Performance Reasoning with Very Large TBoxes

Let us assume, a certain concept name A is inserted. Instead of testing whether each
Ai (i ∈ {1..θ}) subsumes A during the top search phase, our findings suggest that it is
more effective to initially test whether Anew does not subsume A using the model merging
technique. Since in most cases, no subsumption relation can be found between any Ai

and A, one test possibly replaces θ tests. On the other hand, if a subsumption relation
indeed exists, then clustering introduces some overhead. However, in the case of the UMLS
TBoxes only primitive concept definitions are included in the TBox for almost all concept
names. Thus, the pseudo model of ¬Anew being used for model merging is very simple
because the pseudo model basically consists only of a set of negated concept names (see
Section 10.6 and Definition 10.9).

For best performance, the number of concepts to be kept in a bucket should depend on
the number of children of the concept. However, this can hardly be estimated. Therefore,
the following strategy is used. If more and more concept names are “inserted” into the
subsumption lattice, the number of buckets increases as well. If a new bucket has to be
created for a certain concept A and there are already σ buckets clustering the children
of A, then two buckets (those buckets with the smallest number of children) are merged.
Merging the buckets Anew

.
= A1
 . . .
 An and Bnew

.
= B1
 . . .
 Bm means that the bucket

Anew is “redefined” as Anew
.
= A1
 . . .
 An
 B1
 . . .
 Bm and the bucket Bnew is reused

for the new bucket to be created (see above).1 Whether hierarchical clustering techniques
lead to performance improvements is subject to further research.

The current implementation of clustering with buckets uses a setting with θ = 10 and
σ = 15.

11.3 Dealing with Domain and Range Restrictions

In order to avoid disjunctions, GCIs for domain restrictions are dealt with by RACE with
a generalized kind of lazy unfolding. In a similar way as for names, all situations where
unfolding of concept terms ∃R . D w.r.t. axioms of the form ∃R .� � C must occur can
be easily identified, i.e. unfolding of a domain restriction for a role R is applied whenever
an assertion i :∃R . C for an arbitrary ALCNHR+ concept term is found in an ABox.2 If
lazy unfolding is applied, domain restrictions have to be considered w.r.t. the ‘directly uses
non-modal’ relation in a special way.

Although it is possible to absorb a domain restriction such as the one expressed by
∃ anatomical part of ana heart .� � ana heart p into an equivalent inclusion axiom of the

1Note that due to subsequent merging operations, n and m need not be equal to θ.
2Domain restrictions cannot be easily considered in the (recursive) encoding process for concepts.

Encoding a concept term (some r d) as C � ∃R .D (with C being the domain restriction for R) would
cause all kinds of trouble concerning the negation (not (some r d)) of this term. The negation of
this term would still be ∀R .¬D and not ¬C
 ∀R .¬D as suggested when (some r d) were encoded as
C � ∃R .D. So, a special treatment is necessary for these terms. But what if C � ∃R .D happens to be
a concept term used in the knowledge base itself? Then, the negation definitely would be ¬C
 ∀R .¬D.
In this case, the encoding procedure cannot guarantee the uniqueness of the encoding result (which is
essential for clash detection).

High Performance Reasoning with Very Large TBoxes 199

form ¬ana heart p � ∀ anatomical part of ana heart .⊥, lazy unfolding cannot be easily ap-
plied if an inclusion axiom for ana heart p � . . . also exists. Indeed, this is the case for
UMLS. Hence, in order to apply the topological sorting optimization, the incorporation of
domain restrictions into the tableaux calculus was necessary because all GCIs need to be
absorbed for topological sorting to be a valid optimization.

Note that, in principle, RACE also supports the absorption of GCIs of the form ¬A � C1

(but only if no inclusion axiom A � C2 or definition A
.
= C2 also exists). Some knowledge

bases can only be handled effectively when the absorption of GCIs of the form ¬A � C1 is
supported.

In contrast to domain restrictions, range restrictions for roles do not introduce disjunctions.
However, in a practical implementation it is advantageous to keep the number of internal
data structures to be managed as small as possible. Therefore, range restrictions ∀R . C
are only “considered” if an existential restriction for R or a subrole of R is imposed for a
certain individual i. These cases can also be easily detected.

11.4 Exploiting Disjointness Declarations

As has been discussed in [Baader et al., 1994a], it is important to derive told subsumers for
each concept name for marking and propagation processes. Besides told subsumers, RACE
exploits also the set of “told disjoint concepts”. In the ‘heart’ example presented above,
ana heart is computed as a told disjoint concept of ana heart p by examining inclusion
axioms. If it is known that a concept B is a subsumer of a concept A then A cannot be a
subsumee of the told disjoints of B. This kind of information is recorded (and propagated)
with appropriate non-subsumer marks (see [Baader et al., 1994a] for details about marking
and propagation operations) such that this information is not rediscovered with a model
merging or even a tableaux-based subsumption test. Exploiting disjointness information
has not been investigated in [Baader et al., 1994a].

Traversing the subsumption lattice is also needed for ABox realization. The idea is to
exploit disjointness information to speed-up the realization process as follows. Whenever
an instance checking test i :A returns ‘yes’, it is obvious that i cannot be an instance
of a concept that is a member of the set of told disjoint concepts of A. Thus, in the
subsumption lattice, the told disjoint concepts are marked accordingly and an instance
checking test for these concepts, which possibly involves an “expensive” ABox consistency
test, is not necessary. Since a large number of instance checking tests must be performed,
the exploitation of disjointness information is particularly effective for ABox realization
(see Section 10.7 and Figure 10.10 for experimental results).

11.5 Caching Policies

RACE supports different subtableaux caching policies (see also Section 10.2.3 for a discus-
sion of subtableaux caching). Two types of caches are provided which can be used together

200 High Performance Reasoning with Very Large TBoxes

or alternatively. Both cache types are accessed via keys constructed from a set of concepts
representing a subtableau. The first cache (called equal cache) contains entries about the
satisfiability status of a subtableaux already encountered. This cache only returns a hit if
the search key exactly matches (i.e. is equal to) the key of a known entry.

The second cache type consists of a pair of caches. One cache contains only entries for
satisfiable subtableaux while the other one stores unsatisfiable subtableaux. These caches
support queries concerning already encountered supersets and subsets of a given search key.
This technique was inspired by [Hoffmann and Köhler, 1999]. For the UMLS benchmarks
the (additional) equal cache had to be disabled in order to reduce space requirements.3

11.6 Empirical Results for TBox Classifications

The performance of the RACE system is evaluated with different versions of the UMLS
knowledge base and the ‘Galen’ TBoxes. UMLS-1 is a preliminary version that contains
many inconsistent concept names. UMLS-1 consists of approximately 100,000 concept
names and for almost all of them there exists a primitive concept definition A � C with
C not being �. In addition, in UMLS-1 80,000 role names are declared. Role names are
arranged in a hierarchy. UMLS-2 is a new version in which the reasons for the inconsis-
tencies have been removed. The version of UMLS-2 we used for our empirical tests uses
approximately 160,000 concept names and 80,000 roles.

Originally, the UMLS knowledge base has been developed with Loom 4.0 [MacGregor,
1994]. If Loom is given a cyclic definition for a certain concept, then Loom does not
classify this concept (and the concepts which use this concept). Due to Loom’s treatment
of cycles, in [Schulz and Hahn, 2000] the cycle-causing concepts are placed in a so-called
:implies clause, i.e. these restrictions are only asserted to individuals in an ABox via the
rule mechanism. For the same reason, the UMLS reconstruction uses :implies for domain
and range restrictions for roles, i.e. domain and range restrictions are only asserted in the
ABox.

With RACE, none of these pragmatic distinctions are necessary. However, in order to
mimic the Loom behavior and to test more than one TBox with RACE, for each of the
knowledge base versions, UMLS-1 and UMLS-2, three different subversions are generated
(indicated with letters a, b and c). Version ‘a’ uses axioms of the style presented above, i.e.
the :implies parts are omitted for TBox classification (and coherence checking). In version
‘b’ the :implies part of the Loom knowledge base is indeed considered for classification
by RACE. Thus, additional axioms of the following form are generated.

ana heart � ∃ has developmental fo . ana fetal heart � ∃ surrounded by . ana pericardium

3If the equal cache is enabled, it is the first reference. Only if an equal cache lookup fails, the superset
or the subset caches are consulted. All retrieval results from the superset or subset caches are also entered
into the equal cache.

