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Abstract

In order to improve the accuracy of image-guided neuronavigation systems, dif-
ferent biomechanical models of the human head have been developed to correct
preoperative images with respect to intraoperative changes like brain shift or tu-
mor resection. All existing approaches simulate different anatomical structures
by using either appropriate boundary conditions or by spatially varying material
parameter values, while assuming the same physical model for all anatomical struc-
tures. This generally leads to physically implausible deformation results, especially
in the case of adjacent elastic and fluid structures.

In this thesis, we propose a new biomechanical model of the human head, which
is based on the well-established physical theory of continuum mechanics to handle
inhomogeneous materials. With our scheme, an inhomogeneous body is divided
into a set of homogeneous regions, according to the underlying anatomical struc-
ture. To simulate different material properties, our approach uses the appropriate
physical material description for each region, namely the Navier equation for rigid
and elastic regions as well as the Stokes equation for fluid regions. To discretize and
solve the resulting set of differential equations, we apply the finite element method
(FEM) to each region, resulting in a corresponding set of sparse linear matrix
systems. These matrix systems are then merged together by applying appropriate
boundary conditions, which establish a physical link between the corresponding
regions. As a result, a single linear matrix system which completely describes the
physical behavior of an inhomogeneous body, comprising rigid, elastic, and fluid
materials is obtained.

Instead of external forces, we use a set of given correspondences to drive the de-
formation. Our approach ensures, that these correspondences are exactly fulfilled
by the calculated deformation. Reliable material parameter values for each region
have been determined through a comprehensive literature study. Our approach
has been experimentally compared with biomechanical models based entirely on
either the Navier equation or the Stokes equation. It turns out, that the integrated
treatment of rigid, elastic, and fluid materials significantly improves the deforma-
tion results compared to biomechanical models based on a single physical model
only.
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Zusammenfassung der
Dissertation

Die technologischen Fortschritte auf dem Gebiet der bildgebenden Verfahren
fiir die Medizin — wie beispielsweise Magnetresonanz (MR), Computer To-
mograpie (CT) oder Ultraschall (US) — haben die Moglichkeiten der medizi-
nischen Diagnose und Behandlung von Erkrankungen innerhalb des mensch-
lichen Kopfes signifikant verbessert. Insbesondere durch Erh6hung der Bild-
qualitdt sowie weite Verbreitung der bildgebenden Verfahren erfolgte eine
starke Verbesserung auf dem Gebiet der Neurochirurgie, da eine Verbesse-
rung der Genauigkeit bildgestiitzter Neuronavigationssysteme erreicht wer-
den konnte. Derartige Systeme erleichtern dabei die prioperative Planung,
d.h. sie ermdglichen eine prézise Bestimmung optimaler operativer Pfade, ei-
ne Identifizierung anatomischer Strukturen, eine Verringerung der Invasivitét
neurochirurgischer Eingriffe, eine Reduktion der intraoperativen bzw. post-
operativen Mortabilitdtsrate und kénnen das postoperative Ergebnis verbes-
sern.

Das prinzipielle Problem der bildgestiitzten Neurochirurgie ist das Auffin-
den einer Relation zwischen prdoperativ gewonnenen Bilddaten und der aktu-
ellen anatomischen Geometrie wiahrend der Operation, d.h. die Registrierung
der Bilddaten mit der gegenwirtigen anatomischen Geometrie. Dieser Pro-
zess erlaubt es dem Neurochirurgen die Positionen chirurgischer Instrumente
in Relation zu wichtigen anatomischen Strukturen zu bestimmen und so die
neurochirurgischen Eingriffe zu erleichtern. Die ersten Neuronavigationssy-
steme gingen von einem Starrkorperverhalten des menschlichen Kopfes aus,
so daf} die Registrierung auf Translationen und Rotationen des praoperativen
Bildes beschriankt war. Da jedoch wéhrend einer Operation signifikante Be-
wegungen anatomischer Strukturen, welche auch als brain shift bekannt sind,
auftreten, ist eine starre Registrierung der praoperativen Bilddaten nicht aus-
reichend. In der Folge wurden deshalb sogenannte biomechanische Modelle
des menschlichen Kopfes entwickelt, die eine physikalisch basierte Anpassung
der préoperativen Daten an die aktuelle anatomische Geometrie ermoglichen.
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Fung [46] definiert Biomechanik als Mechanik, angewandt auf die Biologie,
d.h. ein biomechanisches Modell umfafit die physikalischen Eigenschaften des
zu modellierenden Korpers und erlaubt es, Riickschliisse auf die Mechanik
der zugrundeliegenden biologischen Strukturen zu ziehen.

Aufgrund dieser Vorteile sind eine Reihe biomechanischer Modelle des
menschlichen Kopfes entwickelt worden, welche eine physikalisch basierte,
elastische Bildkorrektur erlauben. Als allgemein problematisch an diesen
Ansétzen hat sich jedoch die Beriicksichtigung von Materialinhomogenititen
herausgestellt, da diese einen signifikanten Einflufy auf die zu erwartende De-
formation des Korpers haben. Derzeit simulieren alle existierenden Modelle
solche Materialinhomogenititen entweder mittels geeigneter Randbedingun-
gen an den entsprechenden Organen oder durch lokale Variation der zugrun-
deliegenden Materialparameter, wobei hier fiir alle Materialien das gleiche
physikalische Modell zugrunde gelegt wird. Diese Vereinfachungen fiithren
generell zu ungenauen und zum Teil falschen Deformationsergebnissen, ins-
besondere in der Ndhe von Strukturen mit unterschiedlichen physikalischen
Eigenschaften wie beispielsweise in der Ndhe von benachbarten fliissigen und
elastischen Strukturen.

Um eine Verbesserung der Genauigkeit in der bildgestiitzten Neurochir-
urgie zu erreichen, wurde in dieser Arbeit ein neues biomechanisches Mo-
dell des menschlichen Kopfes entwickelt, welches eine physikalisch basierte
Integration starrer, elastischer und fliissiger Materialien mittels geeigneter
physikalischer Beschreibungen erlaubt. Als physikalische Grundlage unse-
res Ansatzes dient dabei die Kontinuumsmechanik, welche das Studium der
Bewegung und des Gleichgewichts von Korpern sowie deren verursachende
Krifte erlaubt. Innerhalb der Kontinuumsmechanik werden dabei alle vor-
kommenden Funktionen wie beispielsweise Geschwindigkeiten, Dichten und
Massenverteilungen als kontinuierlich im mathematischen Sinne betrachtet,
so da3 Ableitungen dieser Funktionen existieren.

Zur Simulation eines inhomogenen Korpers €2 teilen wir diesen entspre-
chend der zugrundeliegenden Anatomie in eine Menge homogener Regionen
Q; auf. Den Materialeigenschaften der betrachteten Region entsprechend
wird dann ein geeignetes konstituierendes Gesetz in die zugrundeliegende
Gleichgewichtsgleichung eines allgemeinen Korpers,

—divle] =f in (1)
on=g auf I},
substituiert. Hier bezeichnet o den Spannungstensor, n die Oberflichen-

normale beziiglich des Randes I3, sowie f und g die Vektoren der extern
angreifenden Krifte.
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Als hinreichend genaues konstituierendes Gesetz fiir sowohl knocherne
Strukturen als auch fiir Gehirngewebe eignet sich das Hookesche Gesetz

o= \(tre(u)) I+ 2ue(u), (2)

welches einen linearen Zusammenhang des Spannungstensors o und des Ver-
zerrungstensors € beschreibt. Mit u wird hier das zu bestimmende Verschie-
bungsvektorfeld benannt, wihrend I die Einheitsmatrix und A sowie u die
Laméschen Konstanten bezeichnen. Letztere nehmen unterschiedliche Werte
fiir Knochen und Gehirngewebe an. Durch Substitution des Hookeschen Ge-
setzes in die Gleichgewichtsgleichung eines allgemeinen Ko6rpers erhélt man
die Nawviergleichung

(A + p)Vdiv[u] + uV*u+£f =0 in Q;, (3)

welche den Gleichgewichtszustand eines elastischen Korpers bei angreifenden
externen Kréften beschreibt.

Fiir fliissige Strukturen, wie die inkompressible cerebrospinale Fliissigkeit,
wird stattdessen das Navier-Poisson Gesetz

o=—pl+ X\ (trD(v))I+2u"D(v) (4)

verwendet. Dieses Gesetz beschreibt eine lineare Abhingigkeit des Span-
nungstensors & vom Verzerrungsgeschwindigkeitstensor D. Mit p wird an
dieser Stelle der Druck, mit \* und p* die Viskositdtsparameter und mit v das
Geschwindigkeitsvektorfeld bezeichnet. Man beachte, dafl die Viskosititspa-
rameter A* und p* nicht den Laméschen Konstanten A und pz des Hookeschen
Gesetzes entsprechen. Durch Substitution des Navier-Poisson Gesetzes, un-
ter gleichzeitiger Beriicksichtigung der Inkompressibilitdt der cerebrospinalen
Fliissigkeit mittels der Kontinuitdtsgleichung

div[v] =0 in €, (5)
erhdlt man die Stokesgleichung
~Vp+uwVv4+f=0 in (6)

als physikalische Beschreibung des Gleichgewichtszustandes einer inkompres-
siblen Fliissigkeit. Unter der formalen Restriktion infinitesimaler Verschie-
bungsvektorfelder und Zeitintervalle dt kann anschlieend die Deformation
einer, eine Fliissigkeit enthaltende, Region aus dem Geschwindigkeitsvektor-
feld durch

u = vdt (7)
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bestimmt werden.

Zur physikalischen Kopplung der einzelnen Regionen §2; haben wir geeig-
nete Randbedingungen eingefiihrt, namlich die Gleichgewichtsbedingung, die
Kompatibilititsbedingung und die Haftbedingung [145]. Erstere besagt, dafl im
Gleichgewichtszustand eines inhomogenen Korpers alle auf eine Oberfliche
I;; wirkenden Kréfte sich gegenseitig aufheben, so dafl

on=o;n Vxelj (8)

gilt, wihrend die Kompatibilitdtsbedingung die Gleichheit des Verschiebungs-
vektorfelds entlang der Grenze zweier Gebiete verlangt, d.h.

u;(x) = uj(x), Vxelj (9)

muf} gelten. Mit der Haftbedingung wird ein Eindringen von Fliissigkeiten in
umgebende Gebiete verhindert. Mathematisch wird dies durch die Forderung
ausgedriickt, dafl die Ableitung des Geschwindigkeitsvektorfeldes in Richtung
der Oberflichennormalen verschwinden muf}, d.h.

J(V)n = 0, Vx € F” (10)

gelten muf. Hierbei bezeichnet J(v) die Jakobimatriz von v.

Die Anwendung dieser drei Randbedingungen erlaubt dann die physi-
kalische Beschreibung eines inhomogenen Korpers 2 = ; U ; bestehend
aus elastischen und fliissigen Regionen €2; bzw. €);, mittels des gekoppelten
Systems von Differentialgleichungen

(A + p)Vdiviw] + pV?u; + £ =0 in €,

o;n=ao;n auf Fij; (11)
u; = u; auf I3,
—Vp+ p*dt™'Vu; +f =0 in Q;

unter der formalen Annahme, dafl die Kontinuitatsgleichung sowie infinite-
simale Verschiebungen und Zeitintervalle gelten. Natiirlich gelten fiir diese
Beschreibung auch weiterhin Randbedingungen entlang der Teilerdnder von
}; und €;, welche nicht dem gemeinsamen Rand Ij; entsprechen.

Zur numerischen Losung dieses gekoppelten Systems von Differentialglei-
chungen wenden wir die Methode der finiten Elemente auf jede Region €2; an.
Diese fiihrt die entsprechenden Differentialgleichungen in eine Menge diinn
besetzter, linearer Gleichungssysteme

Ald' =f+g' (12)
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iiber, wobei der Vektor @’ die unbekannten Verschiebungsvektorkomponenten
der entsprechenden Region €2; enthilt. Die Matrix A’ wird in der Literatur
auch als Steifigkeitsmatriz bezeichnet. Unter Beriicksichtigung der Gleich-
gewichtsbedingung sowie der Kompatibilitdtsbedingung 1a8t sich die Menge
der linearen Gleichungssysteme in ein einziges lineares Gleichungsystem der
Form

ém . or , 0 ﬁ?z f+g
ALtq Abr+Apr Agg i | = f (13)
0 Al Al i, f+g’

iiberfithren, welches vollstéindig den Gleichgewichtszustand eines inhomoge-
nen Korpers bestehend aus starren, elastischen und fliissigen Materialien
beschreibt. Mit @1’ und @/ werden hier die Verschiebungen innerhalb jeder
Region bezeichnet, wihrend A%, etc. die Submatrizen der Steifigkeitsma-
trizen A* und AJ jeder Region ; und Q; benennen. Ein Index I, wie er
beispielsweise in AL vorkommt, bezeichnet diejenigen Submatrizen welche
Komponenten enthalten, die sich auf den gemeinsamen Rand Ij; zwischen
beiden Regionen beziehen.

Anstelle externer Krifte, welche generell schwierig aus Bilddaten zu be-
stimmen sind, verwenden wir gegebene Korrespondenzen zwischen anatomi-
schen Strukturen, um die Deformation unseres biomechanischen Modells zu
steuern. Der Vorteil dieses Ansatzes ist, dafl sich derartige Korresponden-
zen einfach in das bestehende Gleichungssystem integrieren lassen und daf
die berechnete Losung des Gleichungssystems die gegebenenen Korrespon-
denzen exakt erfiillt. Unser Ansatz kann daher auch als ein landmarken-
basierter Registrierungsansatz angesehen werden. Als besonders vorteilhaft
stellt sich dabei heraus, dafl die vorgegebenen Korrespondenzen die notwen-
digen Krifte automatisch justieren. Dies fiihrt zu einer Entkoppelung der
Materialparameter von expliziten physikalischen Einheiten, so da} nur noch
die Verhéltnisse zwischen den einzelnen Materialparametern eine Rolle spie-
len. Um diese zu bestimmen, haben wir eine umfangreiche Literaturstudie
durchgefiihrt. Es stellte sich heraus, daf} fiir die publizierten Werte nur ei-
ne geringe Anzahl unterschiedlicher Verhéltnisse der Materialparameter von
Schédelknochen und Gehirngewebe vorliegt. Wie experimentelle Untersu-
chungen mit diesen Werten ergaben, stellt der Mittelwert dieser Verhéltnisse
einen ersten zuverldssigen Wert fiir die Materialparameter dar. Aufgrund
fehlender Angaben in der uns bekannten Literatur konnte ein entsprechen-
der Wert fiir fliissige Materialien nur heuristisch bestimmt werden.

Abschlieflend haben wir einen Vergleich unseres neuen, gekoppelten An-
satzes mit biomechanischen Modellen durchgefiihrt, welche nur auf einem
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einzigen physikalischen Modell basieren. Zu diesem Zweck wurden in die-
ser Arbeit zwei weitere biomechanische Modelle entwickelt, von denen eins
ausschliefllich auf der Naviergleichung, das andere ausschliellich auf der Sto-
kesgleichung zur Simulation aller Materialien basiert. Mittels rdumlicher
Variation der zugrundeliegenden Materialparameter wurden auch hier Inho-
mogenititen simuliert.

Im Falle des ausschlieflich auf der Stokesgleichung basierenden biome-
chanischen Modells hat sich dabei die Verwendung der sogenannten @Qs-P;
Crouzeiz-Raviart Elemente, welche die Losbarkeit des resultierenden linea-
ren Gleichungssystems sicherstellen, als problematisch erwiesen. Ursache ist
hier zum einen die grofle Anzahl von resultierenden Freiheitsgraden, welche
bereits fiir sehr kleine Bilddimensionen zu einem Speicherplatzbedarf von
mehr als 1.5 GB fiihren, sowie zum anderen die numerischen Eigenschaf-
ten der resultierenden Steifigkeitsmatrix, welche eine Anwendung iterativer
Losungsverfahren verhindern. Zur Bewdéltigung dieser Probleme wurde in
dieser Arbeit ein spezieller Typ finiter Elemente eingefiihrt, die sogenannten
divergenzfreien Elemente. Diese Elemente reduzieren die Anzahl der Frei-
heitsgrade und somit den Speicherplatzbedarf der resultierenden Steifigkeits-
matrix derart, dafl eine effiziente Anwendung dieses Ansatzes auf iibliche
Bildgroflen méglich ist. Auflerdem werden die numerischen Eigenschaften
der resultierenden Steifigkeitsmatrix dergestalt verdndert, dafl der Einsatz
iterativer Losungsmethoden erfolgen kann.