High Performance Reasoning with Very Large TBoxes 201

10

20

30

40

50

60

70

80

Galen2 Galen1 Galen

Runtime in seconds

Setting 1
Setting 2
Setting 3
Setting 4

100

200

300

400

500

600

700

800

900

1000

1100

Runtime in seconds
for Mini-UMLS

Setting 1
Setting 2
Setting 3
Setting 4

(a) Galen TBoxes (b) Mini-UMLS TBox

Figure 11.1: Evaluation of the topological sorting and clustering techniques for selected
TBoxes (4 runs for each TBox; Setting 1: all optimizations enabled, Setting 2: clustering
disabled, Setting 3: topological sorting disabled, Setting 4: both topological sorting and
clustering disabled).

Version ‘c’ is the hardest version. Additional axioms provide domain and range restrictions
for roles. For example, the following axioms are generated for anatomical part of ana heart.

∃ anatomical part of ana heart .� � ana heart p

� � ∀ anatomical part of ana heart . ana heart

Figure 11.1a shows the evaluation result for the ‘Galen’ TBoxes. There is a minor variation
in the runtimes. The settings 2 and 4 are usually slower than setting 1. The improvement
for the Mini-UMLS TBox (see Figure 11.1b) which is a small fragment of the UMLS-2c
TBox (see below) is dramatic. Setting 4 is one order of magnitude slower than settings 1.
However, there is a smaller performance gain for the full UMLS TBoxes.

For the detailed UMLS performance evaluation six different TBoxes have been tested.
Without clustering and topological sorting, classifying UMLS-1a can be done in approxi-

202 High Performance Reasoning with Very Large TBoxes

0

20

40

60

80

100

120

UMLS-2a UMLS-2b UMLS-2c

Runtime in hours (timeout after 120 hours)

Setting 1
Setting 2
Setting 3
Setting 4

Figure 11.2: Evaluation of the topological sorting and clustering techniques for UMLS2 (4
runs for each TBox; Setting 1: all optimizations enabled, Setting 2: clustering disabled,
Setting 3: topological sorting disabled, Setting 4: both topological sorting and clustering
disabled).

mately 11 hours (1636 concepts are incoherent). With clustering and topological sorting
enabled, only 5.5 hours are necessary to compute the same result for UMLS-1a. The UMLS-
1b version requires 3.6 hours (with optimization) and 6.1 hours (without optimization).
The reason for the enhanced performance with more constraints is that in this version
already 47855 concepts are inconsistent. With domain and range restrictions added even
60246 concepts were classified as inconsistent. The computation times with RACE are
3.4 hours (with optimization) and 8.7 hours (without optimization). Up to 500 MBytes of
memory are required to compute the classification results. For UMLS-1, checking TBox
coherence (see above) requires approximately 10 minutes.

The new second version, UMLS-2, contains an additional part of the UMLS and, therefore,
is harder to deal with. Furthermore, there are no inconsistent concepts, i.e. classification
becomes even more difficult because there are much more nodes in the subsumption lattice.
In UMLS-1, due to the large number of inconsistent concepts, the subsumption lattice is
rather small because many concepts “disappear” as synonyms of the bottom concept. For
UMLS-2, checking TBox coherence (see above) requires between 15 and 50 minutes (2a:
16 mins, 2b: 19 mins, 2c: 51 mins).

High Performance Reasoning with Very Large TBoxes 203

UMLS Sorting Clustering Runtime NST (×106) MaxNC

2a on on 10:13 232 26,874
on off 25:06 2,341 ”
off on 22:40 1,256 ”
off off 31:26 2,796 ”

2b on on 10:11 232 26,874
on off 24:33 2,341 ”
off on 22:48 1,256 ”
off off 30:18 2,796 ”

2c on on 14:53 222 21,298
on off 40:54 3,723 ”
off on >120:00 ? ”
off off 61:18 5,814 ”

Figure 11.3: Evaluation of the classifications of the UMLS-2 knowledge bases (runtime is
given in hours : minutes, NST = number of subsumption tests, MaxNC = maximal number
of children).

Performance evaluations of the TBox classifications for UMLS-2 are presented in Figure
11.2 and 11.3. In order to provide a machine-independent evaluation, not only the runtimes
are given but also the number of subsumption tests. It should be noted that the tableaux
algorithm is needed only for computing pseudo models (see Section 10.6). In other words,
all subsumption tests are decided by deep model merging tests.

A comparison of setting 1 (both topological sorting and clustering enabled) and setting 2
(clustering disabled) reveals that clustering is a very effective optimization technique for
the UMLS-2 TBoxes. The runtimes for setting 2 increase at least by a factor of two, the
number of subsumption tests even by one order of magnitude. The result for setting 3
(topological sorting disabled) and UMLS-2a supports the fact that topological sorting is
also very effective or even essential. The runtimes also increase at least by a factor of two,
the number of subsumption test by a factor of 5. The runtime result for setting 3 and
UMLS-3c is caused by removed buckets. A bucket has to be removed if a member of this
bucket gets a new parent assigned. This situation4 is very likely if topological sorting is
disabled since named concepts will be selected in the “wrong” order for sorting them into
the subsumption hierarchy. This evaluation for setting 3 and UMLS-3c timed out after five
days of runtime. At this time only 80,000 of the 160,000 concepts had been sorted into the
subsumption hierarchy, i.e. the induced overhead due to “bucket thrashing” is dramatic.
One can expect an estimated runtime of at least ∼300 hours for this setting.

If, as in setting 4, both clustering and topological sorting are disabled, the runtimes increase
only to a limited extent compared to the settings 2-3. Moreover, according to the evaluation

4For instance, in setting 3 (topological sorting disabled) and UMLS-2b more than 60,000 buckets had
to be removed.

204 High Performance Reasoning with Very Large TBoxes

results, the UMLS-2b version does not require more computational resources than UMLS-
2a (see the discussion about :implies from above). Only the incorporation of domain
and range restrictions cause runtimes to increase. For UMLS-2 up to 800 MBytes of
main memory are required. For other benchmark TBoxes (e.g. Galen with approx. 3000
concepts) the results (see Figure 11.1a) demonstrate that there is no significant overhead
imposed by the clustering and a slight performance gain might be observed.

In summary, the results for the UMLS TBoxes clearly demonstrate that clustering is only
effective in conjunction with topological sorting establishing a quasi-definition order. The
work reported here indicates that sound and complete description logic systems can now
effectively deal with some instances of very large knowledge bases.

Part VI

Summary and Outlook

Summary and Outlook 207

The work reported in this monograph is based on two major lines of research, visual lan-
guages and description logics. For both areas we addressed theoretical as well as practical
aspects. In the following we summarize the advances achieved in both areas and outline
ongoing and future research.

We presented a new logic-based approach to visual language theory. It employs description
logic for the specification and recognition of diagrammatical notations. It was practically
applied in the generic editor GenEd offering tools for editing and parsing diagrams. The
advantages of this approach are its pure declarativeness, high expressiveness, and its meta-
reasoning capabilities.

We applied visual languages to spatial query languages in the GIS domain. This is exem-
plified by the development of a visual spatial query language demonstrating the advantages
of this approach. A query is described by a diagram showing an example configuration of
query elements. The diagrammatic query language naturally expresses spatial constraints
in form of spatial relationships between these elements. The query semantics is supported
by using a metaphor from “naive physics.” With this language we developed solutions for
typical problems with diagrammatical query languages. The explicitness of diagrams is
often a disadvantage. As a remedy we integrated into the query language means for ex-
pressing relaxations and “don’t cares” for spatial constraints. These issues were addressed
by the development of VISCO which partially implements this query language. A first pro-
posal for the logical specification of the semantics of parts of VISCO’s query language using
a decidable logic is presented in this monograph. This approach is based on the idea to
translate a diagram (or sketch) into a propositional form represented as an ALCRP(D)
ABox reflecting the spatial constraints given by such a diagram. We offered two solution
for query answering. An ABox can be either reduced to a concept term (via an abstraction
process) or it can be handled by ABox pattern mechanisms.

Our work on visual languages and examples for the GIS domain led us to investigate the
integration of spatial domains into description logics. Due to the lack of proper theories
and implementations we first pursued a simplistic approach with GenEd which used the
Classic system for TBox classification and ABox realization. The missing reasoning ca-
pabilities were emulated by the spatial (geometric) reasoning component of GenEd. The
derived spatial knowledge was asserted in the ABox using primitive roles. However, this
did not resolve the incompleteness w.r.t. to TBox and ABox reasoning. The practical
experience with VISCO and Classic showed that its ALEN -like DL, which offers no full
negation, no disjunction, and no qualified existential restriction, was too weak for appro-
priately describing diagrams or diagrammatic queries. This experience culminated in three
research topics for description logics, the integration of spatial reasoning, the development
of expressive DLs, and the design and evaluation of optimization techniques.

We advanced the research on integrating spatial reasoning into description logic theory in
several ways. As a first step we integrated reasoning about qualitative spatial relations
into a ALEN -like DL. This work was extended by developing the DL ALCRP(D) and

208 Summary and Outlook

proving the decidability of the ABox consistency problem for a syntactically restricted form
of ALCRP(D). The ALCRP(D) approach is based on the notion of concrete domains. It
provides general mechanisms for integrating reasoning about proper domains. Examples
for these domains were discussed in this monograph (e.g. R, S2) or elsewhere [Haarslev
et al., 1999b] (e.g. Allen). However, ALCRP(D) is only decidable if the corresponding
syntax restrictions are enforced. This definitely diminishes its applicability and makes
modeling much harder.

A first reasoner for ALCRP(D) was developed as a research prototype. Its evaluation
showed the need for extending optimization techniques to description logics with concrete
domains (e.g. ALC(D), ALCRP(D)). A first treatment adapted two major optimization
techniques, dependency-directed backtracking and model-merging and caching [Turhan,
2000; Turhan and Haarslev, 2000]. An implementation of these techniques and an empir-
ical evaluation of their effectiveness is left to future work. However, the development of
these optimization techniques already motivated the extension of ALCNHR+ by concrete
domains [Haarslev et al., 2000b].

Due to the syntactic restrictions for ALCRP(D) we decided to pursue alternative ap-
proaches. We are developing a DL without concrete domains but offering means for re-
flecting the semantics of qualitative spatial relations. As a first step the DL ALCRA was
proposed [Wessel et al., 2000]. It is motivated by the way how spatial calculi (e.g. RCC-8
[Randell et al., 1992]) usually describe the composition of relations. A so-called role box
in ALCRA partially reflects the information given by a composition table. Unfortunately,
the undecidability of the concept satisfiability problem for ALCRA− is shown in [Wessel,
2000]. The logic ALCRA− is a variant of ALCRA, where the requirement for the mutual
exclusiveness between the roles in a role box is removed and the existence of a universal
role is assumed. However, the decidability of ALCRA is an open problem. Furthermore,
in case the decidability of ALCRA can be proven, the integration of inverse roles into
ALCRA, which is necessary to fully resemble a composition table, is still unresolved.

As part of our second research topic, the development of expressive DLs, we showed that
the ABox consistency problem for ALCNHR+ is decidable. Based on the calculus given in
this proof we implemented the DL system RACE supporting TBox and ABox reasoning
for ALCNHR+ . RACE is also used as a testbed for evaluating optimization techniques
applicable to ALCNHR+ . RACE is available over the WWW and at the time of this
writing we have recorded hundreds of downloads. RACE is used in a research collaboration
with the University of Amsterdam (see [Areces et al., 1999]).

The third topic is concerned with the design and evaluation of optimization techniques
for TBox and ABox reasoning. As reported in the preceding chapters, we developed the
deep model merging and caching technique, new transformations on GCIs, a classification
order defined by topologically sorting named concepts, and a technique for clustering large
numbers of children in a TBox taxonomy. These techniques especially speed up the TBox
classification phase. We also developed the signature calculus which addresses the ineffi-
ciency caused by big numbers occurring in number restrictions. We are currently working
on a combination of the signature calculus and the techniques presented in [Ohlbach and

Summary and Outlook 209

Köhler, 1999]. A special lazy unfolding technique handles domain and range restrictions
for roles and avoids a naive treatment with GCIs.

The role path contraction technique transforms ABoxes into simpler ones that are seman-
tically equivalent. The transformation reduces the number of assertions and individuals
occurring in an ABox and replaces them with concept assertions. These assertions facil-
itate the usage of optimization techniques such as model merging, subtableaux caching,
etc. The individual model merging technique optimizes special forms of ABox consistency
tests usually occurring in the ABox realization phase.

In summary, this monograph has presented research about two areas, visual languages and
description logics, which have been considered as disjoint in the past. As part of this study,
we showed that both areas could give important impetus to each other. The application
of description logics to visual languages resulted in a new logic based theory for visual lan-
guages. The practical application of description logic systems proved the need to develop
more expressive description logics and corresponding optimization techniques. This ex-
perience initiated the development of the description logics ALCRP(D) and ALCNHR+ .
The design, implementation, and empirical evaluation of optimization techniques within
the RACE architecture resulted also from this experience. The DL system RACE was
presented whose architecture is based on optimization techniques covering almost all as-
pects of the description logic ALCNHR+ . We do hope that the findings reported in this
monograph allow further advances in related research areas.

Bibliography

Abel, D. and Ooi, B., editors (1993). Advances in Spatial Databases, Third International
Symposium, SSD’93, Singapore, June 23-25, 1993, volume 692 of Lecture Notes in
Computer Science. Springer Verlag, Berlin.

Aiello, L., Doyle, J., and Shapiro, S., editors (1996). Fifth International Conference on
Principles of Knowledge Representation, Cambridge, Mass., Nov. 5-8, 1996.

Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843.

Areces, C., Bouma, W., and de Rijke, M. (1999). Description logics and feature interaction.
In Proc. of International Workshop on Description Logics, Linköping, Sweden, pages
28–32.

Baader, F., Franconi, E., Hollunder, B., Nebel, B., and Profitlich, H. (1994a). An em-
pirical analysis of optimization techniques for terminological representation systems
or: Making KRIS get a move on. Applied Artificial Intelligence. Special Issue on
Knowledge Base Management, 4:109–132.

Baader, F., Franconi, E., Hollunder, B., Nebel, B., and Profitlich, H. (1994b). An empirical
analysis of optimization techniques for terminological representation systems. Applied
Intelligence, 2(4):109–138.

Baader, F. and Hanschke, P. (1991). A scheme for integrating concrete domains into
concept languages. In Twelfth International Conference on Artificial Intelligence,
Darling Harbour, Sydney, Australia, Aug. 24-30, 1991, pages 452–457.

Baader, F. and Hollunder, B. (1995a). Embedding defaults into terminological representa-
tion systems. J. Automated Reasoning, 14:149–180.

Baader, F. and Hollunder, B. (1995b). Priorities on defaults with prerequisites, and their
application in treating specificity in terminological default logic. J. Automated Rea-
soning, 15:41–68.

Baader, F., Hollunder, B., Nebel, B., Profitlich, H., and Franconi, E. (1992). An empiri-
cal analysis of optimization techniques for terminological representation systems, or:

211

212 Bibliography

Making KRIS get a move on. In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning, KR-92, pages 270–281,
Boston (USA).

Baader, F. and Sattler, U., editors (2000). Proceedings of the International Workshop on
Description Logics (DL’2000), August 17 - August 19, 2000, Aachen, Germany.

Bennett, B. (1995). Modal logics for qualitative spatial reasoning. Bull. of the IGPL,
3:1–22.

Borgida, A. (1995). Description logics in data management. IEEE Transactions on Knowl-
edge and Data Engineering, 7(5):671–682.

Borgida, A., Isbell, C., and McGuinness, D. (1996). Reasoning with black boxes: Handling
test concepts in classic. In [Padgham et al., 1996], pages 87–91. Technical Report
WS-96-05.

Borgida, A. and Patel-Schneider, P. (1994). A semantics and complete algorithm for sub-
sumption in the CLASSIC description logic. Journal of Artificial Intelligence Research,
1:277–308.

Borgo, S., Guarino, N., and Masolo, C. (1996). A pointless theory of space based on strong
connection and congruence. In [Aiello et al., 1996], pages 220–229.

Brachman, R. (1992). “Reducing” CLASSIC to practice: Knowledge representation the-
ory meets reality. In Principles of Knowledge Representation and Reasoning, Third
International Conference, Cambridge, Mass., Oct. 25-29, 1992, pages 247–258.

Brachman, R., McGuinness, D., Patel-Schneider, P., Resnick, L., and Borgida, A. (1991).
Living with CLASSIC: When and how to use a KL-ONE-like language. In [Sowa,
1991], pages 401–456.