Der experimentelle Vergleich der genannten biomechnischen Modelle er-
gab, dafl im Falle der auf nur einer einzigen Differentialgleichung basierenden
biomechanischen Modelle, die geometrischen Strukturen starrer Korper ge-
nerell erhalten geblieben sind. Jedoch resultierten bei diesen Modellen phy-
sikalisch implausible Deformationen in der Umgebung von Regionen mit ver-
schiedenen Materialeigenschaften. Insbesondere in der Nihe fliissiger Struk-
turen, welche in diesen biomechanischen Modellen als starre Kérper simuliert
wurden um der Inkompressibilitdt der cerebrospinalen Fliissigkeit Rechnung
zu tragen, konnen Verletzungen der zugrundeliegenden Topologie aufgrund
grofler Deformationen auftreten. Im Falle unseres neuen, gekoppelten Ansat-
zes wurden derartige Topologieverletzungen nicht beobachtet. Stattdessen
liefert unser Ansatz hier physikalisch plausible Deformationen, bei denen die
Inkompressibilitat aller eine Fliissigkeit enthaltenden Gebiete gewahrt ist, wie
ein Vergleich der Anzahl der das Fliissigkeitsgebiet umfassenden Bildpunkte
ergab.

Ausgehend von den in dieser Arbeit erzielten Fortschritte auf dem Gebiet
der biomechanischen Modellierung des menschlichen Kopfes zum Zwecke der
intraoperativen Bildkorrektur, bleiben auch weiterhin viele Moglichkeiten der
Weiterentwicklung. So stellt insbesondere die Beriicksichtigung anisotroper
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Materialien sowie nichtlinearen Materialverhaltens eine grofle Herausforde-
rung an die biomechanische Modellierung dar. Eine erhebliche Verringerung
der Rechenzeiten kénnte durch den Einsatz verbesserter numerischer Verfah-
ren sowie durch die Kombination der Methode der finiten Elemente mit der
Randelementemethode zur Simulation von Fliissigkeitsgebieten erreicht wer-
den. Die Konstruktion biomechanischer Modelle des menschlichen Kopfes
bleibt also auch weiterhin eine interessante und spannende Herausforderung.
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Chapter 1

Introduction

1.1 Biomechanical modeling in neurosurgery

The technological developments of medical imaging devices like, e.g., Mag-
netic Resonance (MR), Computed Tomography (CT), Positron Emission To-
mography (PET), and Ultrasound (US), radically changed the diagnosis and
treatment of abnormalities within the human brain [117]. The advantages of
these technological developments, especially the wide availability and the in-
creased image quality of the tomographic scanners, remarkably changed the
field of neurosurgery in the last decade since they improve the accuracy of
image-guided neuronavigation systems. Such image-guided neuronavigation
systems facilitate the preoperative planning stage through the accurate deter-
mination of access to lesions [13, 50], support the identification of anatomical
structures, allow to minimize the invasiveness of neurosurgical procedures,
reduce the surgical morbidity, and may enable to improve the postoperative
outcome [13, 117, 143].

The principal problem of image-guided neuronavigation is to find a spa-
tial correspondence between preoperatively acquired neuroradiological data
and current anatomy, i.e. to register preoperative acquired patient data (usu-
ally given in form of, but not limited to, CT or MR images) with the actual
intraoperative anatomical geometry of the patient. This process enables the
surgeon to precisely relate positions of surgical instruments to anatomical or
pathological structures of interest [70, 102, 143] and thus facilitates the neu-
rosurgical intervention. For this registration process, the first image-guided
neuronavigation systems monitored the positions of surgical instruments in
the surgical field and generated appropriate orthogonal views of the human
head! relative to the surgical instruments using the preoperatively acquired

!The expression head refers here to skull, brain, fluid, and skin.
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MR,/CT images [13]. For the necessary registration process, a rigid body be-
havior of the human head was commonly assumed, i.e. the preoperative image
data was aligned to the actual anatomy by translation and rotation only [34].
However, the accuracy of these image-guided neuronavigation systems gen-
erally suffers from significant position and shape changes of the brain tissue
occurring during neurosurgery [13, 50, 70]. According to [13, 50, 122, 70], this
phenomenon results from a variety of surgical interventions like, e.g., cere-
brospinal fluid drainage, tumor resection, use of diuretics, or hemorrhage and
is usually known as brain shift. Thus, all systems assuming a rigid body be-
havior only are generally not suited for neuronavigation tasks like controlling
the degree of tumor resection due to the continuously changing anatomical
situation during neurosurgical interventions [143].

In order to increase the accuracy of image-guided neuronavigation sys-
tems, it is therefore necessary to correct the preoperatively acquired MR
and/or CT images with respect to such intraoperative, non-rigid tissue move-
ments. For this purpose, so-called biomechanical models of the human head
have been introduced to further improve the registration accuracy in neuron-
avigation systems. Fung [46] defined biomechanics as mechanics applied to
biological tissues and structures thus allowing to understand the mechanics
of living systems. Consequently, a biomechanical model of the human head
incorporates the physical properties of the human head. This is in contrast
to registration schemes commonly used in medical image analysis [96, 123]
like, e.g., thin-plate spline approaches, since these schemes do not model the
physical behavior of the underlying anatomical structure. In other words,
a biomechanical model allows a physically-based prediction of organ changes
due to external alterations and proposes methods of interventions [46]. Thus
biomechanical models directly support the tasks of diagnosis, simulation, and
surgical intervention.

In the past, a variety of different biomechanical models for intraoperative
image correction purposes have been proposed. Additionally, other biome-
chanical models have been developed in different contexts like car crash im-
pact analysis or surgery simulation, but most of them are applicable for image
correction purposes, too. Although the usage of such approaches increases
the accuracy of image-guided neuronavigation systems [13, 107], problems
still arise with biological material inhomogeneities. All existing biomechani-
cal models simulate the physical behavior of different anatomical structures
by either spatially varying the underlying material parameter values while
assuming a single physical model for all anatomical structures, irrespective
of their real physical properties, or by applying special mathematical bound-
ary conditions. As an example of the latter case may serve rigid structures,
e.g. bone, whose physical properties are usually simulated by preventing any
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Figure 1.1: Simulation of fluids while treating them as rigid objects sur-
rounded by elastic material: results of registration of (a) the preoperative
image with (b) the postoperative image while (c) none of the prescribed dis-
placements were given within the vicinity of the ventricular system (dark
elongated region in the middle of the image) and (d) while using prescribed
displacements directly at the ventricular system, leading to an unrealistic
translation of the latter one. For a better visualization of the result, the
computed edges of the postoperative image (b) have been overlaid on subfig-

ures (c) and (d).

movement of such structures in this type of biomechanical models. However,
such simplifications generally lead to physically inadequate simulations, par-
ticularly in case of combined elastic and fluid-filled structures, whose physical
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deformation behaviors differ significantly from each other. As a consequence,
their physical properties cannot be described using a single physical model
only. For example, the ventricular system in [64] was modeled as a rigid ob-
ject, which was motivated by the reported incompressibility of cerebrospinal
fluid [135, 146]. Using this assumption, good registration results were ob-
tained if none of the prescribed displacements, which drive the deformation
of the model, act in the vicinity of the ventricular system. Otherwise the
model gives a poor registration result, leading to an unrealistic translation
of the ventricular fluid structure as shown in Figure 1.1.

To enhance the accuracy of intraoperative image correction and finally
of image-guided neuronavigation systems, we develop in this thesis a new
biomechanical model of the human head that circumvents the limitations for
combined elastic and fluid structures caused by the common usage of a single
physical model only. The proposed algorithms are believed to pave the way
for further developments in biomechanical modeling and thus will eventually
support the neurosurgeon for the benefit of the patient.

1.2 Contributions of the dissertation

In this thesis, we propose a new biomechanical model of the human head
which copes with anatomical structures consisting of rigid, elastic, and fluid
materials while using the appropriate physical descriptions, namely the Navier
equation and the Stokes equation. Our approach is based on the well-esta-
blished physical theory of continuum mechanics to handle inhomogeneous
materials. Within our approach, an inhomogeneous body is divided into a
set of homogeneous regions, each simulating a different material according
to the underlying anatomical structure. In contrast to other biomechanical
models, our approach uses the appropriate physical model to describe the
physical behavior of each region. For a discretization and solution of the
problem, we apply the finite element method (FEM) to each region resulting
in a corresponding set of sparse linear matrix systems. To merge these lin-
ear matrix systems together, we derive a set of boundary conditions, which
establish a physical link between the corresponding regions. Application of
these boundary conditions results in a single linear matrix system which com-
pletely describes the physical behavior of an inhomogeneous body comprising
rigid, elastic, and fluid materials.

Instead of using external forces, which are generally difficult to determine
from given corresponding images, we use a set of prescribed correspondences
to drive the deformation of the biomechanical model. In our approach, it
is ensured that these prescribed correspondences are exactly fulfilled by the
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computed deformation. Thus our approach can be seen as a landmark-based
registration scheme [6, 130, 41]. Additionally, using such prescribed dis-
placements it is guaranteed, that the values of the external forces that are
necessary to lead to these desired displacements are automatically adjusted.
This property of our approach decouples the material parameter values from
explicit physical units such that only the ratios of the material parameter
values with respect to each other remain important. To determine the latter
mentioned ratios for the material parameter values, we carried out a com-
prehensive literature study, resulting in a set of reliable material parameter
ratios. Thus, our approach successfully addresses the common problem of
choosing appropriate material parameter values for biomechanical models.

Finally, we carry out experiments using different biomechanical mod-
els of the human head and compare the calculated deformations to assess
the general efficiency of the different approaches as well as the influence
of different physical models on the computed results. Besides a coupled
rigid /elastic/fluid model, we develop two other biomechanical models, each
of them based on a single physical model only. One represents a pure elas-
tic model based on the Navier equation and the other a pure fluid model
based on the Stokes equation. In case of the fluid model, a finite element
discretization using the commonly applied types of finite elements leads to
a huge number of degrees-of-freedom and thus to unacceptable computation
times which generally prevent the application of such models. To circum-
vent these problems, we propose the usage of a non-common type of finite
elements in this thesis which reduces the number of degrees-of-freedom while
simultaneously enhancing the numerical properties of the approach, i.e. the
condition number of the underlying linear matrix system, such that the mem-
ory requirements as well as the computation times are significantly reduced.

To simulate inhomogeneities within the purely elastic and the purely fluid
model, we spatially vary the material parameter values using appropriate
ratios of the latter one for different regions. The comparison of these two
biomechanical models with the coupled rigid/elastic/fluid model reveals, that
the integrated treatment of rigid, elastic, and fluid materials used in our new
biomechanical model significantly improves the physical plausibility of the
computed deformation results.

1.3 Structure of the dissertation

In order to develop a new biomechanical model of the human head, we start
in Chapter 2 with a brief overview of general properties of biological ma-
terials. The description focuses on those measurable physical entities of bio-
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logical structures that are needed to simulate a deformation of a body in the
underlying physical framework of continuum mechanics. A short introduc-
tion into the theory of continuum mechanics is given next, ending up with
the derivation of the Navier equation and the Stokes equation as physical
descriptions for elastic and fluid materials, respectively. For a solution of
these differential equations, we apply the finite element method (FEM), the
fundamentals of which are presented in the last part of Chapter 2.

Chapter 3 presents an overview of the existing literature dealing with
biomechanical models. Besides a general description of these models, we also
provide a compact summary of all approaches in tabular form.

Our new biomechanical model is developed in Chapter 4, starting with
the determination and evaluation of appropriate material models for dif-
ferent biological structures. Following this, we present the complete FEM
discretization of the differential equations used in our model, namely the
Navier equation and the Stokes equation. Next, we give a short introduction
into the underlying mathematical framework for constructing finite elements.
Examples of appropriate finite elements which ensure the solvability of the
final linear matrix system, especially in case of fluid-filled structures, are also
presented.

So far, a set of linear matrix systems has been derived, each describing
the physical behavior of a different homogeneous material. To merge these
matrix systems into a single one, we then present the necessary boundary
conditions to establish a physical link between neighboring regions. As a
result, we end up with a single linear matrix system that completely describes
the deformation behavior of an inhomogeneous anatomical structure like the
human head, that comprises rigid, elastic, and fluid parts.

Following this, we discuss the integration of prescribed displacements into
the final matrix systems. We also emphasize the problems associated with the
assignment of prescribed displacements to finite elements belonging to fluid
regions. The last part of Chapter 4 deals with the necessary determination
of reliable material parameter values for the Navier equation and the Stokes
equation, respectively.

In Chapter 5, we report on experiments which have been carried out
to assess the general efficiency of the different approaches sketched above.
We start with experiments using first a purely elastic model and second a
purely fluid model to assess the validity and efficacy of biomechanical models
based on a single physical model only. The chapter will end with a direct
comparison of these two models with our new approach, allowing the coupling
of different physical models.

Finally, Chapter 6 gives a summary of this thesis and discusses objec-
tives for future research.



Chapter 2

Modeling of biological tissues
and fluids

In this chapter, we give a brief introduction into the physical theory and the
mathematical methods used for the derivation of our biomechanical model of
the human head. The term biomechanics refers here to the area of research
that deals with the mechanics of biological tissues and structures. We begin
with a short overview of properties of soft tissues reported in the literature,
followed by an introduction into the theory of continuum mechanics, which
serves as underlying physical theory. In this chapter we will also present
the fundamentals of the finite element method (FEM), used for a numerical
solution of those differential equations that describe the physical behavior of
the modeled biological structures. Thus, a brief overview of the theories and
methods necessary to develop a biomechanical model of the human head is
presented in the following.

2.1 Mechanical properties of biological mate-
rials

Due to the large amount of existing literature concerning biomechanics and
the measurable physical properties of soft tissues, we present mainly those im-
portant facts that are needed for the physical theory framework presented in
the following section. More details and background knowledge about biome-
chanics research can be found in, e.g., [45, 46, 48, 101].

The physical properties of a biological structure depend mainly on i) the
kind of material which builds up the structure and ii) the spatial arrangement
of its components [46]. Common biological materials of which tissues and or-
gans are composed of are, e.g., elastin, resilin, abducin, and collagen, where

7
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the latter one serves as basic structural element for a large variety of different
tissues like, e.g., skin or the dura mater [46]. Apart from material types, the
physical properties depend on the spatial organization of these materials into
larger biological structures, i.e. on the organization of the material molecules
into structures like fibers etc. As an example, observe bone, since its ar-
chitecture is closely related to its mechanical function [46, 142]. But apart
from the tissue specimen considered, the mechanical behavior of biological
tissues is uniquely characterized by their constitutive behavior, i.e. the rela-
tionship between externally applied loads like, e.g., pressure forces, and the
resulting deformation. This behavior can be diagrammed in form of so-called
load-deformation curves, as depicted in Figure 2.1.

As found through different mechanical experiments regarding the stretch
of tissue specimens, the load-deformation curves of most biological tissues
typically share some common properties: at the beginning of the elongation
(stretch) of a specimen, the load increases exponentially with the elongation,
followed by a fairly linear relationship between elongation and load. Finally,
the relationship becomes nonlinear again and ends up with a rupture of the
specimen [46, 101], see Figure 2.1(a). Such a behavior can be found for a large
variety of different tissues like, e.g., tendons, blood vessels, muscles, and skin
[74, 48, 101]. Apart from these materials, others exist with load-deformation
curves that deviate significantly from this behavior. Brain tissue serves as a
prominent example since it shows a completely nonlinear load-deformation
curve without any linear parts [36, 106, 160].

Some other important properties shared by most biological tissues are
i) stress relazation, which denotes the process of gradually decreasing load
when a tissue specimen is suddenly stretched and maintained at its new
length [101], and ii) hysteresis, for which the load-deformation curve of a
tissue specimen shows different paths for the loading and the unloading cy-
cle. This latter property of tissues is shown in Figure 2.1(b). Additionally,
for multiple, subsequent loading/unloading cycles of a tissue specimen, the
load-deformation curve is usually shifted to larger deformations. The dif-
ference between successive cycles decreases and even disappears if the test
is repeated infinitely often. In this case, the tissue specimen is said to be
preconditioned [46] and shows a well defined load-deformation curve, thus
allowing a unique description of the mechanical tissue properties. A general
mathematical formulation of these important load-deformation relationships
is presented in the following section, while a specific treatment of brain tissue
will be given in Section 4.1.