Brachman, R. and Schmolze, J. (1985). An overview of the KL-ONE knowledge represen-
tation system. Cognitive Science, pages 171–216.

Buchheit, M., Donini, F., and Schaerf, A. (1993). Decidable reasoning in terminologi-
cal knowledge representation systems. In Proceedings of the 13th International Joint
Conference on Artificial Intelligence, IJCAI-93, pages 704–709, Chambery (France).

Calcinelli, D. and Mainguenaud, M. (1994). Cigales, a visual query language for a geo-
graphical information system: the user interface. Journal of Visual Languages and
Computing, 5(2):113–132.

Catarci, T., Costabile, M., Levialdi, S., and Batini, C. (1997). Visual query systems for
databases: A survey. Journal of Visual Languages and Computing, 8(2):215–260.

Bibliography 213

Citrin, W., Doherty, M., and Zorn, B. (1994). Formal semantics of control in a completely
visual programming language. In [VL’94, 1994], pages 208–215.

Clarke, B. (1981). A calculus of individuals based on ‘connection’. Notre Dame Journal of
Formal Logic, 22(3):204–218.

Clarke, B. (1985). Individuals and points. Notre Dame Journal of Formal Logic, 26(1):204–
218.

Clementini, E. and Di Felice, P. (1997). Approximate topological relations. International
Journal of Approximate Reasoning, 16:173–204.

Clementini, E., Di Felice, P., and van Oosterom, P. (1993). A small set of formal topological
relationships suitable for end-user interaction. In [Abel and Ooi, 1993], pages 277–295.

Cohn, A. (1997). Qualitative spatial representation and reasoning techniques. In Brewka,
G., Habel, C., and Nebel, B., editors, Proceedings, KI-97: Advances in Artificial Intel-
ligence, 21st Annual German Conference on Artificial Intelligence, Freiburg, Germany,
volume 1303 of Lecture Notes in Artificial Intelligence, pages 1–30. Springer Verlag,
Berlin.

Cohn, A., Bennett, B., Gooday, J., and Gotts, N. (1997). Representing and reasoning with
qualitative spatial relations. In [Stock, 1997], pages 97–134.

Cohn, A., Giunchiglia, F., and Selman, B., editors (2000). Proceedings of Seventh In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR’2000), Breckenridge, Colorado, USA, April 11-15, 2000.

Cohn, A. and Gooday, J. (1994). Defining the syntax and the semantics of a visual pro-
gramming language in a spatial logic. In AAAI-94, Spatial and Temporal Reasoning
Workshop.

Cohn, T., Schubert, L., and Shapiro, S., editors (1998). Proceedings of Sixth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR’98),
Trento, Italy, June 2-5, 1998.

Costagliola, G., Tomita, M., and Chang, S. (1991). A generalized parser for 2-D languages.
In 1991 IEEE Workshop on Visual Languages, Kobe, Japan, Oct. 8-11, pages 98–104.
IEEE Computer Society Press, Los Alamitos.

Crimi, C., Guercio, A., Nota, G., Pacini, G., Tortora, G., and Tucci, M. (1991). Relation
grammars and their application to multi-dimensional languages. Journal of Visual
Languages and Computing, 2(4):333–346.

De Giacomo, G. and Lenzerini, M. (1996). TBox and ABox reasoning in expressive de-
scription logics. In [Aiello et al., 1996].

214 Bibliography

Del Bimbo, A., Vicario, E., and Zingoni, D. (1994). A spatial logic for symbolic description
of image contents. Journal of Visual Languages and Computing, 5(3):267–286.

Egenhofer, M. (1991). Reasoning about binary topological relations. In Günther, O. and
Schek, H.-J., editors, Advances in Spatial Databases, Second Symposium, SSD’91,
Zurich, Aug. 28-30, 1991, volume 525 of Lecture Notes in Computer Science, pages
143–160. Springer Verlag, Berlin.

Egenhofer, M. (1992). Why not SQL! International Journal on Geographical Information
Systems, 6(2):71–85.

Egenhofer, M. (1996). Spatial-query-by-sketch. In [VL’96, 1996], pages 60–67.

Egenhofer, M. (1997). Query processing in spatial-query-by-sketch. Journal of Visual
Languages and Computing, 8(4):403–424.

Franconi et al., E., editor (1998). Proceedings of the International Workshop on Description
Logics (DL’98), June 6-8, 1998, Trento, Italy.

Freeman, J. (1995). Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, Computer and Information Science.

Glasgow, J., Narayanan, N., and Chandrasekaran, B., editors (1995). Diagrammatic Rea-
soning: Cognitive and Computational Perspectives. AAAI Press / The MIT Press,
Menlo Park.

Golin, E. (1991). Parsing visual languages with picture layout grammars. Journal of Visual
Languages and Computing, 2(4):371–393.

Gooday, J. and Cohn, A. (1996). Using spatial logic to describe visual programming
languages. Artificial Intelligence Review, 10:171–186.

Göttler, H. (1989). Graph grammars, a new paradigm for implementing visual languages.
In Rewriting Techniques and Applications, 3rd International Conference, RTA-89, 3-5
April 1989, Chapel Hill, NC, pages 152–166. Springer Verlag, Berlin.

Graf, M. (1990). Visual programming and visual languages: Lessons learned in the trenches.
In Visual Programming Environments: Applications and Issues, pages 452–454, Los
Alamitos, California. IEEE Computer Society Press.

Grigni, M., Papadias, D., and Papadimitriou, C. (1995). Topological inference. In Mellish,
C., editor, Fourteenth International Joint Conference on Artificial Intelligence, Mon-
treal, Quebec, Canada, Aug. 20-25, 1995, pages 901–906.

Haarslev, V. (1995). Formal semantics of visual languages using spatial reasoning. In
[VL’95, 1995], pages 156–163.

Bibliography 215

Haarslev, V. (1996a). A fully formalized theory for describing visual notations (extended
abstract). In Proceedings of the International Workshop on Theory of Visual Lan-
guages, held in conjunction with AVI’96, May 30, 1996, Gubbio, Italy. 9 pages.

Haarslev, V. (1996b). Using description logic for reasoning about diagrammatical notations.
In [Padgham et al., 1996], pages 124–128. Technical Report WS-96-05.

Haarslev, V. (1998a). A fully formalized theory for describing visual notations. In [Marriott
and Meyer, 1998b], pages 261–292.

Haarslev, V. (1998b). A logic-based formalism for reasoning about visual representations
(extended abstract). In Proceedings, AAAI Workshop on Formalizing Reasoning with
Visual and Diagrammatic Representations, AAAI Fall Symposium Series 1998, Oc-
tober 23-25, Orlando, Florida/USA. Technical Report FS-98-04, pages 57–66. AAAI
Press.

Haarslev, V. (1999). A logic-based formalism for reasoning about visual representations.
Journal of Visual Languages and Computing, 10(4):421–445.

Haarslev, V., Horrocks, I., Möller, R., and Patel-Schneider, P. (1999a). DL Benchmark
Suite. Available at URL http://kogs-www.informatik.uni-hamburg.de/˜moeller/dl-
benchmark-suite.html.

Haarslev, V., Lutz, C., and Möller, R. (1998a). Foundations of spatioterminological rea-
soning with description logics. In [Cohn et al., 1998], pages 112–123.

Haarslev, V., Lutz, C., and Möller, R. (1999b). A description logic with concrete domains
and a role-forming predicate operator. Journal of Logic and Computation, 9(3):351–
384.

Haarslev, V. and Möller, R. (1997a). SBox: A qualitative spatial reasoner—progress report.
In Ironi, L., editor, 11th International Workshop on Qualitative Reasoning, Cortona,
Tuscany, Italy, June 3-6, 1997, Pubblicazioni N. 1036, Istituto di Analisi Numerica
C.N.R. Pavia (Italy), pages 105–113.

Haarslev, V. and Möller, R. (1997b). Spatioterminological reasoning: Subsumption based
on geometrical inferences. In [Rousset et al., 1997], pages 74–78.

Haarslev, V. and Möller, R. (1999a). Applying an ALC ABox consistency tester to
modal logic SAT problems. In Murray, N. V., editor, Proceedings, International
Conference on Automatic Reasoning with Analytic Tableaux and Related Methods,
TABLEAUX’99, Saratoga Springs, NY, USA, number 1617 in Lecture Notes in Arti-
ficial Intelligence, pages 24–28. Springer Verlag, Berlin.