The properties of stress relaxation and hysteresis are features of viscoelas-
ticity, where the load at a given time ¢ depends on the complete history of
the deformation [46, 32]. This is in contrast to elastic materials, where the
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Figure 2.1: A typical load-deformation curve (a) for biological tissues. In
case of cyclic loading, a hysteresis occurs (b). Both figures were adopted
from [46].

load is always linearly proportional to the current deformation. However,
an elastic mechanical behavior of tissues can be often assumed due to the
linear part in the load-deformation curves of most biological tissues. Often,
this assumption even holds for tissues with load-deformation curves deviating
significantly from Figure 2.1(a) provided that the observation time, i.e. the
time which an experiment lasts, is short compared to the stress relaxation
times [161].

Besides the tissues which form an anatomical structure, biofluids play
also an important role in organisms since their mechanical properties may
significantly influence surrounding soft tissues. An important example is
cerebrospinal fluid (CSF) which significantly interacts with brain tissue [78].
Most biofluids, like saliva and mucus, show a viscoelastic behavior [46], but
others, like blood or cerebrospinal fluid, are considered as incompressible
fluids [78, 135, 146] instead. The physical properties of fluids as well as
the physical differences between fluids and elastic solids are described in the
following.

2.2 Continuum mechanics

To develop a biomechanical model of the human head for the purpose of in-
traoperative image correction, continuum mechanics serves as physical basis.



10 MODELING OF BIOLOGICAL TISSUES AND FLUIDS

Continuum mechanics allows for the study of motion or equilibrium of mat-
ter, as well as of the forces that cause such motions [47]. The term continuum
indicates that all functions within the theory, like velocities, densities, and
mass distributions, can be described mathematically as continuous functions.

Continuum mechanics can be divided into three parts [100]: The general
principles, the constitutive equations, and the specialized theories. The gen-
eral principles encompass the basic physical assumptions like conservation
laws of mass, momentum, and energy, respectively, whereas the material
properties of a specific body are described by the corresponding constitutive
equations. The third part of continuum mechanics, the specialized theories,
consists of an application of special cases of both, general principles and con-
stitutive equations, given problem specific boundary conditions. Two famous
instances of specialized theories of continuum mechanics are elasticity theory
and fluid mechanics. Further details on continuum mechanics can be found
in, e.g., [44, 100, 47].

In the sequel, we give a short summary of the main concepts of contin-
uum mechanics, starting with some necessary definitions. Subsequently, we
present the field equations which describe the physical behavior of a general
body as well as the constitutive equations, which allow for individual mate-
rial properties of the body. We finish this section with the basic equations
of both, elasticity theory and fluid mechanics, which will be used for the
development of our biomechanical model.

2.2.1 Some physical preliminaries
Deformation, displacement, and velocity

Here, a body € is defined as an open, bounded, and connected subset of IR?
with Lipschitz-continuous! boundary I'. The closure Q of € represents the
volume of the body in the undeformed state, also known as the reference
configuration [21]. If the reference configuration is chosen to be the initial
configuration at time ¢ = 0, then it is called Lagrangian configuration [100].
In case of applied forces, the body is exposed to a deformation. This defor-
mation is defined as a smooth, injective, and orientation preserving mapping
¢ : QO x R" — IR? such that for every x € Q

p(x,t) = x(x,t) = x + u(x,t) (2.1)

! A boundary T is called Lipschitz-continuous if Vx € I' a neighbourhood exists, which
can be represented as a Lipschitz-continuous function. A function f is denoted Lipschitz-
continuous if || f(x1) — f(x2)]| < a||x1 — x2|| is valid for a constant « € R [12, 7].
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Figure 2.2: Transformation of a body €2 at ¢ = 0 into a deformed configura-
tion 2 occupied at t > 0.

holds, where the vector field u : Q x RT — IR? is called the displacement

field at time ¢ [21]. The resulting configuration é(t) = p(Q,t), adopted at a
time ¢ > 0, is called Eulerian configuration. The closure of {2 in the Eulerian

configuration is denoted by (2, see also Figure 2.2.
To describe the local deformation of a body, the deformation gradient
matrix [9]

J(p) = (Ve")", (2.2)

with J(p);; = 0,4, is introduced, which is also known as Jacobian matriz
[38]. Here, V denotes the Nabla operator, an upper T denotes the transpose,
and 0; is the partial derivative with respect to the ith spatial component.
Since the deformation ¢ is defined as an orientation preserving mapping,

det [J()] > 0 (2.3)

must hold for all x € Q [21, 38]. Analogously to (2.2), a displacement gradient
J(u) can be defined, thus allowing a representation of J(¢) by

I(p) =TI+ J(u), (2.4)

where I denotes the identity matrix.
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So far, all definitions were made in the Lagrangian configuration Q. An al-
ternative formulation can be given in the Eulerian configuration ﬁ(t) Again,
the deformation is a smooth, injective, and orientation preserving mapping
@ 0 x Rt — R3 such that for every X € Q

P(%,t) = % — a(%, 1) (2.5)

holds [43, 9], with @ : QOxR* — R? denoting the displacement vector field
at time ¢. From (2.1) and (2.5) follows

u(x,t) = a(x, 1), (2.6)

according to the axiom of independence of physical entities from the under-
lying reference frame [21, 9].

Associated with the displacement field u is a velocity field v : Q x RT —
IR? which describes the velocity of each particle x € © in the Lagrangian
configuration [100, 47]. As usual, the velocity is defined as [9]

ou(x,t op(x,t
vix,t) = (Bt - (Bt !

(2.7)

Again, a formulation of the velocity field v : Q x Rt — R? in the Eulerian
configuration can be given. Due to the time dependency of the deformed
configuration Q(t), the full time derivative has to be used instead [100, 9],
yielding [16]

_da(x,t)  oa(x,t)

v(%,1) T v vVa(x, t)v(x,t). (2.8)

Equation (2.8) is also known as the material derivative of u.

Strain

Strain is a measure of deformation which is usually defined as rate of change

of the initial length [47]. Considering an infinitesimal line element dx € ,
which relates to the corresponding line element in the Lagrangian configura-
tion through a Taylor series expansion [100, 47]

dx = J(p)dx, (2.9)

we can calculate the square of the length ds = |dx| = v dxTdx of the line
element in the Eulerian configuration by [100, 21, 47]

ds® = dxTJ(p)T I (p)dx = dx* Cdx. (2.10)
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The symmetric tensor C is called right Cauchy-Green strain tensor and can
be understood as a measure of the quadratic length of a line element with
respect to the Lagrangian configuration. According to (2.4) and (2.10), the
equality

C(u) =J(@)"I(p) =T+ IJ(w)" + I (u) + IJ(u)'I(u) (2.11)

follows.

Equivalently, we can calculate the square of the length ds = ldx| =
VdxTdx of an infinitesimal line element dx € ) in the Lagrangian configu-
ration by

ds? = dxTI(p)TI(p)dx = dxT Cdx. (2.12)
In this case, the symmetric tensor
C(a) =J(@)TI(@) =1-I(@)" - I(a) +I(@)"I(a) (2.13)

is called left Cauchy-Green strain tensor and measures the quadratic length of
a line element with respect to the Eulerian configuration [100]. If C = C =1,
then ds = ds holds and the deformation is length-preserving, i.e. rigid.

To measure how close the deformation is to a rigid one in both different
configurations, the Green-St. Venant strain tensor

1 1

E(u) = (C-1) = (J()" + I(u) + I(0)"I(u)) (2.14)
and, respectively, the Almansi strain tensor
E(i) = %(I - Q)= % (@)™ +J(@) — I@)7"I(a)) (2.15)

have been introduced [100, 21, 99]. Both definitions allow a measurement of
the change in the squared length of a line element [100]. In the Lagrangian
configuration, this can be written as

ds* — ds® = dxTCdx — dxTdx
= dx’(C - T)dx (2.16)
= 2dxTEdx,
whereas the formulation in the Eulerian configuration reads
ds? — ds* = dx"dx — dx"Cdx
= dxT(I - C)dx (2.17)
= 2dx " Edx.
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Rate-of-deformation

The rate-of-deformation of ) can be analyzed in a similar way. Given an
infinitesimal line segment dx € €, the difference of the velocities at the
endpoints of dx with respect to time ¢ can be calculated through a Taylor
series expansion [100, 47|, giving

dv = J(¥)dx. (2.18)

Using only the symmetric part of J(¥), the symmetric rate-of-deformation
tensor D with

D) = % (3(9) + 3(%)7) (2.19)

can be introduced. This tensor allows a measurement of the rate-of-change
of the squared length

%dﬁ — 2dx"Ddx, (2.20)

as shown in [100]. Additionally, the skew-symmetric part of J(¥) is defined
by

. | .
W) =5 (I@) -3, (2.21)
which is called spin tensor.

Stress

In the deformed configuration Q(t) = ¢(Q,t), the body is subjected to ex-
ternally applied forces which can be classified into body forces and surface
forces [100, 21]. Applied body forces act on the interior of the body and are
defined as a vector field

f:0— R® (2.22)

called density of the applied body forces per unit volume in the Eulerian
configuration. Similarly, applied surface forces acting on a subset I} C IT" of
the boundary are defined by

g: I — R, (2.23)

called density of the applied surface forces per unit area in the Eulerian
configuration. Examples of these types of forces are the gravity force as



2.2 Continuum mechanics 15

body force and contact forces acting on the boundary I as surface forces
[21].

Aligned with the applied forces is a vector field t : QOx N — IR?, where
N={ne€ {R?’; In| = 1}, such that for any region A c Q and for every point
x € I'1 N QA at which the outward unit vector n exists,

t(x,n) = g(x) (2.24)

holds. The vector f:(f(, n) is called Cauchy stress vector and represents the
density of the surface force per unit area [100, 21, 47].

For an arbitrary plane through the body, the Cauchy stress vector t is
completely determined by three stress vectors t; each being coplanar with
the planes perpendicular to the coordinate axes. Formally, we have

t(x,n) = T(x)n, (2.25)

also known as Cauchy’s formula. The symmetric tensor T:0 — R>*®is
called Cauchy stress tensor and the elements of the ith row of T contain the
components of the Cauchy stress vector t;.

With the aid of the Piola transform [21], the Cauchy stress tensor T
can be transformed into the Lagrangian configuration. The resulting non-
symmetric tensor T : § — R**®

T(x) = (det J())T(%)I(p) ™" (2.26)

is called first Piola-Kirchhoff stress tensor. However, it is desirable to define
a symmetric stress tensor in the Lagrangian configuration, essentially due
to the important relation between the stress and symmetric strain tensors,
see below in Section 2.2.3. Therefore, the symmetric second Piola-Kirchhoff
stress tensor B : § — IR*®

%(x) = J(p) "T(x) (2.27)

is usually preferred.

2.2.2 The equations of motion and equilibrium

The deformation of a body €2, subjected to applied body and surface forces f
and g, respectively, is governed by the equation of motion. This equation is
based on Newton’s second law of motion as well as on the conservation law
of momentum and reads [44, 100]

div[T] +f = p— in Q, (2.28)
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where p denotes the density of (), i.e. the mass per volume of the body
[44]. Note, that (2.28) is valid Y& € Q [21]. In the special case without
acceleration, i.e. where dv/dt = 0 holds, the equation of motion reduces to
the equilibrium equation

div[T]+f=0 inQ, (2.29)

which describes for a body the state of static equilibrium between internal
and external forces.

Related to both partial differential equations are different types of bound-
ary conditions such as to impose constraints on the spatial positions a body 2
can occupy in space [21]. Common types of boundary conditions are Dirichlet
boundary conditions, where the value of the unknown variable is prescribed
on a portion Iy C T, Neumann boundary conditions, where the derivative
d/0n of the variable is prescribed on Iy C T', or Robbins boundary condi-
tions, where a combination of Dirichlet and Neumann boundary conditions
is given on I3 C T' [25]. Note, that for every % € I', a boundary condition
must be specified and I; N fj = () for i # j must hold [141]. Normally, the
equilibrium equation in the Eulerian configuration is combined with Cauchy’s
formula (2.25) as Neumann boundary condition,

(2.30)

where T denotes Cauchy’s stress vector and n is the outward unit vector
normal to I'.

A problem associated with (2.30) is its formulation in the Eulerian con-
figuration, where x is unknown. With the aid of the Piola transformation
(see [21]), the problem can be rewritten in the Lagrangian configuration,

(2.31)
Tn=g on I,

{—div[T] —f inQ,
where T is the first Piola-Kirchhoff stress tensor as defined in (2.26). Due to
the properties of T, being a non-symmetric tensor, the equilibrium equations
are commonly formulated in terms of the second Piola-Kirchhoff stress tensor
¥ = J(p) 'T, yielding

(2.32)

{—div[J(zp)E] =f inQ,
Jp)Xn=g on I
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2.2.3 The constitutive equations

So far, the equilibrium equations in (2.29) do not take the nature of the
underlying material into account. To incorporate specific material proper-
ties of €2, appropriate constitutive equations have to be substituted into the
equilibrium equations. Constitutive equations are specific expressions of the
response function, which allows a representation of the stress tensor as a
function of the deformation tensor [100].

For the sake of simplicity in this introduction, only #sotropic and homo-
geneous materials will be considered here. A material is called isotropic, if
no preferred direction in the material exists for a given point x € €, and
it is called homogeneous, if the response function is independent of x €
[77, 21]. Due to the variety of existing materials, many different constitutive
equations exist. But, as pointed out in Section 2.1 above, an approxima-
tion of most materials by constitutive equations for either elastic solids or
incompressible fluids is usually sufficient.

In case of elastic solids, the second Piola-Kirchhoff stress tensor (2.27)
depends only on the Green-St. Venant strain tensor (2.14). If this relationship
is linear, the response function of a St. Venant-Kirchhoff material is obtained
(100, 47]:

Y =AtrE)I+ 2,E. (2.33)

Equation (2.33) is commonly known as Hooke’s law. The components of the
second Piola-Kirchhoff stress tensor are determined as

Yij = [XN04j0r + 1 (Oirdj1 + 0adjr)] Ena, (2.34)

where A and p denote the Lamé constants, (tr -) is the trace operator, and du
refers to the Kronecker delta symbol. For real materials, the Lamé constants
take only positive values. With Hooke’s law, the equilibrium equations (2.32)
can be re-written in terms of the unknown displacement field u, yielding

{—div [(1+ J(u)) A(trE(u))I + 2uE(u))] =f in Q,

(1+3() A B@)T + 2uB)n=g  onl. 0

So far, the nonlinear differential equations (2.35) describe the mechanical
equilibrium of an elastic body subjected to finite deformations. To circum-
vent the difficulties associated with nonlinear differential equations, like, e.g.,
the approximation errors introduced by using iterative solution schemes [72],
the deformation field is usually restricted to be infinitesimal. As a result, the
distinction between the Lagrangian configuration and the Eulerian configu-
ration becomes obsolete [46] and the displacements u as well as the displace-
ment gradients J(u) assume small values such that the squares and products
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of J(u) are negligible compared to the first order terms [44, 100, 46]. There-
fore, the quadratic components J(u)?J(u) of the Green-St. Venant strain
tensor E (2.14) and J(a)7J () of the Almansi strain tensor E (2.15) can be
dropped. As a result, both tensors reduce to Cauchy’s infinitesimal strain
tensor

(J()" + J(u)) . (2.36)

| —

e(u) =

Also, the distinction between the Cauchy stress tensor T and the first and
second Piola-Kirchhoff stress tensors T and ¥ vanishes, leading to the Eule-
rian stress tensor o [44, 45].

In case of infinitesimal displacements, Hooke’s law (2.33) reads

o= \tre)I + 2ue (2.37)

instead and, consequently, the equilibrium equations can be written as

(A(tre(u))I+2ue(u) n=g  onT. (2.38)

{—div (A(tre(u))I + 2ue(w)] = £ in Q,
Mathematically, this rather intuitive linearization can be obtained by writing
(2.35) in terms of a nonlinear operator A(u) and by computing the derivative
at u = 0. Thus, the nonlinear operator A(u) is approximated through a
Taylor series expansion,

A(u) = A’(0)u + O(u), (2.39)

truncating the higher order terms O(u). The term A’(0)u is then given as
[21]

A'(0)u = —div [A(tre(u))I + 2pe(u)]. (2.40)

In contrast to elastic solids, all fluids, being compressible or incompress-
ible, neither sustain a shear stress at rest nor uniform flow and hence, the
stress is a purely static pressure in this case [100]. This property allows fluids
to fill out arbitrarily formed reservoirs [151]. Furthermore, fluids are divided
into non-viscous fluids and viscous fluids. A non-viscous fluid, representing
an idealized fluid [47], cannot sustain a shear stress even in motion, such that
the constitutive equation simply reads [100, 47]

T = —pL (2.41)
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For a viscous fluid instead, describing the behavior of real fluids like cere-
brospinal fluid [47], the shear stress is a function of the rate-of-deformation
tensor, as given by the Nawvier-Poisson law [100, 47]

T = —pI+ N (tr D) + 24D (2.42)

with coefficients

~

Tyj = —psj + [NOi;0 + " (001 + 6u0;1)] D (2.43)

Here, p(%x) denotes the static pressure function whereas A\* and p* are the
viscosity parameters. Note that, despite of the related notation, the viscosity
parameters A* and p* are not identical with the Lamé constants in Hooke’s
law in (2.33). Again, the term —pI in (2.42) represents the static pressure if
the fluid is at rest or, respectively, in uniform flow where D = 0 holds [47].
Substitution of the Navier-Poisson law into the equilibrium equations

leads to an expression in terms of the unknown pressure function p and the
unknown velocity field v,

—div[—pI + M (tr D(V)I 4 2*D(¥)] = f in Q, (2.44)

(—pI+ M (trD(@)I+2*D(¥)ai=g  onT. '
To determine the associated displacement field @, the material derivative in
(2.8) has to be used [15]. Again, this can be simplified if the displacement
field is restricted to be infinitesimal. Thus, the displacement u can be ap-
proximated by multiplication of the velocity v with an infinitesimal time
interval dt, i.e.

u = vdt (2.45)

(see [47] for further details).

2.2.4 The Navier equation

Splitting the first part of the equilibrium equations for infinitesimal defor-
mations (2.38) by means of the law div [A + B] = div [A] +div [B] into parts
along with the use of the definition of the divergence of a tensor field A,
div[A] := (VTA)T [21, 9], yields the identities

div[A(tre(u))I]
) (2.46)

div][2pue(u)]
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By substituting (2.46) into the equilibrium equations, we get the well-known
Navier equation [100]

(A + p)Vdiv[u] + pV>u+£f=0 in Q (2.47)

as formal expression for the static equilibrium of a linear elastic solid.

Note, that a solution of (2.47) with given boundary conditions may not
preserve the topology in case of large deformations due to the usage of
Cauchy’s infinitesimal strain tensor.

2.2.5 The Stokes equation

A formulation similar to the Navier equation can be derived for viscous fluids
also. Again, the law div[A + B]| = div [A] + div [B] can be used to split the
first part of (2.44) into parts thus leading to the identities

div[—pI] = —0ip =—Vp
div\(tr DI = X020 + 9,8;0;) = A*Vdiv[v]

(2.48)

A substitution of (2.48) into the equilibrium equations leads to the Navier-
Stokes equation

—Vp+ N+ p)Vdiv[¥] + 'V +f=0 inQ (2.49)

as formal physical expression for compressible, viscous fluids, here formulated
for the case of the static equilibrium.

To take the incompressibility of cerebrospinal fluid into account [78, 135,
146], the Navier-Stokes equation has to be further modified. For incompress-
wble fluids, the density p remains constant over Q, resulting in

div[¥] =0 in Q (2.50)

as consequence of inserting p = const into the continuity equation

1dp A
divie] = —>22  in 0, (2.51)
pdt
the latter representing an alternative formulation to the law of the conserva-
tion of mass [100, 47|, since a constant density p implies

ah _

= 0. 2.52
o (2.52)
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Now, the Stokes equation

~

—Vp+ VN +f=0 inQ (2.53)

follows, which serves as formal notation for the static equilibrium of an in-
compressible, viscous fluid. Note, that the viscosity parameter \* does not
appear in the Stokes equation due to (2.50).

2.3 The finite element method

Above, the necessary theoretical background for a physical model of biologi-
cal tissues and fluids has been derived. In order to determine the deformation
of a body (2 as a result of applied body and surface forces, the corresponding
partial differential equations in conjunction with appropriate boundary con-
ditions have to be solved for the unknown functions. Besides some specific
classical problems for which analytical solutions exist [100], numerical meth-
ods must be applied in general. In our case, we use the finite element method
(FEM) as numerical method to derive a linear matrix system which can be
solved with common techniques from linear algebra, e.g., Krylov subspace
methods or splitting methods [141, 7].

The finite element method divides a body 2 into a set of disjunct areas,
called finite elements, and approximates the unknown function in a piecewise
fashion by low order polynomials [72], i.e. the solution is approximated as
a sum over low order polynomials multiplied with coefficients from a set of
sampling points. In other words, the continuous problem is discretized using a
set of finite elements, each equipped with a finite number of sampling points.
Mathematically, the finite element method defines a bijective function L
between the solution space of the problem and its corresponding dual space.
Now, the solution u is simply determined by applying the inverse function
L' to the dual space.

For the FEM derivation of a continuous problem, we start with an ap-
plication of the method of weighted residuals due to the generality of this
approach, i.e. its applicability to partial differential equations is admissible
irrespectively of an existing equivalent extremal formulation [25]. With the
method of weighted residuals, we require that the projection of the residuum
(which results if an arbitrary function is substituted into a given partial dif-
ferential equation) on the basis functions (which span the underlying solution
space) vanishes over the body (2 in some average sense [72]. Thereafter, a
matrix system can be derived by applying the Galerkin method which consists
of approximating the solution space by a finite dimensional space only.
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2.3.1 The method of weighted residuals

The mathematical framework described in the following is mainly presented
on the basis of [25, 72, 12, 7]. Let a partial differential equation with mixed
boundary conditions be given,

A(u)=f in Q,

= I
u=gi only, (2.54)
J(u)ny =g on Iy,

J(u)ny +u=g; onl;,

where A denotes a linear differential operator, J(u) is the Jacobian of the

function u, and n; is the unit outward vector of I;. Note, that I; N I; = 0 for

i # j and [y UL UI3 = I holds for the definition of the boundary conditions.
In order to solve problem (2.54), a normed vector space

Ve () ={w:Q — R;w=g; on [}, (2.55)
spanned by a countable basis

span(¢1, ¢2, .. ) = Vél (Q), (256)

is introduced. Mathematically, V, (2) represents a subspace of the Sobolev
space

H™(Q) = {w € H™(Q);w = g; on T} (2.57)

of appropriate order m > 0 [25]. The Sobolev space H™(f2) is formally
defined as the closure of C*°(£2) with respect to the norm [20, 25, 7]

[Wlma= | > /|aaw|2d9, (2.58)
Q

laj<m

where C'*(£2) denotes the space of all functions whose partial derivatives of
arbitrary order exist over € [12]. In other words, a Sobolev space H™({2)
consists of those functions w € L(2), with Ly(Q2) defined as [25]

Lo(Q) = {w: Q0 —» m;/ w20 < oo}, (2.59)

for which all partial derivatives 9w, with |a| < m, belong to the space
Ly(€2). The space H™(Q) is endowed with a Hilbert structure, i.e. the norm
(2.58) and the scalar product

(1 Wma= Y / %1 0% w (2.60)
Q

laj<m
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exist [20, 25, 7]. To ensure the given Dirichlet boundary conditions of (2.54),
they are explicitly introduced in the definition of the vector space 1, (Q2), as
indicated by the index g; [12]. Therefore, the Dirichlet boundary conditions
are also denoted as essential boundary conditions.

By substitution of an arbitrary function v € Vg, (Q2) into the partial dif-
ferential equation (2.54),

A(v)—f=r, (2.61)

a residual error r results. In order to find the solution, a function u € V, (2)
is chosen such that the residual error is zero inside  [141, 25]. This can
be accomplished by a projection of the residuum r on arbitrary weighting
functions w € 1, (Q2) along with the requirement that this projection must
vanish, i.e.

(r,w)=0, Vwel,(Q) (2.62)

holds, where (-, -) denotes the inner product of Vg, (€2). Substitution of (2.61)
into this expression yields

(A(u) —f,w) =0, Vw el (Q) (2.63)

(see, e.g., [141, 72] for details).

Note, that other solution methods can be derived, if u and w belong
to different vector spaces. For example, the well known boundary element
method (BEM) can be obtained by using the Green’s function as weighting
function w instead [72, 12].

2.3.2 The Galerkin method

In order to represent (2.63) as a linear matrix problem, the Galerkin method is
applied [25, 72]. With this method, the solution space V, (2) is approximated
by a finite dimensional space nglv (), spanned by N countable basis functions
@1,...,0n, such that the solution u and the weighting function w can be
approximated as finite sums of basis functions multiplied with coefficients @
and w, respectively:

Depending on the relationship between V¥ (2) and the solution space Vg, (Q)
of the problem considered, either the conforming, where the finite dimen-
sional subspace V. (Q2) is a subset of the solution space Vg, (Q) (i.e. VN(Q) C
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Vg, (2) holds), or the non-conforming finite element method, where the finite
dimensional subspace V.Y(Q) is not a subset of the solution space V, ()
(ie. VY(Q) ¢ Vg, (Q) holds), is derived [20, 12, 7]. With a substitution of
(2.64) into (2.63), we obtain

O wAB) £, wi65) =0, (2.65)

i=1

which can be further transformed into

E)“ (¢:),0;) = (£,¢;) j=1...N. (2.66)

Equation (2.66) can be written in matrix notation as
Ai=f (2.67)

and solved for the unknown coefficients %; by common numerical methods,
e.g., Krylov subspace methods or splitting methods [7, 12]. In (2.67), A is
commonly denoted as stiffness matriz while the righthand side vector f is
known as load vector [25, 21].

The kind of basis functions and the number of unknowns has a significant
influence on the accuracy of the final solution. There are many (non)linear
problems for which it can be shown that @ — u holds for N — oo in
(2.65) [72].

2.3.3 Uniqueness of the solution

An important topic related to the finite element method concerns the exis-
tence of a unique solution. To derive conditions for the uniqueness of the
solution, (2.63) is written in terms of an abstract variational problem |20, 7|

a(u,w) = f(w), Vw e g (Q), (2.68)

where a(-,-) : Vg (Q) x V4, (€2) — IR denotes a symmetric bilinear form and
() : Vg () — R a linear form. This formulation is also known as weak
formulation [12] and incorporates the given Neumann and Robbins boundary
conditions. Associated with the abstract variational problem (2.68) is a linear
function [7]

LV, (Q) — VX (Q) (2.69)
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Figure 2.3: Sketch of the relationship between the finite dimensional vector
space Vg, (€2), its dual space V;(€2), and IR. The finite element method
defines an isomorphism L(-) between Vg, (©2) and V (€2) such that the solution
u € V() is uniquely assigned to a linear function f(-) with the property
a(u,w) = f(w) for all w € T, ().

through the relation
(L(u),w) =a(u,w), VYw e 1 (Q), (2.70)

where V. (€2) denotes the dual space to Vg, (£2), i.e. the space of all homo-
morphisms over V, () [38]. Figure 2.3 shows a sketch of the relationships
between the vector spaces involved.

In order to define a well-posed problem in the Hadamard sense [4], namely
a problem where a solution exists, is unique, and depends continuously on the
data, the function L must define an isomorphism, i.e. a continuous, bijective
mapping [7, 38]. Then, the solution u is determined by u = L7!(f), with
f e V() [7]. It can be shown [20, 25], that L defines an isomorphism if
the symmetric bilinear form a(-,-) satisfies the following conditions:
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e a(-,+) is continuous, i.e. there exists an o > 0 such that
la(u, v)| < affulll[v], Vu,v el (Q) (2.71)
holds, where || - || denotes the norm over 1, (©2) and

e a(-,-) is V-elliptic, i.e. there exists a constant 5 > 0 with
a(w,w) > Bllwl*,  Yw € T, (), (2.72)
or, in other words, the bilinear form a(, ) is positive definite [38].

For non-symmetric bilinear forms, the existence of the solution can be proven
using the Laz-Migram lemma [20]. Thus, our biomechanical model must
satisfy (2.71) and (2.72) to ensure the solvability of the approach, see Section
4.2 for details.

2.4 Summary

In this chapter, we presented the physical theory and mathematical methods
necessary to develop our biomechanical model of the human head. First,
we briefly summarized some important properties of biological materials,
focusing on those measurable physical entities of biological structures that
are necessary to model a deformation in the underlying physical framework
of continuum mechanics. An introduction into this theory has been given,
ending up with the Navier equation and the Stokes equation as physical
models for elastic and fluid materials, respectively. Finally, we have given
a short introduction into the finite element method which will be used as
numerical solution method throughout this thesis.



Chapter 3

Previous work on
biomechanical models

The development of biomechanical models of the human head has a relatively
long tradition, as described in an early overview of biomechanical models by
Khalil and Viano [82]. Already in 1943, Anzelius [2] contributed the first
analytical model of a human head to investigate the response of a spherical
mass to abrupt changes in velocity. In the following decades, only a few
more analytical models [54, 35, 69] had been proposed in the field of car
crash impact analysis. With the beginning of the seventies, however, the
number of biomechanical head models developed for car crash impact analysis
increased in a remarkable way. Extensive surveys on the broad spectrum of
models proposed up to 1996 can be found in Sauren and Classens [136], King
et al. [83], Voo et al. [155], as well as Hartmann [65]. Apart from the field
of car crash impact analysis, a large number of biomechanical models have
been developed in the field of medical image analysis during the last few
years which are not covered by these reviews.

Owing to the existing, detailed reviews of biomechanical models for car
crash impact analysis purposes [82, 136, 83, 155, 65|, only a brief survey of
these models will be given in the following. Instead, the main focus of our
review will be on the analysis of biomechanical models used in the field of
medical image analysis, which have not been completely covered by any other
survey so far. For a quick comparison of all approaches, we summarize them
in compact tabular form in Tables 3.1 and 3.2 at the end of this chapter.

27
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3.1 Biomechanical models of the human head

3.1.1 Models for car crash impact analysis

Motivated by the huge amount of money annually spent for the treatment
of head injuries caused by car crashes in the United States and Europe
[86, 87, 168, 155, 65], a series of biomechanical models have been developed to
investigate the relationship between diffuse azonal injury' (DAI) and impact-
induced stress distributions throughout the human head. Beginning with a
rather simplistic analytical model of a spherical human head [1] comprising
the skull and the complete brain only, the finite element method (FEM) in
conjunction with elasticity theory has been used soon to model the compli-
cated geometry of the human head [163, 86, 92, 167] and thus to increase the
reliability and accuracy of the calculated stress distributions. Later, different
research groups investigated the influence of different types of boundary con-
ditions? onto the predicted stress distributions computed for the human head
[162, 90, 168, 91] to further improve the effectiveness of FEM based models in
car crash impact analysis. These investigations led to the claim for an incor-
poration of additional anatomical structures like, e.g., the foramen magnum
or the falx cerebri, due to their large influence on the response of the human
head to externally applied frontal or occipital impacts. The incorporation of
different anatomical structures was then commonly achieved through a spa-
tial variation of the underlying material parameter values, namely the Lamé
constants A and p appearing in the Navier equation (see also Section 2.2).
Unfortunately, the parameter setting in terms of explicit values for the var-
ious anatomical structures had a paramount influence on the head response
as shown by Ruan et al. [131, 132, 134, 133]. In a series of articles, these
authors developed a complex FEM model of the human head to carry out a
parametric study for various impact locations and different material param-
eter values as well to investigate the influence of choosing specific material
parameter values on the resulting stress distribution.

Besides analyzing which mathematical boundary conditions and anatom-
ical structures have to be included into a biomechanical model, other authors
[30, 3, 134, 29, 90] assumed a viscoelastic material behavior instead of linear

'In case of angular accelerations of the human head, large shear forces occur at the
central parts of the human head. These shear forces lead to small hemorrhages and
disruptions of the axonal structures of the brain which are known as diffuse axonal injuries
[65].