Haarslev, V. and Möller, R. (1999b). An empirical evaluation of optimization strategies
for ABox reasoning in expressive description logics. In [Lambrix et al., 1999], pages
115–119.

216 Bibliography

Haarslev, V. and Möller, R. (1999c). Expressive ABox reasoning with number restrictions,
role hierarchies, and transitively closed roles. Technical Report FBI-HH-M-288/99,
University of Hamburg, Computer Science Department. Available at URL http://kogs-
www.informatik.uni-hamburg.de/˜haarslev/publications/report-FBI-288-99.ps.gz.

Haarslev, V. and Möller, R. (1999d). RACE system description. In [Lambrix et al., 1999],
pages 130–132.

Haarslev, V. and Möller, R. (1999e). RACE System Download Page. Available at URL
http://kogs-www.informatik.uni-hamburg.de/˜race/.

Haarslev, V. and Möller, R. (2000a). Consistency testing: The RACE experience. In
Dyckhoff, R., editor, Proceedings, Automated Reasoning with Analytic Tableaux and
Related Methods, University of St Andrews, Scotland, 4-7 July, 2000, pages 57–61.
Springer Verlag, Berlin.

Haarslev, V. and Möller, R. (2000b). Expressive ABox reasoning with number restrictions,
role hierarchies, and transitively closed roles. In [Cohn et al., 2000], pages 273–284.

Haarslev, V. and Möller, R. (2000c). High performance reasoning with very large knowledge
bases. In [Baader and Sattler, 2000], pages 143–152.

Haarslev, V. and Möller, R. (2000d). Optimizing TBox and ABox reasoning with pseudo
models. In [Baader and Sattler, 2000], pages 153–162.

Haarslev, V., Möller, R., and Schröder, C. (1994). Combining spatial and terminological
reasoning. In Nebel, B. and Dreschler-Fischer, L., editors, KI-94: Advances in Arti-
ficial Intelligence – Proc. 18th German Annual Conference on Artificial Intelligence,
Saarbrücken, Sept. 18–23, 1994, volume 861 of Lecture Notes in Artificial Intelligence,
pages 142–153. Springer Verlag, Berlin.

Haarslev, V., Möller, R., and Tobies, S. (2000a). Signature calculus: Optimizing reasoning
with number restrictions. In preparation.

Haarslev, V., Möller, R., and Turhan, A.-Y. (1998b). HAM-ALC. In [Franconi et al.,
1998], pages 64–65. Benchmark results for DL’98 comparison.

Haarslev, V., Möller, R., and Turhan, A.-Y. (1998c). Implementing an ALCRP(D) ABox
reasoner: Progress report. In [Franconi et al., 1998], pages 82–86.

Haarslev, V., Möller, R., and Turhan, A.-Y. (1999c). RACE user’s guide and reference
manual version 1.1. Technical Report FBI-HH-M-289/99, University of Hamburg,
Computer Science Department. Available at URL http://kogs-www.informatik.uni-
hamburg.de/˜haarslev/publications/report-FBI-289-99.ps.gz.

Haarslev, V., Möller, R., and Wessel, M. (1999d). On specifying semantics of visual spatial
query languages. In [VL’99, 1999], pages 4–11.

Bibliography 217

Haarslev, V., Möller, R., and Wessel, M. (2000b). The description logic ALCNHR+ ex-
tended with concrete domains: Revised version. Technical Report FBI-HH-M-290/00,
University of Hamburg, Computer Science Department.

Haarslev, V., Möller, R., and Wessel, M. (2000c). Visual spatial query languages: A
semantics using description logics. In [Olivier et al., 2000]. In print.

Haarslev, V. and Wessel, M. (1996). GenEd—an editor with generic semantics for formal
reasoning about visual notations. In [VL’96, 1996], pages 204–211.

Haarslev, V. and Wessel, M. (1997). Querying GIS with animated spatial sketches. In
1997 IEEE Symposium on Visual Languages, Capri, Italy, Sep. 23-26, pages 197–204.
IEEE Computer Society Press, Los Alamitos.

Hanschke, P. (1996). A Declarative Integration of Terminological, Constraint-based, Data-
driven, and Goal-directed Reasoning. Infix, Sankt Augustin.

Helm, R. and Marriott, K. (1991). A declarative specification and semantics for visual
languages. Journal of Visual Languages and Computing, 2(4):311–331.

Hoffmann, J. and Köhler, J. (1999). A new method to query and index sets. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence IJCAI-99,
pages 462–467. Morgan-Kaufmann Publishers.

Hollunder, B. (1994). Algorithmic Foundations of Terminological Knowledge Represen-
tation Systems. PhD thesis, University of Saarbrücken, Department of Computer
Science.

Hollunder, B. and Baader, F. (1991). Qualifying number restrictions in concept languages.
In Allen, J., Fikes, R., and Sandewall, E., editors, Second International Conference
on Principles of Knowledge Representation, Cambridge, Mass., April 22-25, 1991,
pages 335–346. A detailed version appeared as DFKI Research Report RR-91-03,
Kaiserslautern.

Horrocks, I. (1997). Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester.

Horrocks, I. (1998). Using an expressive description logic: FaCT or fiction? In [Cohn
et al., 1998], pages 636–647.

Horrocks, I. and Patel-Schneider, P. (1999). Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267–293.

Horrocks, I. and Sattler, U. (1999). A description logic with transitive and inverse roles
and role hierarchies. Journal of Logic and Computation, 9(3):385–410.

218 Bibliography

Horrocks, I., Sattler, U., and Tobies, S. (1999). Practical reasoning for expressive descrip-
tion logics. In Ganzinger, H., McAllester, D., and Voronkov, A., editors, Proceedings of
the 6th International Conference on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag.

Horrocks, I., Sattler, U., and Tobies, S. (2000a). Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239–264.

Horrocks, I., Sattler, U., and Tobies, S. (2000b). Reasoning with individuals for the descrip-
tion logic SHIQ. In MacAllester, D., editor, Proceedings of the 17th International
Conference on Automated Deduction (CADE-17), Lecture Notes in Computer Science,
Germany. Springer Verlag.

Horrocks, I. and Tobies, S. (2000). Reasoning with axioms: Theory and practice. In [Cohn
et al., 2000], pages 285–296.

Kahn, K. and Saraswat, V. (1990). Complete visualizations of concurrent programs and
their executions. In 1990 IEEE Workshop on Visual Languages, Skokie, Illinois, Oct.
4-6, pages 7–14. IEEE Computer Society Press, Los Alamitos.

Kahn, K., Saraswat, V., and Haarslev, V. (1991). Pictorial Janus: A Completely Visual
Programming Language and its Environment (in German). In Encarnacao, J., editor,
GI-Fachgespräch Programmieren multimedialer Anwendungen der GI-Jahrestagung
1991, Darmstadt, Oktober 1991, pages 427–436. Springer Verlag, Berlin.

Lambrix et al., P., editor (1999). Proceedings of the International Workshop on Description
Logics (DL’99), July 30 - August 1, 1999, Linköping, Sweden.

Lange, H. and Schröder, C. (1994). Analysis and interpretation of changes in aerial images:
Knowledge interpretation and spatial reasoning. In Ebner, H., Heipke, C., and Eder,
K., editors, ISPRS Commision III Symposium – Spatial Information from Digital
Photogrammetry and Computer Vision, Munich, Germany, Sep. 5–9, 1994, volume 30
of International Archives of Photogrammetry and Remote sensing, pages 475–482.

Lee, Y. and Chin, F. (1995). An iconic query language for topological relationships in GIS.
International Journal on Geographical Information Systems, 9(1):25–46.

Lemon, O. (1996). Semantical foundations of spatial logics. In [Aiello et al., 1996], pages
212–219.

Lewis, H. and Papadimitriou, C. (1981). Elements of the Theory of Computation. Prentice-
Hall, Englewood Cliffs, New Jersey.

Lutz, C., Haarslev, V., and Möller, R. (1997). A concept language with role-forming
predicate restrictions. Technical Report FBI-HH-M-276/97, University of Hamburg,
Computer Science Department.

Bibliography 219

Lutz, C. and Möller, R. (1997). Defined topological relations in description logics. In
[Rousset et al., 1997], pages 15–19.