2The term boundary conditions comprises here the purely mathematical boundary con-
ditions applied at the surfaces, e.g., different kinds of Dirichlet boundary conditions [90],
as well as the kind of anatomical structures that were incorporated into the biomechanical
model [168, 91].
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elastic material properties to simulate the time-dependent material proper-
ties of brain tissue [49, 78, 137, 105, 156]. But a study carried out by Kuijpers
et al. [90] regarding the stress distribution in case of the coup-contrecoup phe-
nomenon®, while using various versions of a FEM head model, revealed the
fact that the assumption of viscoelastic brain properties did not significantly
change the head’s response to frontal impacts as compared to purely linear
elastic material properties. Therefore, almost all biomechanical models used
for car crash impact analysis still assume linear elastic material properties
only.

An important feature of all these models concerns the number of finite
elements used. The number of finite elements is crucial with respect to the
accuracy of the computed stress distributions [72] and it can be shown, that
the latter converges to the exact solution of the problem as the number of
finite elements used is increased up to infinity in the ideal case. But since
most biomechanical models consist of up to a few thousand finite elements
only, see Table 3.1 for details, significant deviations from the exact solution
must be expected [66]. Only the recent model developed by Hartmann [65]
comprises a significantly larger number of finite elements such that a sufficient
accuracy can be expected.

3.1.2 Models for medical image correction

About five years ago, the first biomechanical models in the field of medical
image analysis have been proposed (e.g., the models of [146, 147]). Other ap-
proaches based on, e.g., mass-spring systems [13] were introduced for either
surgical planning or intraoperative image correction purposes. Recent work
in this field comprises a variety of models which simulate the biomechan-
ical behavior of different anatomical structures by either spatially varying
material parameter values while assuming the same physical model for all
structures considered (e.g., an elastic or a fluid model) or by applying appro-
priate boundary conditions.

Some of these models are based on physical motivations* only, like the
mass-spring model proposed by Bucholz et al. [13] which consists of an ar-

3The coup-contrecoup phenomenon occurs if an impact force affects the head thus
causing a sprawling shock wave. This shock wave usually leads to additional serious
injuries in the area opposite to the coup area [65].

“From a rather formal point of view, these models cannot be classified strictly as
biomechanical models since they do not simulate the mechanics of biological tissues and
structures [46, 47], i.e. they do not incorporate the physical properties of the human
head. However, these models are enclosed in this review according to their importance for
intraoperative image correction purposes.
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ray of pre-compressed springs, interconnected in a grid-like fashion, and uses
different spring constants to model variable material properties. Another
approach proposed by Edwards et al. [33, 34] used a set of combined energy
terms and minimized the spatial discrepancy between given landmark posi-
tions in the preoperative human head data and their current position while
satisfying some prior given geometry constraints like, e.g., area preservation
constraints. It has to be stressed, that all these models do not incorpo-
rate real physical material parameters and hence are only weakly related
to the physical behavior of biological soft tissues [28]. In contrast to these
rather physically-motivated models, other approaches based on a direct phys-
ical model of the biomechanical material behavior exist.

One physically-based approach is the brain model developed by Takizawa
et al. [147] who investigated the distortion and stress distribution inside the
head caused by putaminal hemorrhage. Although the model was mainly
constructed for simulation purposes, the calculated deformation field could
be used directly for image correction purposes. Using linear elasticity, the
authors simulated different anatomical structures by varying the material
parameter values entering the equilibrium equations describing the body.
At the boundary, a so-called homogeneous Dirichlet boundary condition was
assumed, i.e. the boundary of the simulated cerebral hemisphere was attached
to the skull and therefore was assumed to be fixed to it. For the solution,
the finite element method was applied.

Another approach is given through the model of Kyriacou and Davatzikos
[93, 94] who used a variation of the Mooney-Rivlin strain energy function
[113, 105] to simulate incompressible materials. This results in a so-called
neo-Hookean material [164, 101] which can be derived from the Mooney-
Rivlin strain energy function by setting the second Mooney-Rivlin parame-
ter to zero, which is in contrast to the value that has been determined and
compared against reported measurements [36], by Mendis et al. [105]. To
solve the resulting differential equations, the finite element method is used.
Instead of directly modeling different anatomical structures, the authors in-
troduced appropriate boundary conditions, e.g., the dura mater obeys the
homogeneous Dirichlet boundary condition and no movement between the
dura mater and the brain at the contact surface is allowed, the latter condi-
tion is also known as no-slip condition.

To determine the deformation of the falx cerebri due to intracranial pres-
sure differences, Schill et al. [139, 140] developed a finite element based model
of this structure, using elasticity theory. The model assumed homogeneous
Dirichlet boundary conditions at the skull interface and applied different val-
ues of the material parameter values in the horizontal and vertical directions
to take the fiber structure of the falx cerebri into account. The resulting de-
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formation field of the falx cerebri is then used to manipulate a complete MR
data set through a free sampling process. Free sampling calculates the path
a sampling beam follows in a ray-tracing process such that the deformation
of the volume can be determined [139]. Different anatomical structures of
the human head have been integrated in the free sampling process by using
heuristic stiffness values for each region. However, while the free sampling
process leads to visual appealing results, the physical validity of the calcu-
lated deformations remains questionable.

Skrinjar et al. [158, 157] used a set of mass nodes connected by Kelvin
models to simulate the behavior of brain tissue. A Kelvin model is a simplified
mechanical model of viscosity [116, 46] and consists of a parallel connection
of a linear spring and a dashpot. Although it is known that external forces
are difficult to determine directly from images, the deformation is driven
by them, and they are calculated from the positions and velocities of the
nodal points. To model different anatomical structures, again, appropriate
boundary conditions have been used.

Paulsen et al. [117, 107] modified a previously proposed approach of Tada
et al. [146] to deal with subsurface brain deformations. The approach is based
on consolidation theory and the finite element method is used to solve the
underlying differential equations. In consolidation theory, the brain is re-
garded as a biphasic system represented by a sponge-like elastic material
and an interstitial fluid. Different material properties are introduced by spa-
tially varying material parameter values as well as by applying appropriate
boundary conditions. The deformation is driven by inhomogeneous Dirichlet
boundary conditions only, i.e. the deformation at the brain surface is deter-
mined by a prescribed function g # 0.

Ferrant et al. [37] applied the finite element method to solve the equi-
librium equations of the assumed linear elastic body and used an additional
image similarity term to constrain the calculated deformation. This similar-
ity term has been derived from the image intensity values of two images and
represents the forces, i.e. the external forces have been replaced by a similar-
ity gauge of the image intensity functions. Thus, the approach is limited to
images of the same modality. Different material properties are intended to
be included through a spatial variation of the underlying material parameter
values.

In contrast, Davatzikos [26] explicitly introduced two additional terms
into the equilibrium description of the underlying linear elastic body thus
describing the influence of material inhomogeneities on the state of equilib-
rium of a body. But the introduction of these additional terms, which have
been derived by interpreting the Lamé constants as mathematical functions
a(x) such that div[a(x)A] = a(x)div[A] + AVa(x) holds for the derivation
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of the Navier equation in Section 2.2.4, is mathematically motivated only,
thus a physical motivation is lacking. Forces, derived from the curvatures
of corresponding cortical sulci, have been used in this approach to drive the
deformation of the body.

Despite the progress achieved, all these approaches generally lead to phys-
ically inadequate deformations in case of inhomogeneous materials since the
fact that different anatomical structures such as soft tissues or fluids be-
have differently has not been taken into account. Particularly anatomical
structures containing cerebrospinal fluid (CSF) cannot be simulated appro-
priately when simply assuming a linear elastic or viscoelastic behavior. One
approach that directly simulates the physical properties of fluids on the basis
of the Navier-Stokes equation has been developed by Lester et al. [97, 98].
Their model is motivated by the homogeneous fluid model of Christensen et
al. [18, 16] and uses a modified version of the Navier-Stokes equation where
the original pressure term has been dropped while two new terms have been
added. This allows to cope with different anatomical structures through a
spatial variation of the underlying viscosity parameter values. The deforma-
tion of the image is driven by weighted forces, computed from image intensity
differences and image intensity gradients, such as to simulate a variable influ-
ence of different structures [98]. Additionally, homogeneous Dirichlet bound-
ary conditions are applied to prevent the movement of so-called motionless
structures. An apparent drawback of the models of Lester et al. as well as
Christensen et al. is the assumption that all involved anatomical structures
behave like a viscous fluid which is not the case for the human head.

3.2 Biomechanical models of other organs

Besides the numerous biomechanical models of the human head, a variety of
models of other organs than the human head has been developed, mainly for
surgery simulation purposes. For example, these models comprise the liver
[22], muscle [14], or even different animal brains [163, 153]. Although some
models are based on the finite element method [9, 14, 23, 81, 142, 164], the
crucial requirement of real-time prediction of organ deformations for surgery
simulation purposes in training systems still demands an effective speed-up
of the original finite element algorithms. Therefore, Cotin et al. [24] pre-
calculated the responses for each node of the finite element grid to infinitesi-
mal forces and approximated the global deformation of their liver model as a
superposition of these pre-calculated responses. Bro Nielsen [9] reduced the
size of the linear equation system using a condensation technique [72, 11, 10]
to convert a volume model of the lower leg into a surface model. A similar
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strategy was used by Kuhn et al. [89, 88] who applied a hierarchical mass-
spring system [88] to simulate the deformation of a gall bladder. Within this
hierarchical system, the movement of surface nodes is treated always relative
to a previously specified internal node. Since all surface nodes are directly
connected to a single internal node, this approach significantly reduces the
number of internal nodes compared to common mass-spring systems.

Although mass-spring based models lead to visually appealing deforma-
tion results, see [148, 149, 80, 88| for example, the physical accuracy of defor-
mations computed by these models remains questionable since the material is
approximated by simplified mechanical models only and biomechanically rel-
evant material parameters are not taken into consideration [80, 28]. Another
physically-motivated approach has been developed by Gibson et al. [52, 51],
where a ChainMail algorithm is used to propagate deformations through a
soft tissue volume with real-time speed, but values for this real-time behavior
have not been given so far. In a ChainMail algorithm, each node of the model
propagates its displacements to all neighbors through variable connections,
the variability of which depends on the material properties of the connected
nodes. To simulate tissue elasticity for an arthroscopic knee surgery, the de-
formation process is followed by a distance adjustment between neighboring
chain elements to minimize a not further specified local energy constraint.
Although this results in a fast deformation algorithm, the physical accuracy
of the predicted deformation result remains unclear [28]. Schiemann and
Hohne [138] used a set of given correspondences at the surface of a kidney,
to calculate a volume deformation based on the thin-plate spline interpola-
tion scheme of Bookstein [6]. But within this scheme, it is impossible to
distinguish between different materials due to the fact that biomechanically
relevant tissue parameters cannot be incorporated into the thin-plate spline
interpolation scheme.

In contrast to the hitherto mentioned schemes, Monserrat et al. [112, 111]
used the boundary element method (BEM) [8] in conjunction with linear
elasticity theory to develop a physically-based surface model of the liver that
behaves like a volume model. The advantage of this technique is a significant
reduction of the number of degrees-of-freedom as compared to the common
finite element method, but problems arise with respect to the necessary ac-
curacy of boundary approximations of organ contours, given the underlying
regular image grid [53]. Additionally, the resulting stiffness matrices are
dense such that efficient numerical solution techniques cannot be applied
(5, 112, 53].
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3.3 Tabular summary of the biomechanical
models

To allow for a direct comparison of the existing biomechanical models dis-
cussed here, we give a compact summary of all human head models in Table
3.1 and of all models of other organs in Table 3.2, respectively. Besides
a listing of all anatomical structures simulated by the models, we also in-
cluded the underlying physical theory, the dimensionality of the model, the
applied solution method, and the number of elements or nodes if provided
by the authors. We use the abbreviations FEM (finite element method),
CG (conjugate gradient), SOR (successive over-relaxation), RKn (nth order
Runge-Kutta), IEA (implicit Eulerian approach), BEM (boundary element
method), and TPS (thin-plate-splines) to characterize the solution method.
For those models using a set of connected mass-nodes [13, 33, 157, 89, 84|,
the value given for the number of elements denotes the number of nodes
instead. A hyphen in a column indicates the lack of available information,
i.e. no information was given by the authors.

In the last two columns, the applications of each model is given as well
as the data used for model validation. Note, that in most cases the mea-
surements published by Nahum et al. [115] have been used for validation
purposes. In their article, a series of human cadaver experiments were car-
ried out to measure intracranial pressures at different locations. To this end,
the human cadavers were seated and frontal impacts with rigid masses at
constant velocities were investigated. The impactor masses were varied be-
tween 5.23 kg and 23.09 kg with velocities ranging from 8.41 m/s to 12.95
m/s resulting in peak input forces between 5200 N and 14840 N.

Due to these large input forces, the validation of biomechanical models
developed for surgery simulation purposes on grounds of the values pub-
lished in Nahum et al. [115] seems not appropriate. As a consequence, a
validation of biomechanical models remains a crucial task [28]. However, al-
though first steps towards a validation have been carried out by comparing
the calculated deformations of a brain surface with the actual brain shift
during neurosurgery [13, 107], the complete validation requires an additional
measurement of stresses and applied forces on tissues as well as a comparison
with those values calculated by the biomechanical model [28].

3.4 Summary

This chapter surveyed existing papers dealing with biomechanical models of
the human head and other organs that are relevant for the simulation of
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menisci, anterior and posterior
cruciate liagments

surgery

w0 Sy
=] e SIS
anatomical structures . g S 9 g8
authors - applied model g £ £ 2 2 simulation of validation
considered @ = 25
g Cl:| =<
b a
gastrocnemius
Chen and Zeltzer [14] muscle viscoelasticity 3D FEM 4 and biceps con- | measured shape data
traction
Terzopoulos and cutaneous tissue, subcutaneous | mass-spring o . . o
Waters [149] tissue, dermis, fascia, muscles model 3D RK2 facial expressions
Kuhn [88] gall bladder [nass-spring 3D | IEA 443 surgical - interven- —
model tion
Bro-Nielsen [9] lower leg linear elasticity 3D FEM — leg Am:i,mom defor- —
mation
Cotin el al. [23] liver linear elasticity 3D FEM 3902 hepatic surgery —
Keeve el al. [81] facial tissue linear elasticity 3D FEM 2583 craniofacial ﬁ@ﬁoﬁﬁmié craniofa-
surgery cial data
Koch el al. [84] facial surface [nass-spring 3D FEM 3100 craniofacial —
model surgery
vertebrae L3, L4 and L5, discs, basic lumbarspine values found in litera-
Smit [142] spinal ligaments, facet joints, | linear elasticity 3D FEM 5696 loads P ture (no further specifi-
annulus cation)
Weiss el al. [164] knee dmo-m.oowgs 3D FEM — knee flexion —
material
Monserrat el al. [112] liver linear elasticity 3D BEM — endoscopic —
surgery
Schiemann and . . .. .
Hohne [138] kidney linear elasticity 3D TPS — kidney surgery —
femur, tibia, fibula, patella,
Gibson el al. [51] cartilage, lateral and medial ChainMail 3D o 125000 arthroscopic knee o

Table 3.2: Summary
models is given with respect to the time of their development. For all abbreviations used in this table as well as for

of the existing biomechanical models of other human organs. Note, that

further explanations, see text.

the sequence of the
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tissue deformations. It turned out, that the existing models can be roughly
classified in three groups depending on the motivation of their development:
Models for car crash impact analysis, models for surgery simulation, and
models for intraoperative image correction purposes.

Despite the anatomical complexity of biomechanical models developed
for car crash impact analysis as compared to models belonging to the sec-
ond and third groups, their application to image correction purposes remains
problematic for reasons of unrealistic model assumptions. All models devel-
oped for car crash impact analysis investigate the stress distribution resulting
from large impact forces (about 6000 V), but none determines the associated
deformations which is the main aim of intraoperative image correction.

So far, all biomechanical models simulate different anatomical structures
by using either appropriate boundary conditions, e.g., homogeneous Dirich-
let boundary conditions to model rigid structures, or by spatially varying
material parameter values, while assuming the same physical model for all
anatomical structures (e.g., an elastic or a fluid model). In general, this leads
to physically implausible results, especially in the case of adjacent elastic and
fluid structures whose deformation behaviors differ significantly [59]. To in-
crease the accuracy of the calculated deformation results, different physical
models have to be included into a biomechanical model.

In conjunction with the large number of existing biomechanical models,
the assumed material parameter values for the Lamé constants suffer from a
great variability of up to two orders in magnitude. Consequently, the choice
of the material parameter values remains crucial for the resulting deformation
accuracy, see Section 4.6 below for further details. Additionally, since the
determination of reliable external forces from given image data, as necessary
for image correction purposes, remains difficult, a landmark-based scheme has
advantages here. Within a landmark-based scheme, the correspondences be-
tween point, line, or surface landmarks are used as prescribed displacements
to drive the deformation of the biomechanical model. The applied landmarks
may be appropriate anatomical points [126, 127] or also fiducial markers.
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Chapter 4

A new biomechanical model of
the human head

In the previous chapters, we described the physical and mathematical back-
ground necessary for the deerivation of our new biomechanical model of the
human head for the purpose of intraoperative image correction. From our
literature study it follows, that different physical models should be included
into the biomechanical model to further increase the accuracy of intraoper-
ative image correction and finally of image-guided neuronavigation systems.
This chapter deals with the derivation of a biomechanical model of the human
head, allowing a coupling of elastic and fluid models.

As pointed out in Chapter 2, continuum mechanics serves as physical the-
ory for our biomechanical model thus allowing for a physically-based simula-
tion of organ deformations due to applied external forces. The accuracy of the
predicted deformation depends mainly on the constitutive equations chosen
to simulate the biomechanical behavior of the material. If the applied consti-
tutive equations represent only a poor approximation of the load-deformation
curves measured for these materials, then the calculated deformations will
be physically inadequate [60, 63]. Therefore, it is necessary to determine
appropriate constitutive equations for each material to be incorporated into
the biomechanical model, as will be described in the following Section 4.1.

A substitution of these constitutive equations into the equilibrium equa-
tions leads to a set of differential equations, namely the Navier equation and
the Stokes equation, each describing the state of equilibrium of a homoge-
neous body consisting of the specified material. For the numerical solution
of these differential equations, we apply the finite element method (FEM).
The complete FEM derivation for different materials is given in Section 4.2,
followed by a construction scheme for the basis functions spanning the un-
derlying solution space V() in Section 4.3.

41
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In the first three sections of this chapter, only physical bodies consist-
ing of homogeneous materials will be considered. To incorporate different
anatomical structures, we divide the inhomogeneous body into a set of dis-
junct regions each describing a homogeneous material only. This division
leads to a set of linear matrix systems that can be merged into a single
linear matrix system by applying appropriate boundary conditions, as pre-
sented in Section 4.4. Instead of using forces, which are generally difficult to
be determined from corresponding images, we use a set of given (landmark)
correspondences in the sense of a sparse displacement vector field to drive the
deformation of our model. As shown in Section 4.5, these correspondences
can be easily integrated into the linear matrix system and the resulting defor-
mation always satisfies these correspondences. Thus, our approach can also
be considered as a landmark-based registration scheme [6, 130, 128, 129, 41].
Finally, Section 4.6 deals with the necessary determination of reliable values
for the material parameters entering our biomechanical model, namely the
Lamé constants and the viscosity parameter.

4.1 Material descriptions

Although the human head is composed of numerous different anatomical
structures, we restrict our biomechanical model to skull bone, brain tissue,
and cerebrospinal fluid only, since these are the most relevant structures in
the human head for our purpose of image correction. Another argument in
favor of this restriction is the lack of known mechanical properties for most
biological tissues due to the difficulties associated with the measurement
of tissue properties of living specimen [46]. Additionally, problems arise
with the necessary segmentation of other anatomical structures than skull
bone, brain tissue, and ventricular system in the preoperative image, see also
Chapter 5 below.

In order to describe the biomechanical behavior of different anatomi-
cal structures, various investigations have been carried out, see for example
[36, 106, 160, 137, 161]. Especially in the case of brain tissue, these investiga-
tions led to different descriptions of its mechanical properties, such that the
validity of constitutive equations used in previously developed biomechanical
models remains unclear (see Chapter 3 for a detailed description). So far,
the choice of a specific constitutive equation, especially in conjunction with
the reported properties of the material considered has not been critically dis-
cussed. In the following, we will discuss and compare therefore the reported
tissue characterizations in terms of appropriate constitutive equations, end-
ing up with an explicit choice of these equations for skull bone, brain tissue,
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and cerebrospinal fluid.

4.1.1 Skull bone

Skull bone is a rather rigid material which is brittle and cracks at low strain
rates. The stress-strain relationship is similar to many engineering materials
like steel or aluminum [46], i.e. the stress-strain relationship is a rather linear
one thus suggesting that Hooke’s law (2.33) is applicable [154, 46]. Since the
range of strain is very small, it suffices to use Cauchy’s infinitesimal strain
tensor (2.36) here which allows a description of the physical behavior of skull
bone through the Navier equation (2.47) [46].

4.1.2 Cerebrospinal fluid

The Cerebrospinal fluid (CSF), which is contained in the ventricular system
and the subarachnoidal space, i.e. the space between brain tissue and the
dura mater, can be considered as an incompressible fluid [135, 146]. Due to
its biomechanical similarity to blood plasma [109, 108], it seems reasonable
to assume equivalent physical properties for the cerebrospinal fluid. In [46]
and [48], the mechanical properties of blood have been investigated. It was
shown there, that blood can be considered as a viscous fluid and thus the
Navier-Poisson law (2.42) serves as a sufficient approximation. Thus, the
biomechanical properties of the cerebrospinal fluid can be simulated using
the Stokes equation (2.53) which takes into account the incompressibility
characteristic.

4.1.3 Brain tissue

Like most other soft tissues, e.g., skin or muscles [46, 101], brain tissue is
usually characterized as a linear viscoelastic material [49, 78, 137, 105, 156],
i.e. as a material for which the stress tensor depends on the entire history of
the strain tensor. According to the Boltzmann principle, which claims that
the Eulerian stress tensor o (¢) at the time ¢ is a functional of the entire history
of Cauchy’s infinitesimal strain tensor €(¢) [32], a constitutive equation for a
linear viscoelastic solid can be derived, which reads [44, 46, 32]

o(t) = /_ G(t—r)ag(:)dr. (4.1)

The tensor G(t) denotes the tensorial relazation function with components

g2(t) — 61 (1) 9:(t)
3 2

G(t)ijkl = 5ij5kl +

(0ir0j1 + 0udjx) (4.2)
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where g1 (t) and go(t) are scalar functions referring to the underlying material
properties. Note, that the lower bound of the integral in (4.1) starts the
integration before the beginning of the motion at t = 0. If o(¢t) = €(t) = 0
holds for ¢t < 0, then (4.1) reduces to

86(:)617, (4.3)

a(t):e(tg)G(t)Jr/O G(t—71) 5

where €(t; ) denotes the value of the strain tensor for ¢ — 0 from the positive
side.

However, the necessity for using a linear viscoelastic constitutive equation
for brain tissue depends on the behavior of the tensorial relaxation function
G (t) with respect to time [44]. Understanding the integral (4.1) in the Stielt-
jes’ sense! [44], it is allowed to change the order of differentiation, leading
to

o(t) = / 6(7)%&. (4.4)

—o0

The assumption that the tensorial relaxation function G(t) is a multiple
step function in time, in other words, the time-dependent properties of the
material change abruptly at discrete time instances only while remaining
constant otherwise, yields [12]

o(t) =) [G(t)) — G(t;)] e(ts) (4.5)

as constitutive equation, where ¢ and t;” represent the limits from the left
and right side of the discrete time instance t;, respectively. In case of a unit
step behavior of G(t) at the time ¢; = 0, (4.5) reduces to

O'(t) = [G(ta—) — G(ta)] 6(0) = [a (5,']'(5]91 + ﬁ (5ik5jl + (5115]]‘,)] 6(0), (46)

which is the constitutive equation of a linear elastic material, namely Hooke’s
law (2.37). Consequently, a linear elastic material can be characterized as a
material without memory, i.e. as a material where the stress tensor depends
on the instantaneous strain tensor only. It follows that the behavior of the
tensorial relaxation function with respect to time completely determines the
choice of the constitutive equation for brain tissue. The exact behavior of
the tensorial relaxation function with respect to time is yet unknown to

'In probability theory, a Stieltjes’ integral serves as a measure for the mass distribution
of a continuously differentiable distribution function [12].



4.1 Material descriptions 45

our current knowledge, but measurements indicate that brain tissue can be
considered as a linear elastic material as long as the observation times are
short compared to the stress relaxation time of brain tissue [161].

Besides the question of the appropriateness of Hooke’s law, some au-
thors characterized brain tissue as a nonlinear viscoelastic material [49, 137]
instead. In this case, the strain €(¢) in (4.1) or (4.3) has to be replaced by
some nonlinear function f(e(t)) [32]. Although the measured deviations from
linear viscoelasticity are so small that the latter one still serves as a good
approximation [49], efforts have been made to formulate such nonlinear func-
tions for brain tissue [116, 105, 110]. Motivated by the idea of using such
functions as constitutive equations for brain tissue instead, we summarize
the common derivation scheme of such nonlinear functions in the following.

Starting point for all derivations is the assumption that brain tissue can
be considered as a hyperelastic material, i.e. as a material whose response
function is completely determined by an existing stored energy function W :
Q x R**® — IR such that

o(x) = %—Vf(x,e) (4.7)

holds [21, 32]. Assuming furthermore that brain tissue behaves as a homoge-
neous, isotropic, and incompressible material, the stored energy function W
can be written in terms of the first two principal invariants ¢;(€) and ¢o(€) of
the strain tensor € as [113, 32]

W = (071 (Ll (6) — 3) + a2(L2(6) — 3), (48)
where the invariants are defined through [21, 105]

1(e) = (tre) = M+A+A3 (4.9)
w(e) = L((tre)? —(tre?)) = A3+ A3A3 + AJAL '
With Ay, A2, and A3, we denote the principal stretch ratios, i.e. the ratios
between the final and initial length along the orthogonal x;, x3, and 3
directions, respectively.

In case of pure tensile tests of a specimen in the z; direction, which serve
as common experimental basis for the derivation of a nonlinear function f(€)
[116, 105, 110], the principal stretch ratios Ay and A3 are related to A; through
the simple relationship [105, 110, 32]

1
VAL
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Figure 4.1: Comparison of the stress-strain relationship of different constitu-
tive equations for brain tissue: Hooke’s law to simulate a linear elastic ma-
terial behavior (dashed line) and the nonlinear constitutive equation (4.11)
(solid line) to simulate a nonlinear viscoelastic behavior. A significant devi-
ation occurs for larger values of the natural strain € only.

Based on (4.7), (4.8), and (4.10), while applying homogeneous Neumann
boundary conditions at the lateral sides of the tissue specimen considered
[32], a nonlinear relationship for the only non-zero stress component oq; of
the stress tensor o [116, 21, 110] can be derived, leading to [116, 105]

1 1
o111 = 20{1 (626 - ;) + 20[2 (66 — E) . (4].].)

Note, that oy is expressed here in terms of the natural strain € [100, 36],
e =In[\], (4.12)

which serves as the preferred measure of strain in case of pure tensile tests
[36]. For small elongations of a tissue specimen, where A\; ~ 1 holds, the
natural strain e is approximately equal to the appropriate component €;; of
Cauchy’s strain tensor € [100, 46].

A comparison of (4.11) with Hooke’s law reveals a similar behavior for
small strain rates while significant deviations occur for larger values, see Fig-
ure 4.1. But in the latter case, the linearized theory is no longer valid and the
distinction between the Lagrangian and Eulerian configuration must be re-
garded, as pointed out in Chapter 2. To circumvent the problems associated
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with finite deformations (see Section 2.2.3 for details), we restrict the defor-
mation field to be infinitesimal such that Hooke’s law still serves as a good
approximation for the constitutive equation of brain tissue. Consequently,
this restriction allows the usage of Cauchy’s infinitesimal strain tensor € such
that the Navier equation (2.47) serves as a valid approximation to simulate
the biomechanical behavior of brain tissue.

The formal limitation of the Navier equation to infinitesimal displace-
ments and, consequently, deformations weakens in real applications, see Chap-
ter 5 for details, but problems may arise in case of large deformations. To
overcome such limitations, the Lagrangian incremental method [21, 118, 121,
120] should be used instead of a nonlinear constitutive equation which pro-
vides an approximate solution by successively solving linear problems.

4.2 Numerical solution using the finite ele-
ment method

As pointed out in the last section, the Navier equation and the Stokes equa-
tion serve as valid physical models to simulate the deformation behavior of
either skull bone and brain tissue or cerebrospinal fluid, respectively. For
a numerical solution of the Navier equation and the Stokes equation, we
will now apply the finite element method (FEM), ending up with a lin-
ear matrix system in both cases. In the following derivations, we consider
only Dirichlet boundary conditions, where the value of the unknown is pre-
scribed on the boundary (i.e. u = g; holds on I}), and Neumann bound-
ary conditions, where the derivative of the unknown is prescribed on the
boundary (i.e. J(u)n = gy holds on I). Robbins boundary conditions,
which represent a combination of Dirichlet and Neumann boundary condi-
tions (i.e. J(u)n + u = g3 holds on I3) are not considered here to keep the
formulas readable, but note that the integration of this type of boundary
conditions is a straightforward task [25].

4.2.1 FEM derivation of the Navier equation

To solve the Navier equation with specified homogeneous Dirichlet boundary
conditions on I as well as Neumann boundary conditions on I},

(A + p)Vdivu] — pV>u="f in
0 on Iy (4.13)

n—g OIle,

u

9
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we apply the method of weighted residuals according to Section 2.3. The
resulting expression, after substitution of the identities (2.46), can be written
as

/Q (—div[A(tre(u))T + 2pe(w)], w) dQ = /Q (F, w) O, (4.14)

where (-,-) denotes the common inner product and w € V() is an arbi-
trary weighting function of the underlying vector space V(). Using Green’s
formula [21]

/Q (divA, w)dQ = /F (An, w)dl — /Q (A, J(w))dQ, (4.15)

the order of differentiation can be reduced, leading to the expression
/ (A(tre(u))T + 2ue(u), T (w)) dO =
Q

/Q (F, w) dQ + / (g, w)dTy. (4.16)

I

For the derivation of (4.16), the identity & = A(tre(u))I+2ue(u), i.e. Hooke’s
law, has been used to substitute the given Neumann boundary condition
on = g on [;. Note, that the boundary integral related to the portion I of
r

/ (on, w) dT (4.17)

vanishes in (4.16) since w = 0 holds on I} due to the definition of the
underlying solution space [25]
V(Q)={w:Q— R;w=0onI} (4.18)

Application of the law (A,B) = (tr ATB), and bearing the symmetry of
Cauchy’s infinitesimal strain tensor €(u) in mind, yields

[ L) + o2y 3 w02 =

/Q (F, w) dQ + / (g, w)dDy, (4.19)

I

which is equivalent to
/Q Abre(w) (tr 13 (w)) + 2p(tre(w)I (w))dS2 =

/Q (F, w) dQ + / (&, w)dTy. (4.20)

I



4.2 Numerical solution using FEM 49

Due to the equality (tre(u)J(w)) = (e(u), J(w)) = (e(u),e(w)) [21], this can
be furthermore rewritten as

/Q)\(tr e(u))(tre(w)) +2u (e(u), e(w)) dQ2 =
/ (F, w) d) + / (g, w)dDy. (421)

I
Note, that for this derivation the relationship (trJ(w)) = d;w; = (tre(w))
has been applied.
Equation (4.21) can be expressed in terms of an abstract problem [20],
leading to the following elliptic problem [20, 25]: Find u € V() such that

a(u,w) = f(w), VweV(Q) (4.22)

holds, where the bilinear form a(-,-) : V(2) x V(2) — R and the linear
form f(-) : V(Q2) — IR are defined as [20]

a(u,w) = /Q)\(tre(u))(tre(w)) + 2u (e(u), e(w)) dQ (4.23)
and

f(w):/Q(f,w)dQ—i-/F (g, w)dly, (4.24)

respectively. The solution space V() of the Navier equation can be identified
with the Sobolev space H'(f2), and it can be shown that the bilinear form
a(+,-) is continuous and V-elliptic [20, 25], i.e. the problem is well-posed in
the Hadamard sense [4], see Section 2.3 for details.