MacGregor, R. (1994). A description classifier for the predicate calculus. In Proc. of the
Twelfth National Conference on Artificial Intelligence, AAAI-94, pages 213–220.

Marriott, K. (1994). Constraint multiset grammars. In [VL’94, 1994], pages 118–125.

Marriott, K. and Meyer, B. (1997). On the classification of visual languages by grammar
hierarchies. Journal of Visual Languages and Computing, 8(4):375–402.

Marriott, K. and Meyer, B. (1998a). The CCMG visual language hierarchy. In [Marriott
and Meyer, 1998b], pages 129–169.

Marriott, K. and Meyer, B., editors (1998b). Visual Language Theory. Springer Verlag,
Berlin.

Marriott, K., Meyer, B., and Wittenberg, K. (1998). A survey of visual language specifi-
cation and recognition. In [Marriott and Meyer, 1998b], pages 5–85.

McCray, A, T. and Nelson, S. (1995). The representation of meaning in the UMLS. Methods
of Information in Medicine, 34(1/2):193–201.

Meyer, B. (1992). Pictures depicting pictures: On the specification of visual languages by
visual grammars. In 1992 IEEE Workshop on Visual Languages, Seattle, Washington,
Sept. 15-18, pages 41–47. IEEE Computer Society Press, Los Alamitos.

Meyer, B. (1994). Pictorial deduction in spatial information systems. In [VL’94, 1994],
pages 23–30.

Meyer, B. (1997). Formalization of visual mathematical notations. In Proceedings of AAAI
Symposium on Diagrammatic Reasoning, Boston/MA, pages 23–30.

Möller, R., Haarslev, V., and Lutz, C. (1997). Spatioterminological reasoning based on geo-
metric inferences: The ALCRP(D) approach. Technical Report FBI-HH-M-277/97,
University of Hamburg, Computer Science Department.

Möller, R., Haarslev, V., and Neumann, B. (1998). Semantics-based information retrieval.
In Proceedings of IT&KNOWS-98: International Conference on Information Technol-
ogy and Knowledge Systems, 31. August- 4. September, Vienna, Budapest, 1998, pages
48–61.

Möller, R. and Wessel, M. (1999). Terminological default reasoning about spatial infor-
mation: A first step. In Proc. of COSIT’99, International Conference on Spatial
Information Theory, Stade, pages 172–189. Springer Verlag, Berlin.

220 Bibliography

Najork, M. and Kaplan, S. (1993). Specifying visual languages with conditional set rewrite
systems. In 1993 IEEE Symposium on Visual Languages, Bergen, Norway, Aug. 24-27,
pages 12–17. IEEE Computer Society Press, Los Alamitos.

Ohlbach, H. and Köhler, J. (1999). Modal logics, description logics and arithmetic reason-
ing. Journal of Artificial Intelligence, 1-2:1–31.

Olivier, P., Anderson, M., and Meyer, B., editors (2000). Diagrammatic Representation
and Reasoning. Springer Verlag, Berlin. In print.

Padgham et al., L., editor (1996). Proceedings of the International Workshop on Descrip-
tion Logics, Nov. 2-4, 1996, Cambridge, Massachusetts. AAAI Press, Menlo Park.
Technical Report WS-96-05.

Pratt, I. and Lemon, O. (1997). Ontologies for plane, polygonal mereotopology. Notre
Dame Journal of Formal Logic, 2(38):225–245.

Pratt, I. and Schoop, D. (1997). A complete axiom system for polygonal mereotopology of
the real plane. Technical Report UMCS-97-2-2, University of Manchester, Department
of Computer Science.

Prien, C. (1998). Anwendung der Least-Common-Subsumer-Methode zur Bestimmung von
Ähnlichkeiten beim Information-Retrieval mit Beschreibungslogiken. Master’s thesis,
Fachbereich Informatik, Universität Hamburg.

Randell, D., Cui, Z., and Cohn, A. (1992). A spatial logic based on regions and connec-
tions. In Nebel, B., Rich, C., and Swartout, W., editors, Principles of Knowledge
Representation and Reasoning, Cambridge, Mass., Oct. 25-29, 1992, pages 165–176.
Morgan Kaufman.

Reiter, R. and Mackworth, A. (1989). A logical framework for depiction and image inter-
pretation. Artificial Intelligence, 41:125–155.

Rekers, J. and Schürr, A. (1995). A graph grammar approach to graphical parsing. In
[VL’95, 1995], pages 195–202.

Rousset et al., M.-C., editor (1997). Proceedings of the International Workshop on Descrip-
tion Logics, DL’97, Sep. 27-29, 1997, Gif sur Yvette, France. Universite Paris-Sud,
Paris.

Russ, T., MacGregor, R., Salemi, B., Price, K., and Nevatia, R. (1996). Veil: Combin-
ing semantic knowledge with image understanding. In ARPA Image Understanding
Workshop.

Sattler, U. (1996). A concept language extended with different kinds of transitive roles.
In Görz, G. and Hölldobler, S., editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence, pages 333–345.
Springer Verlag, Berlin.

Bibliography 221

Schild, K. (1991). A correspondence theory for terminological logics: Preliminary report. In
Twelfth International Conference on Artificial Intelligence, Darling Harbour, Sydney,
Australia, Aug. 24-30, 1991, pages 466–471.

Schmidt-Schauss, M. and Smolka, G. (1991). Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26.

Schröder, C. (1998). Bildinterpretation durch Modellkonstruktion: Eine Theorie zur rech-
nergestützten Analyse von Bildern. Dissertation, Universität Hamburg.

Schröder, C. and Neumann, B. (1996). On the logics of image interpretation: Model-
construction in a formal knowledge-representation framework. In Proceedings of the
1996 IEEE International Conference on Image Processing ICIP-96, Lausanne, Sep-
tember 16-19, 1996, volume 2, pages 785–788. IEEE Computer Society Press, Los
Alamitos.

Schulz, S. and Hahn, U. (2000). Knowledge engineering by large-scale knowledge reuse –
Experience from the medical domain. In Cohn, A., Giunchiglia, F., and Selman, B.,
editors, Proceedings of the Seventh International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’2000), Breckenridge, Colorado, USA, 2000,
pages 601–610. Morgan Kaufmann.

Serrano, J. (1995). The use of semantic constraints on diagram editors. In [VL’95, 1995],
pages 211–216.

Shin, S.-J. (1994). The Logical Status of Diagrams. Cambridge University Press, Cam-
bridge.

Soffer, A. and Samet, H. (1998). Pictorial query specification for browsing through spatially
referenced image databases. Journal of Visual Languages and Computing, 9(6):567–
596.

Sommerville, I. (1995). Software Engineering. Addison-Wesley, 5. edition.

Sowa, J., editor (1991). Principles of Semantic Networks: Explorations in the Representa-
tion of Knowledge. Morgan Kaufmann Publishers, San Mateo.

Spanier, E. (1966). Algebraic Topology. McGraw-Hill Book Company, New York.

Stock, O., editor (1997). Spatial and Temporal Reasoning. Kluwer Academic Publishers,
Dordrecht.

Tarski, A. (1951). A Decision Method for Elementary Algebra and Geometry. University
of California Press, Berkeley, CA.

Tessaris, S. and Gough, G. (1999). ABox reasoning with transitive roles and axioms. In
[Lambrix et al., 1999], pages 101–104.

222 Bibliography

Turhan, A.-Y. (1998). Design and implementation of description logic provers for ALC(D)
and ALCRP(D) (in german). Bachelors Thesis (Studienarbeit).

Turhan, A.-Y. (2000). Optimization methods for the satisfiability test for description
logics with concrete domains (in German). Master’s thesis, University of Hamburg,
Computer Science Department.

Turhan, A.-Y. and Haarslev, V. (2000). Adapting optimization techniques to description
logics with concrete domains. In [Baader and Sattler, 2000], pages 247–256.

VL’94 (1994). 1994 IEEE Symposium on Visual Languages, St. Louis, Missouri, Oct. 4-7.
IEEE Computer Society Press, Los Alamitos.

VL’95 (1995). 1995 IEEE Symposium on Visual Languages, Darmstadt, Germany, Sep.
5-9. IEEE Computer Society Press, Los Alamitos.

VL’96 (1996). 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, USA, Sep.
3-6. IEEE Computer Society Press, Los Alamitos.

VL’99 (1999). 1999 IEEE Symposium on Visual Languages, Tokyo, Japan, Sep. 13-16.
IEEE Computer Society Press, Los Alamitos.

Wang, D. and Lee, J. (1993a). Pictorial concepts and a concept-supporting graphical
system. Journal of Visual Languages and Computing, 4(2):177–199.

Wang, D. and Lee, J. (1993b). Visual reasoning: its formal semantics and applications.
Journal of Visual Languages and Computing, 4(4):327–356.

Wang, D., Lee, J., and Zeevat, H. (1995). Reasoning with diagrammatic representations.
In [Glasgow et al., 1995], pages 339–393.

Wessel, M. (1996). Development of a concept-oriented generic graphic editor in Common
Lisp (in German). Bachelor’s Thesis (Studienarbeit).

Wessel, M. (1998). A visual language for defining (planar) spatial constellations (in Ger-
man). Master’s thesis, University of Hamburg, Computer Science Department.

Wessel, M. (2000). Obstacles on the way to spatial reasoning with description logics: Unde-
cidability of ALCRA−. Technical Report FBI-HH-M-297/00, University of Hamburg,
Computer Science Department.

Wessel, M. and Haarslev, V. (1998). VISCO: Bringing visual spatial querying to reality.
In 1998 IEEE Symposium on Visual Languages, Halifax, Canada, Sep. 1-4, pages
170–177. IEEE Computer Society Press, Los Alamitos.

Wessel, M., Haarslev, V., and Möller, R. (2000). ALCRA – ALC with role axioms. In
[Baader and Sattler, 2000], pages 267–276.

Bibliography 223

Wittenburg, K. (1993). Adventures in multi-dimensional parsing: Cycles and disorders.
In 1993 International Workshop on Parsing Technologies, Tilburg, Netherlands and
Durbuy, Belgium, Aug. 8-10.

Wittenburg, K., Weitzman, L., and Talley, J. (1991). Unification-based grammars and
tabular parsing for graphical languages. Journal of Visual Languages and Computing,
2(4):347–370.

Woods, W. and Schmolze, J. (1992). The KL-ONE family. In Lehmann, F., editor,
Semantic Networks in Artificial Intelligence, pages 133–177. Pergamon Press, Oxford.

Appendix A

Verifying Satisfiability in ALCRP(D):
An Extended Example

We illustrate the satisfiability problem for an ALCRP(S2) concept with the example from
Section 7.4.1. In order to prove that the concept unknown is subsumed by hh border district,
the tableaux prover constructs an initial ABox and derives that every ABox in the set of
ABoxes obtained by applying a set of rules will be “obviously contradictory,” i.e. it will
contain a clash. The rules are described in detail in [Haarslev et al., 1999b]. For the
reader’s convenience they are repeated in Appendix B. Note that the rules can be applied
in arbitrary order but in the following we rely on an manually defined ordering.

We start with the ABox A1 and expand in ABox A2 the concept names from ABox A1.

A1 :=
{
x : unknown � ¬hh border district

}

A2 :=

x : district of hh � ∃ is spatially related . federal state hh �
∃ is touching . federal state sh �
¬(district of hh � ∃ is t inside . federal state hh)

If we fully expand the concept terms, we get the following ABox.

A3 :=

x : ∃ has area . g insidep2

� ∃ has area .¬equalp2
�

∃ is spatially related .∃ has area . equalp2
�

∃ is touching .∃ has area . equalp4
�

¬(∃ has area . g insidep2
� ∃ has area .¬equalp2

�
∃ is t inside .∃ has area . equalp2

)

Then, we transform this ABox in negation normal form.

225

226 Verifying Satisfiability in ALCRP(D): An Extended Example

A4 :=

x : ∃ has area . g insidep2

� ∃ has area .¬equalp2
�

∃ is spatially related .∃ has area . equalp2
�

∃ is touching .∃ has area . equalp4
�

(∃ has area .¬g insidep2

 ∀ has area .�
 ∃ has area . equalp2

∀ is t inside . (∃ has area .¬equalp2

 ∀ has area .�))

We already proved that the TBox containing the axioms introduced in Section 7.4.1 com-
plies to the restrictedness criterion. Therefore, the ABox A4 is based on a restricted ter-
minology and we are allowed to apply the ABox rules of the calculus for ALCRP(D) (see
Appendix B). First, we apply the and rule (R�) and get the ABox A6. For convenience
we use an auxiliary ABox A5.

A5 :=

x : ∃ has area . g insidep2

x : ∃ has area .¬equalp2

x : ∃ is spatially related .∃ has area . equalp2

x : ∃ is touching .∃ has area . equalp4

A6 := A5 ∪

x : (∃ has area .¬g insidep2

 ∀ has area .�

∃ has area . equalp2

∀ is t inside . (∃ has area .¬equalp2

 ∀ has area .�))

Afterwards we obtain four alternative ABoxes (A7 -A10) by resolving the disjunctions in
ABox A6 and by applying the exists-in over predicates rule (R∃P) and/or the all rule
(R∀C).

A7 := A5 ∪
{

x : ∃ has area .¬g insidep2

(x, q2) : has area, q2 : g insidep2
, q2 : ¬g insidep2

}
The ABox A7 contains a concrete domain clash because the concrete individual q2 can not
satisfy the conjunction (g insidep2

∧ ¬g insidep2
).

A8 := A5 ∪
{

x : ∀ has area .�
(x, q2) : has area, q2 : g insidep2

, q2 : �

}
The ABox A8 contains an all domain clash because the concrete individual q2 can not be
a member of both the abstract (�) and the concrete (e.g. g insidep2

) domain.

A9 := A5 ∪
{

x : ∃ has area . equalp2

(x, q2) : has area, q2 : ¬equalp2
, q2 : equalp2

}
The ABox A9 contains a concrete domain clash because the concrete individual q2 can not
satisfy the conjunction (equalp2

∧ ¬equalp2
).

A10 := A5 ∪
{
x : ∀ is t inside . (∃ has area .¬equalp2

 ∀ has area .�)
}

Verifying Satisfiability in ALCRP(D): An Extended Example 227

equalequal

touchingspatially-related

p2 p4

has-
area

has-
area

has-
area

q1 q2 q3

x yz

g_inside,
¬ equal

Figure A.1: Initial constraint network corresponding to ABox A12. For symmetric relations
the arrows point in both directions. Inverse relations have been omitted.

The ABox A10 is subject to further rule application. The exists-in over predicates rule
(R∃P) and the role-forming exists-in over predicates rule (Rr∃P) are applied and they cre-
ate two abstract domain individuals y and z such that z is a filler of the role is spatially related
and y is a filler of is touching. Three concrete domain individuals q2, q3, and q1 are also
created that are associated with their corresponding abstract individuals via the attribute
has area. The rules also establish spatial relations that have to hold between concrete
individuals. After firing all applicable rules except the choose rule (RChoose), we get
ABox A12 whose spatial constraints are illustrated in Figure A.1. For convenience we use
an auxiliary ABox A11.

A11 := A5 ∪

(x, q2) : has area, q2 : g insidep2
, q2 : ¬equalp2

(x, y) : ∃ (has area)(has area) . touching
(q2, q3) : touching
(y, q3) : has area, q3 : equalp4

(x, z) : ∃ (has area)(has area) . spatially related
(q2, q1) : spatially related

A12 := A11 ∪

{
x : ∀ is t inside . (∃ has area .¬equalp2

 ∀ has area .�)
(z, q1) : has area, q1 : equalp2

}
In the next step, the choose rule (RChoose) has to decide whether the relation t inside
or its negation holds between any two concrete individuals in ABox A12. Without loss of
generality we can assume that only the following two alternative ABoxes (A13, A15) are
created by selecting the concrete individuals q1, q2.

A13 := A11 ∪

x : ∀ is t inside . (∃ has area .¬equalp2

 ∀ has area .�)
(z, q1) : has area, q1 : equalp2

(q2, q1) : t inside

228 Verifying Satisfiability in ALCRP(D): An Extended Example

equalequal

touching

p2 p4
touching

touchingt_inside

x yz

has-
area

has-
area

has-
area

t_inside

q1 q2 q3

Figure A.2: Final constraint network (most of the implicit constraints are added) which
corresponds to ABox A13. For symmetric relations the arrows point in both directions.
Inverse relations have been omitted.

The spatial constraints that have to hold in ABox A13 are illustrated in Figure A.2. This
ABox assumes that t inside(q2, q1) holds and makes the implicit spatial constraints from
ABox A12 explicit (see also Figure A.1). Due to the last assertion in ABox A13, now the
all rule(R∀C) is applicable to is t inside and creates the ABox A14.