For a numerical solution, the abstract problem (4.22) is converted into
a linear matrix system through the Galerkin method, which results in a
conforming finite element method. Therefore, the solution space V(Q2) is
approximated by a finite dimensional subspace V¥ (), spanned by a finite
number N of basis functions ¢;, thus allowing an approximation of u by

N 3 N
u= Z Z Ukipi = Z (T1iP1i + UoiPoi + Usisi) (4.25)
i=1 k=1 i1

where the basis functions read [25]
$:,0,007 for k =1

(
Wi = < (0,0:,0)T for k=2 (4.26)
(0, 0, (,f),)T for k = 3.
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Substitution of (4.25) into (4.22) yields

Zﬁki/ﬂA(trf(@))(tre(%)) + 20 (e(9:), €(¢;)) d2 =

/(f,¢j)dﬂ+/ (g,¢;)dly k=1...3, j=1...N, (4.27)
Q

I

which can be written in compact matrix notation as

A Ap Agg uy fi + g1
A21 A22 A23 ﬁz = f2 + g2 - (428)
Az Az Ag us f3+g3

Here, Aiy,..., A3 denote the submatrices for the corresponding spatial di-

mensions z1, To, and r3. The N x N matrix entries of each diagonal submatrix
A, are determined by

Agrij = / A0k @riOkPr; + 1t (201P1iOkdrj + 01P1iOiPr; + Om@riOmdrj) d2
Q
k#l#mell,...,3 ij=1...N, (4.29)

while the matrix entries for the other submatrices Ay read

Apiij = / A0k briOidi; + 110, Pri Oy A
Q
k#1e[l,....3 4,j=1...N (4.30)

according to definition (4.26). For the spatial components fi, ... f3 and
g1,...,83 of the right-hand side of (4.28), the vector entries read

fkj+gkj:/fkj¢kjdﬂ+/ Grj®r; dly
Q Iy
kell,...,3 j=1...N. (431

4.2.2 FEM derivation of the Stokes equation

In contrast to the Navier equation, the Stokes equation defines a constrained
minimization problem with an additional unknown pressure function p €
W () [12, 7). Therefore, the incompressibility constraint (2.50) has to be
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solved simultaneously with the Stokes equation. The complete problem with
specified homogeneous Dirichlet boundary conditions on I’} as well as Neu-
mann boundary conditions on Iy reads now
Vp — wViv=f in
divjv] =0 in (4.32)
v=0 on I}
on=g on I}.

An application of the method of weighted residuals with arbitrary weighting
functions w € V() and ¢ € W(Q) leads to the expressions

/ (Vp— w'Viv,w)dQ = / (f, w)dQ
@ @ (4.33)

/ q div]v]dQ = 0.
Q

With the identity (A,B + C) = (A,B) + (A, C), the first part of (4.33)
can be directly rewritten as

/Q (Vp,w) — p* (V?v,w) dQ = /Q (f, w) d<2. (4.34)
Using the law (Va,b) = div [ab] — adiv [b] [100, 12] gives
/ﬂdiv[pw] — pdiviw] — p* (V?v, w) dQ = /Q (f, w) dQ, (4.35)

which can be transformed through (V2a,b) = div[J(a)Tb]—(J(a),J(b)) into
/Qdiv[pw] — pdiviw] — p* div[J(v)"w] + u* (J(v), I (w)) dQ2 =

/ (f, w)dQ. (4.36)

An application of Green’s formula [21]

/Q div]aldQ = / (a,n) T, (4.37)

r
where n denotes the unit outward vector of the boundary I', to equation

(4.36) yields
/Q —pdiviw] + p (J(v), T(w)) dQ =

/Q (f, w)dQ2 — /1“2 (pw,n)dl + /1“2 p* (J(v)"w,n) dls. (4.38)
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Again, as shown in the previous section, the boundary integrals related to the
homogeneous Dirichlet boundary condition vanish here, due to the definition
of the underlying solution space V' (€2) [25]. The boundary integrals appearing
on the right-hand side can be further simplified using the identities

(pw,n) = pw;n; = (w,pn) (4.39)
p* (Iv)'w,n) = pdvwn; = p(I(v)n,w). '

A closer consideration of the first identity reveals, that the term pn represents
a pressure load [21] on the surface I such that g = pn holds [21], which is
directly related to Cauchy’s stress vector t through equation (2.24). This
observation is in accordance with the interpretation of the Cauchy stress
vector t being a pressure [100, 21]. For the second identity, we simply assume
for the moment that J(v)n vanishes on I';. The validity of this assumption
will be discussed in detail in Section 4.4 below. Therefore, the final formula
after application of the method of weighted residuals and substitution of the
given Neumann boundary conditions reads

/Q —pdiviw] + p* (J(v), I (w))dQ = /

. (f, w)dQ — /F (g, w)dIly

(4.40)
/ q div]v]dQ = 0.

Again, the finite element formulation of the Stokes equation can be writ-
ten in terms of an abstract problem [152, 58]: find a pair (v,p) € V() x
W () such that

a(v,w)+b(p,w) +0b(q,v) = f(w), V(w,q)eV(Q)xW((Q) (4.41)

holds, where the bilinear forms a(-,-) : V(2) x V(Q) — IR and b(-,") :
W(Q) x V() — R are defined as

a(v,w) = /Qu* (J(v),J(w))dQ (4.42)
bp,w) = — /Q pdiviw]de, (4.43)

while the linear form f(-) : V(Q) — IR reads
fow) = [ (twyaa- [ (g W)y (4.44)

Appropriate solution spaces of V(Q) and W () for the Stokes problem are
the Sobolev space H'(2) and the Hilbert space

Lao(®) = {a € La(@); | qdn =0} (4.45)
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respectively [58, 7]. With L,(2), the space of all quadratic integrable func-
tions over (2 is denoted, see also the definition (2.59). Note, that the pressure
p appearing in the Stokes equation (4.32) is determined up to an additive
constant only, so the commonly used standardization fQ qdS) = 0 is necessary
here [58, 7].

In contrast to the Navier equation, the abstract Stokes problem (4.41) de-
fines a saddlepoint problem. To ensure solvability in this case, the associated
linear function

L:V(Q) x W(Q) — V*(Q) x W*(Q), (4.46)

where V*(2) x W*(2) denotes the product space of the underlying dual
spaces, must define an isomorphism, as pointed out in Section 2.3. Following
(58, 7], it is therefore necessary and sufficient that the bilinear form af(-,-) is
continuous and V-elliptic, while the bilinear form b(-, -) satisfies the Babuska-
Brezzi condition [25, 58]: A continuous bilinear form b(-, ) : W(Q)xV(Q) —
IR over the spaces V() and W(2), each equipped with a norm || - ||y and
| - |lw, respectively, satisfies the Babuska-Brezzi condition if there exists a
constant o > 0 with

b(w, q)
sup
wev ||[Wllv

It can be shown that (4.42) and (4.43) satisfy the above mentioned conditions
[7], i.e. the Stokes equation defines a well-posed problem in the Hadamard
sense [4]. However, the abstract problem (4.41) leads to a non-conforming
finite element method since the incompressibility constraint (2.50) is satisfied
in a weak sense only [12, 58], i.e. the solution does not satisfy the incompress-
ibility constraint pointwise but in the mean. It can be shown, however, that
each classical solution of (4.41), i.e. a solution satisfying u € C*(Q) N C%(Q)
and p € C'(Q), is still a classical solution of the Stokes problem (4.32)
[7, 58]. As usual, the space C™(2) denotes here the space of all functions
w : 0 — IR whose partial derivatives up to order m exist on € [12].

To derive a linear matrix system, the Galerkin method is applied again by
choosing finite dimensional subspaces V() and W (Q), each spanned by
basis functions ¢; and v;, respectively. A substitution of the approximations

> allgllw, Vg€ W(Q). (4.47)

N

N 3
V= Z Z Ui = Z (D16@17 + Voio; + V3ihs;) (4.48)
i=1 k=1 i—1

and

M
=Y By (4.49)
j=1
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into (4.41) yields for the Stokes equation

N

i [ (360,36 a0 = Y5 [ vidivigy)in =

i=1

/(f,qS]-)dQ—/ (8,6,)dTs k=1...3, j=1...N (450)
Q

I

and for the incompressibility constraint

N
Zﬁki/@/}jdiv[qbi]dﬁ =0 k=1...3, j=1...M. (4.51)
i=1 L

Again, these equations can be written in matrix notation as

A Ap A Py Vi fi +g
Ay Ay Ay Py Vs _ f; + g (4.52)
Az Az Az P V3 fs +g5 |’ '
PT PT PT 0/ \p 0

where Ayq,...,Ass denote the N x N submatrices for the corresponding

spatial dimensions x1, xo, and x3 while P, P,, and P3; denote the N x M
submatrices for the terms which relate the pressure to the corresponding
spatial dimensions [25].

Written in extenso, the matrix entries for the diagonal submatrices Ay
read

Aprij = / 1 (OkPriOkdrj + 01@ri0iPrj + Om®riOmdy;) d
Q
k#l#mell,...,3] 4,j=1...N, (4.53)
for the submatrices Aj; we have

Akii; =0
kA1e[l,...,3] i,j=1...N, (454)

and for the pressure submatrices P; we have

Pkij:_/wjak¢kid9
Q
kell,...,3] i=1...N j=1...M. (455)
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For the right-hand side of (4.52), the vector entries read

frj + gr;j Z/fkjfﬁkjdﬂ—/ Gk Pridls
Q o
kell,...,3] j=1...N. (4.56)

4.3 Finite elements

So far, we simply assumed the existence of a finite dimensional vector space
VN (Q) to approximate the corresponding solution space V (2) for the Navier
equation and the Stokes equation, respectively. Remember, that each solu-
tion space V() is a subset of a Sobolev space H™({2) of appropriate order
m. An application of the Galerkin method demands now an explicit con-
struction of the basis functions ¢; and hence of the space V¥ (), as pointed
out in Section 2.3. In order to construct such basis functions, the body €2 is
divided into a finite set of NV areas {2, satisfying the properties [25, 7]

[ ] Q:Uka, ]_SlSN,
e U Ny =0if k#1, and
o O and €, k # [, may only share a common surface, side, or vertex.

As usual, Q denotes the closure of the body €2, while 2, denotes the closure
of the corresponding area 2. The areas {2 are commonly known as finite
elements and allow the introduction of basis functions ¢; with compact sup-
port only. A direct consequence of the compactness is, that the resulting
stiffness matrix A is sparse, i.e. A contains a large number of zeros, which
is important for the application of efficient numerical solution methods [20].
Based on the finite elements, we will now present a construction scheme for
the basis functions ¢;, following mainly [141, 72, 7].

4.3.1 Construction of a basis for the space V" (Q)

For the explicit construction of a finite dimensional space VY (Q) over the

body (2, the following property of polynomial functions w : QO — R is
exploited: w € H™(Q2) holds if w € C™ !(Q) and the restrictions w|q, €

C™(Q) are satisfied for all finite elements € [20, 58, 7]. Therefore, the
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unknown function u is usually approximated in each finite element 2 by
polynomials of order m,

o, = Y apaiciel, (4.57)

0<i,j,k<m

where 11|g, denotes the restriction of @ on the finite element ;. To ensure
the invariance with respect to linear transformations of the representation
of @]g, within each finite element €, the polynomials (4.57) should possess
the property of geometric isotropy [141, 72], i.e. they should be invariant
with respect to linear transformations from one Cartesian coordinate system
into another one. Therefore, either complete or incomplete polynomials of
order m, where only pairs of symmetric terms with respect to the spatial
coordinates z, z2, and x3 are dropped, are commonly used [141, 72].

The explicit choice of a polynomial function in (4.57) determines the type
of finite elements and therefore the space V() through the number n of
unknown coefficients a;;;,. These coefficients, usually denoted as generalized
coefficients, are determined by choosing an appropriate number of nodal
points x; € Q, ¢ = 1,...,n, thus allowing the construction of a linear
matrix system for each finite element which can be solved for the generalized
coefficients ajx. Substitution of these coefficients into (4.57), followed by a
reordering of the components, leads to the representation

g, = Z@ilﬁihk, (4.58)

where the function @], is expressed in terms of a finite set of interpolation
functions ¢;|q,, which are polynomials themselves, multiplied with coeffi-
cients @; = g, (x;) [141].

All interpolation functions @;|q, satisfy the properties [25]

e ¢;|o, = 0;; at the nodal point x;,

e @], has a prescribed behavior on Q, e.g., linear or quadratic, and

e ¢;|q, is continuous on .

The function spaces spanned by ¢, |q,, - - ., @, |a, over {2, are either the spaces?
P,,(Q) or P () for triangular types of finite elements or the space Q. ()

2The explicit function space spanned by the interpolation functions ¢;|q, for triangular
types of finite elements depends on the actual number of nodal points used in the element
Q [25].
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for quadrilateral types of finite elements. With Q,,(Q), the space of all
polynomials of degree < m in each variable is denoted, while P, (Qz) C
Q. (Q) denotes the space of polynomials of order m and P} (€2,) C Prpy1(Q%)
contains the space P, (Q) [20, 25]. Note, that the inclusions P, () C
P () C C™(Q) and Qn () C C™(Q) hold. Finally, the basis functions
¢, are constructed by a unification of all interpolation functions ¢;|o, from
adjacent finite elements Q; which share a common node x; [141], i.e.

¢i = Uk¢j|ﬂk which satisfy ¢]|Qk (Xz) =1. (459)

With this definition, the basis functions ¢; have a compact support, they are
continuous over the body €2, and the space V¥(Q) spanned by these basis
functions is a subset of the Sobolev space H™(£2) [20, 58|, according to the
property of polynomial functions described at the beginning of this section.
If homogeneous Dirichlet boundary conditions must be satisfied on I', all
those basis functions ¢; which belong to nodal points x; € I' are dropped
[12].

However, for the construction of a stiffness matrix A, the scheme pre-
sented so far is seldomly applied due to the large amount of computation
necessary to determine the generalized coefficients for each finite element 2.
Instead, a single finite element €., called reference element, is used to sim-
plify the calculations. By definition, the reference element (2, has straight
sides and the spatial coordinates x;, z2, and x3 range between zero and one.
For all finite elements (2, the interpolation functions @|q, are defined on the
reference element €2, and are then transformed to match with the correct
global position of the actual finite element €2; considered. This transforma-
tion is an affine mapping, which results in a fast and powerful computation
of the stiffness matrix A [141, 25].

4.3.2 Quadrilateral finite elements

Since our biomechanical model will be applied to rectangular bodies €2 de-
fined by the given image dimensions, the use of triangular finite elements is
inapt [118]. Instead, quadrilateral finite elements in 2D, or hexahedral finite
elements in 3D, are used such that the affine mapping from the reference
finite element onto an actual finite element 2 is the identity mapping due
to the underlying regular pixel grid, or voxel grid in 3D, of the image. The
usage of quadrilateral finite elements increases the bandwidth of the stiff-
ness matrix A in comparison to triangular finite elements, but, on the other
hand, reduces the number of finite elements used. For simplicity, mainly 2D
elements will be considered here, but also one hexahedral finite element for
the 3D experiments described in Chapter 5 is presented.
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Figure 4.2: 2D bilinear reference finite element (a) and the interpolation
function ¢q1]q, (b).

2D bilinear finite element

The simplest choice is the bilinear finite element shown in Figure 4.2(a) which
consists of four nodal points x;, each located at a corner. For this type of
finite element, the components ¢1;|q, and ¢9;|q, of the interpolation functions
®i|q, with respect to these four nodal points read

¢11|Qk = ¢21|Qk = (1 - 331)(1 - 332)
¢12|Qk = ¢22|Qk = 331(1 - «’132)
¢513|Qk = ¢523|Qk = T1T2

P14la, = P2ula, = (1 — z1)22,

thus resulting in interpolation functions ¢;|q, that are bilinear on €2, which
satisfy ¢;|q, (x;) = d;;, and span the space of all bilinear polynomials of order
1 over (U, i.e. they obey span(¢i|g,,---,®lq,) = Q1(Q%) [25]. The total
number of degrees-of-freedom for a finite element grid consisting of N x N
bilinear finite elements is 2(N + 1)%.
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X5

(a) (b)

Figure 4.3: 3D trilinear reference finite element (a) and a projection of the
interpolation function ¢q;|q, onto the x;zs-plane (b).