A14 := A11 ∪

x : ∀ is t inside . (∃ has area .¬equalp2

 ∀ has area .�)
(z, q1) : has area, q1 : equalp2

(q2, q1) : t inside
z : ∃ has area .¬equalp2

 ∀ has area .�

Caused by the disjunction in the last assertion, we get two descendants of ABox A14.
However, both descendants contain clashes for the concrete individual q1 (i.e. either an all
domain clash or a concrete domain clash) and eliminate this branch.

It remains the ABox A15 as the second alternative descendant of ABox A12. The ABox
A15 assumes that ¬t inside(q2, q1) holds. It has all spatial constraints expanded.

A15 := A5 ∪

(x, q2) : has area, q2 : g insidep2
, q2 : ¬equalp2

(x, y) : ∃ (has area)(has area) . touching
(q2, q3) : touching
(y, q3) : has area, q3 : equalp4

(x, z) : ∃ (has area)(has area) . spatially related
(q2, q1) : spatially related

x : ∀ is t inside . (∃ has area .¬equalp2

 ∀ has area .�)

(z, q1) : has area, q1 : equalp2

(q2, q1) : ¬t inside

Verifying Satisfiability in ALCRP(D): An Extended Example 229

ABox A15 contains a concrete domain clash. In order to check for concrete domain clashes,
the calculus for ALCRP(S2) invokes the satisfiability test for S2 with the conjunction C0

of spatial predicate terms. This conjunction represents all spatial relations that have to
hold between the concrete individuals in ABox A15.

C0 :=

{
g inside(q2, p2) ∧ ¬equal(q2, p2) ∧ touching(q2, q3) ∧ equal(q3, p4)∧

spatially related(q2, q1) ∧ equal(q1, p2) ∧ ¬t inside(q2, q1)

}
Some of the terms in the conjunction C0 contain references to the two concrete polygons
p2 and p4 that have known positions (see Figure 6.5). During the satisfiability test the
elementary spatial relation which holds between these polygons is automatically added.
This results in the conjunction C0 ∧ touching(p2, p4) which is unsatisfiable in the spatial
domain S2 .

Appendix B

The Calculus for ALCRP(D)

The following two sections are excerpts taken from [Haarslev et al., 1999b]. They are given
here because Appendix A relies on the rules and clash triggers.

B.1 Completion Rules

Before the completion rules can be defined, we introduce some technical terms. Let A
be an ABox, R be a role term, a and b be object names from OA, γ be a symbol that
is not element of OD, u be a feature chain f 1 . . . f k, and let u1, . . . ,un and v 1, . . . ,vm

(possibly with index) be arbitrary feature chains. For convenience we define three functions
as follows:

fillerA(a, u) :=

x where x ∈ OD such that
∃b1, . . . , bk−1 ∈ OA :
((a, b1) : f 1 ∈ A, . . . , (bk−1, x) : f k ∈ A)

γ if no such x exists.

createchainA(a, x , u) := {(a, c1) : f 1, . . . , (ck−1, x) : f k}
where c1, . . . , ck−1 ∈ OA are not used in A.

relatedA(a, b,R) :=

true if (a, b) : R ∈ A
true if R is of the form ∃(u1, . . . , un)(v 1, . . . , vm).P ,

and ∃x 1, . . . , xn, y1, . . . , ym ∈ OD such that
fillerA(a, u1) = x 1, . . . , fillerA(a, un) = xn,
fillerA(b, v 1) = y1, . . . , fillerA(b, vm) = ym,
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A

false otherwise

Let A be an ABox, f be a feature name, a, b, c be object names from OA, and x , y be
object names from OD. If A contains the constraints (a, b) : f and (a, c) : f (resp. (a, x) : f
and (a, y) : f) then this pair of constraints is called a fork in A. Since f is interpreted

231

232 The Calculus for ALCRP(D)

as a partial function, b and c (resp. x and y) have to be interpreted as the same objects.
Each ABox is checked for forks immediately after a completion rule was applied. If a fork
is detected, all occurrences of c in A are replaced by b (resp. y by x). Before any rule is
applied to the initial ABox A0, any forks in A0 have to be eliminated. It is easy to prove
that fork elimination preserves (in)consistency by showing that a model I for an ABox A
is also a model for an ABox A′ which is obtained from A by fork elimination.

Definition B.1 The following completion rules will replace an ABox A by an ABox A′ or
by two ABoxes A′ and A′′ (descendants of A). In the following C and D denote concept
terms, R denotes a role term, and P denotes a predicate name from ΦD. Let f 1, . . . ,f n

as well as g1, . . . ,gn denote feature names, and u1, . . . ,um denote feature chains. a and b
denote object names from OA.

R� The conjunction rule.
Premise: a : C � D ∈ A, a : C �∈ A ∨ a : D �∈ A
Consequence: A′ = A ∪ {a : C , a : D}

R
 The disjunction rule.
Premise: a : C
 D ∈ A, a : C �∈ A ∧ a : D �∈ A
Consequence: A′ = A ∪ {a : C}, A′′ = A ∪ {a : D}

R∃C The concept exists restriction rule.
Premise: a : ∃R.C ∈ A, ¬∃b ∈ OA : (relatedA(a, b,R) ∧ b : C ∈ A)
Consequence: A′ = A ∪ {(a, b) : R , b : C} where b ∈ OA is not used in A.
This rule may create a fork if R is a feature.

R∀C The concept value restriction rule.
Premise: a : ∀R.C ∈ A, ∃b ∈ OA : (relatedA(a, b,R), ∧ b : C �∈ A)
Consequence: A′ = A ∪ {b : C}

R∃P The predicate restriction rule.
Premise: a : ∃u1, . . . , un.P ∈ A,¬∃x 1, . . . , xn ∈ OD :

(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a, un) = xn ∧
(x 1, . . . , xn) : P ∈ A)

Consequence: A′ = A ∪ {(x 1, . . . , xn) : P} ∪
createchainA(a, x 1, u1) ∪ . . . ∪ createchainA(a, xn, un)
where the x i ∈ OD are not used in A.

This rule may create forks.

Rr∃P The role-forming predicates restriction rule.
Premise: (a, b) : ∃(u1, . . . , un)(v 1, . . . , vm).P ∈ A,

¬∃x 1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a, un) = xn ∧
fillerA(b, v 1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A)

The Calculus for ALCRP(D) 233

Consequence: A′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P} ∪
createchainA(a, x 1, u1) ∪ . . . ∪ createchainA(a, xn, un) ∪
createchainA(b, y1, v 1) ∪ . . . ∪ createchainA(b, ym, vm)
where the x i ∈ OD and y i ∈ OD are not used in A.
This rule may create forks.

RChoose The choose rule.
Premise: a : ∀(∃(u1, . . . , un)(v 1, . . . , vm).P).C ∈ A,

∃b ∈ OA, x 1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a, un) = xn ∧
fillerA(b, v 1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P �∈ A ∧
(x 1, . . . , xn, y1, . . . , ym) : P �∈ A)

Consequence: A′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P},
A′′ = A ∪ {(x 1, . . . , xn, y1, . . . , ym) : P}

B.2 Clash Rules

Termination of the algorithm applying the completion rules is proven in [Haarslev et al.,
1999b]. The proof shows that after a finite number of rule applications a tree Υ of ABoxes
is obtained for which one of the following conditions holds:

1. it contains an ABox A which is complete or

2. all leaf ABoxes in the tree contain a clash.

In both cases no more completion rules are applicable. In the following we formalize the
notion “to contain a clash.”

Definition B.2 Let the same naming conventions be given as in Definition B.1. Addition-
ally, let f be a feature. An ABox A contains a clash if any of the following clash triggers
are applicable:

Primitive Clash
a : C ∈ A, a : ¬C ∈ A

Feature Domain Clash
(a, x) : f ∈ A, (a, b) : f ∈ A

All Domain Clash
(a, x) : f ∈ A, a : ∀f .C ∈ A

Concrete Domain Clash
(x

(1)
1 , . . . , x

(1)
n1) : P1 ∈ A, . . . , (x

(k)
1 , . . . , x

(k)
nk) : Pk ∈ A and the corresponding conjunc-

tion
∧k

i=1 P i(x
(i)) is not satisfiable in D. This can be decided because D is required

to be admissible.