3D trilinear finite element

The simplest hexahedral finite element for three dimensions comprises eight
nodal points, each located at a corner of the element cube as depicted in
Figure 4.3(a). The interpolation functions @;|q,, whose components ¢1;|q,,

¢2i|9k, and ¢3i|Qk read

b11la, = daila, = d31la, = (1 — 21)(1 — 22)(1 — 23)

¢12|Qk = ¢22|Qk = §1532|Q,c = «’131(1 - 332)(1 - 333)

¢13|Qk = ¢23|Qk = §1533|Q,c = 331332(1 - «’133)

¢>14|Qk = ¢24|Qk = ¢34|Qk = (1 - 371)%’2(1 - 373)

¢15|Qk = ¢25|Qk = §1535|Q,c = (1 - «’131)(1 - «’132)333

¢16|Qk = ¢26|Qk = §1536|Q,c = «’131(1 - 332)«’133

¢>17|Qk = ¢27|Qk = ¢37|Qk = T1T2T3

P18la, = P2sla, = P3sla, = (1 — x1)z23,
have a trilinear behavior on (2, satisfy &1)a, (x;) = 0;;, and span the space
Q1(£2) of all trilinear polynomials in z1, x5, and z3 [25]. With this type

of finite elements, 3(N + 1)3 degrees-of-freedom result for a grid comprising
N x N x N finite elements.
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Figure 4.4: 2D biquadratic finite element (a) and the interpolation function

b11la, (b).

2D biquadratic finite element

Another useful finite element is the biquadratic finite element shown in Figure
4.4(a). Here, the components of the interpolation functions ¢;|q, with respect
to the nine nodal points are defined by

b1ila, = da1la, = (1 —21)(1 — 221)(1 — z2)(1 — 229)
P12la, = P22la, = 1 (221 — 1)(1 — 22)(1 — 2x,)
¢13|Qk = ¢23|Qk = 331(2331 - 1)332(2«’132 - 1)

P1ala, = P2ala, = (1 —21)(1 — 221)22 (222 — 1)
¢)15|Qk = ¢>25|Qk = 4371(1 - 9[71)(1 - 372)(1 - 2902)
¢16|Qk = ¢26|Qk = 331(2331 - 1)4332(1 - 5132)

17, = dorla, = 4x1(1 — z1)x2(225 — 1)

¢18|Qk = ¢528|Qk = (1 - 9[71)(1 - 2371)4952(1 - 372)
¢19|Qk = ¢29|Qk = 45131(1 - 331)4332(1 - 5132),

leading to interpolation functions ¢;|q, which have a biquadratic behavior
on Q and satisfy @;|q,(x;) = 0;;. Figure 4.4(b) depicts the interpolation
function ¢11(Q). The space spanned by these functions is the space Q2(€2)
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Figure 4.5: 2D @Q;-P, Crouzeix-Raviart element (a) with four nodal points (e)
for a bilinear velocity approximation and one nodal point () for a constant
pressure approximation. In (b), the @Q2-P; Crouzeix-Raviart element with
nine nodal points (e) for a biquadratic velocity approximation and one nodal
point (), including two derivatives, for the linear pressure approximation
is depicted.

[25]. The use of these finite elements results in 2(2N +1)? degrees-of-freedom
for a grid containing N x N elements.

2D Crouzeix-Raviart finite element

For a solution of the Stokes equation, mixed finite elements are commonly
used [25, 58] which allow a simultaneous approximation of both underlying
spaces V(£2) and W (), i.e. this type of finite elements allows to define mul-
tiple types of basis functions on the same area €2;. The simplest possible
choice in this case is the so-called Q,-Py Crouzeiz-Raviart finite element de-
picted in Figure 4.5(a), with linear basis functions ¢;|q, for the velocity and
constant basis functions v;|q, for the pressure approximation, respectively.
But for this element, it can be shown that the Babuska-Brezzi condition
(4.47), necessary to ensure the solvability of the problem, is not satisfied
thus numerically unstable results have to be expected [7].

To circumvent this problem, finite elements with higher order interpo-
lation functions have to be used. One of the best known elements is the
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quadrilateral Qa-P; Crouzeiz-Raviart element shown in Figure 4.5(b). This
element has the common biquadratic interpolation functions ¢;|q, for the
velocity approximation and a linear, discontinuous pressure approximation,
including two derivatives [25]. Therefore, the pressure p is approximated by
a Taylor-series expansion up to order one at the midpoint xg of the Crouzeix-
Raviart element, i.e.

D= B(x9)¥1la, + 015(X9)¥2]0y, + O2b(X9)¥sqy, (4.60)
with interpolation functions
1/}1|Qk =1
Yalo, = o1 —Xig (4.61)
1/13|Qk = T2 — X29.

Here, x;9 denotes the ¢-th component of the midpoint x9 of the Crouzeix-
Raviart finite element.

In contrast to the velocity basis functions ¢;, whose support includes four
neighboring finite elements, the support of the pressure basis functions v; is
limited to a single finite element only, i.e. ¥; = ¥;|q,. The total number of
degrees-of-freedom for this type of finite elements in a N x N grid is 2(2N +
1)>4+3N?% with 2(2N +1)? degrees-of-freedom for the velocity approximation
and 3N? degrees-of-freedom for the pressure approximation.

2D divergence-free finite element

A problem with the usage of QQ>-P; Crouzeix-Raviart finite elements while
solving the Stokes equation is the large number of associated degrees-of-
freedom which amount to 21 degrees-of-freedom per element in the 2D case.
Additionally, the resulting global stiffness matrix A lacks the necessary pos-
itive definiteness [7, 95] and has a very large profile, i.e. the nonzero entries
of the matrix in (4.52) are widely spreaded, such that iterative methods
like the conjugate gradient method (CG) [25] cannot be applied. To im-
prove the numerical properties of the Stokes problem, so called solenoidal or
divergence-free finite elements can be used which allow a decoupling of pres-
sure and velocity. As a result, the total number of degrees-of-freedom shrinks
thus leading to smaller matrix systems with numerical properties such that
iterative solution methods can be applied [25]. If necessary, the pressure can
be calculated once the velocities have been determined.

The abstract Stokes problem (4.41) can be rewritten if the underlying
Sobolev space H'({2) is orthogonally decomposed into

HY(Q) = S(Q) @ I(Q), (4.62)
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where the subspace S(2) contains all weakly solenoidal functions,

S(Q) = fw: Q0 — Ryw € H(Q), / gdiviwldQ = 0, Vg € W(Q)},
! (4.63)

and the subspace I({2) is the complement of S(Q2) in H*(Q) [55, 56, 57, 58].
Note, that the functions w € S(2) are not pointwise divergence-free, but
divergence-free in the mean. It follows from the definition, that S(€2) rep-
resents the complete solution space of the abstract problem (4.41) [57], and
consequently it is sufficient to use basis functions ®; which span the solenoidal
subspace S(€) only. With these modifications, the abstract problem reduces
to [56, 152]: Find v € S(Q) such that

a(v,w) = f(w), VYwe S(Q). (4.64)

Once the solution v has been calculated, the remaining subspace I(Q2) can
be used to determine the corresponding pressure p € W(Q) [56, 25, 152]:

b(p,w) = f(w)—a(v,w), VYweI(Q). (4.65)

To construct a set of basis functions ®; which approximate the solenoidal
subspace S(£2), the spatially limited support of the pressure basis functions
is exploited thus allowing an elementwise analysis of the incompressibility
constraint (4.43) [57, 25]. By taking the constant pressure interpolation
function ¢4 |, into account, the incompressibility constraint reduces to

/ div[¥]d = 0 (4.66)

which can be written by virtue of (4.37) as

4

> /F (v, n)dI}; =0, (4.67)

i=1

i

if the boundary [, has been splitted into four straight sides I;; according to
Figure 4.6.

From (4.67) it is clear that only interpolation functions ¢y;|o, belonging
to the normal components of each side I}; have to be replaced while the
tangential components ¢¢;|q, always satisfy (4.67). To that end, a stream

function ¥ = (0,0, &)T satisfying

v = curl[y)] = (?;:%) : (4.68)
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Figure 4.6: The complete notation of a nine node quadrilateral finite element,
necessary to derive a divergence-free finite element.

is introduced which implies [, div[curl[t]]dQ = 0 [12]. It follows from (4.68),
that (v,n) = (V,t) holds, due to the relation between n and the unit
tangential vector t of I';. Then the integral (4.67) has for each side the
general solution [56, 57, 25]

/1“ (¥,0)dTy; = Y41 — ¥, (4.69)

%

where the ; denotes the value of the potential function 'J) at the nodal points
x; belonging to the vertices of the side I';. Note, that 5 := 1 holds for
i =4 in equation (4.69).

The integral appearing on the left side of (4.69) can be further evaluated
with the aid of Simpson’s rule [144]

[ adr= el (a<xi> T a(xint) + 4a<%)) | (4.70)
Ty

thus allowing an elimination of the normal components at each mid-side node
in favour of the potential function %. Assuming a unit length ||T;|| for all
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sides I'; of element §2;, gives
1

Bas = =7 (B + a2) + g (42— ) (4.71)
Tng = —i (2 + Tnz) + % (9 — ) (4.72)
Ty = —i (Tn3 + Tna) + g (1/34 — 1/33) (4.73)
Tns = —i (s + Tu1) + g (91— ), (4.74)

where the index of ¥,; denotes the normal component of the zth node.

Furthermore, the center node x9 can be eliminated through the remaining
pressure interpolation functions. Substitution of ¢»|q, and 93|q, into the
incompressibility constraint,

/Q (21 — X19)div[V]dQy, = /Q (x9 — Xo9)div[V]dQy, = 0, (4.75)

followed by an integration by parts, yields for the x;-direction [57, 25]

4
Z/ (.’L‘l - Xlg)({f, Il)dFkZ — / 171ko =0 (476)
i=1 v Dki Q

and for the z,-direction

4
> / (23 — X90)(V,m)dDy; — / BpdQy, = 0. (4.77)
i=1 Y Thi Qg

A repeated evaluation of all these integrals by Simpson’s rule and substitution
of (4.71)-(4.74) leads to the identities

- - - 3 - - - ~ ~ ~ ~
4019 = — Vg5 + Vg7 — Z( n1 — Un2 — Ung + Una) — 3(¢V1 + Y2 — 3 — 1)

(4.78)

and

- - - 3. - - - ~ ~ ~ ~
439 = —Ugs + Ugg — Z(vnl + Un2 — Ung — Una) + 3(Y1 — Y2 — Y3 + Yy).
(4.79)

After expressing all U,; in terms of the usual coefficients 9;;, the diver-
gence-free interpolation functions ®;|q, can be obtained by substitution of
(4.71)-(4.74) and (4.78)-(4.79) into the approximation

9
V= Z (D1i01ila, + D2idaila,) (4.80)

i=1
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where the components of the interpolation functions ¢;|q, are defined ac-
cording to Section 4.3.2, which is then solved for the new coefficients v;, U;
and ;. The resulting approximation

i=1

contains only divergence-free interpolation functions which read

d11la, — ¢18|Q,> ( i§Z519|Q, >
P k 4 k P — 16 k
11|Qk ( 16¢29|Qk 21|Qk ¢21|Qk - i¢25|9k
b12l0, — ¢16|Q > ( ¢19|Q >
P K k d ~16 K
12|Qk ( 16¢29|Qk 22|Qk ¢22|Qk 4¢25|Qk
$13l0, — ¢16|Q > ( ¢19|Q >
0 — k 4 k i) — 16 k
13|Qk ( 6¢29|Qk 23|Qk ¢23|Qk 4¢27|Qk
b14la, — ¢18|Q > ( ¢19|Q >
@ — k 4 k Q — 16 k
14|Qk ( 16¢29|Qk 24|Qk ¢24|Qk 4¢27|Qk
q)t1|Qk <¢15|Qk 4¢19|Qk> ‘I’t2|ﬂk = <¢26|Q ¢29|Q >
k 4 k
¢t3|Qk = < ¢ |QL 4¢19|Qk> ¢t4|Qk — < ¢28|Q ¢29|Q >
k 4 k
3 b18la, — l¢19|3’2 ) 3 < b16l0, — ¢19|Q )
d e k 2 k d . K 2 k
¢1|Qk 2 < ¢25|Qk %¢29|Qk ¢2|Qk 2 ¢25|Qk 2¢29|Qk

3 1 1
B3l0, = = < b16]q, + 242519|Q;c ) B4l0, = - <§Z518|Q,c 2¢19|Qk> ‘

2 Porla, — 2¢29|Qk Porla, + %¢29|Qk

The interpolation functions ®¢;|o, and ®,;|q, are characterized by the prop-
erties that [25]

e both have components that are linear in z; and x,

®:ilo, = 0 on all sides of the quadrilateral element not containing the
node 17,

®;i|o, = t; at the midside node 4,

® |, = 0 on the side opposite to vertex ¢, and

®,i|o, = £n;/||Tki|| at the two mid-side nodes of the sides containing
the vertex i (the sign is such that it is opposite for these two nodes).
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Figure 4.7: The vector-valued interpolation functions (a) ®11lq,, (b) ®sla,
and (C) ¢1¢|Qk.

Figure 4.7 depicts sketches of some of the divergence-free interpolation func-
tions. Note, that these functions are vector-valued functions and therefore
have been represented by vectors in Figure 4.7.

To construct the divergence-free basis functions ®¢;, some caution is re-
quired since the interpolation functions ®¢;|q, are derived assuming outward
normals at each finite element, as indicated in Figure 4.6. But the outward
normal at a side I'; of a finite element 2, corresponds to the inward normal
of the adjacent finite element €2; that shares that side. There is no difficulty,
however, if the tangential vector t; is assigned in a unique sense, i.e. the
interpolation function ®;|q, must be modified by a multiplication with —1
to ensure the continuity of the resulting basis functions ®y;.

With these divergence-free basis functions, the linear matrix system

Ad{fd = fd + g4 (482)

can be directly computed from (4.64). But now, the solution vector ¥4 con-
tains values for ¢; and ?¢; instead of the original unknowns ;; and ;. There-
fore, the stiffness matrix A, is usually derived from the original system

Av+Pp=f+g

4.83
P’V =0, (483)

where A and P denote the submatrices of (4.52) containing all matrices
related to the displacement and pressure terms, respectively [56, 25, 152]. As
pointed out, the construction of divergence-free finite elements implies the
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introduction of new unknowns v; which are related to the original unknowns
v through

¥ = Ry¥y, (4.84)

where the transformation matrix R; can be constructed from the identities
(4.71)-(4.74) and (4.78)-(4.79). For adjacent finite elements € and €, Ry
must be manipulated such that the tangential vector t; is uniquely assigned
at the common boundary I};. Since the continuity equation

P’y =PTR;v; =0 (4.85)
must be valid for all 94, it is necessary that
P'R; =0 (4.86)

holds [56, 25]. Substitution of (4.84) into (4.83) and pre-multiplication by
R7 gives

RYAR,v; + RIPp = RIf + Rlg. (4.87)
N——

=0T
A comparison with (4.82) reveals that

T
Ay RdTARd i (4.88)

fi+84=Ryf + R;g
holds, i.e. a linear matrix system for divergence-free basis functions can be
constructed if the transformation matrix Ry is known. Once the solution v4
has been calculated, it can be transformed into the original unknowns v by
a simple pre-multiplication with Ry.

The total number of degrees-of-freedom for a N x N grid of divergence-free
finite elements is 2(N+1)(2N +1)+ (N +1)?, with 2(N +1)(2N +1) degrees-
of-freedom for the velocity components and (N + 1)? degrees-of-freedom for
the stream function.

4.3.3 Computational complexity of fluid problems

The solution of a fluid problem using divergence-free finite elements leads
to a significant reduction of the space and time requirements compared to
the @2-P; Crouzeix-Raviart finite elements. As summarized in Table 4.1,
the divergence-free finite elements reduce the number of degrees-of-freedom
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‘ element type ‘ elements ‘ DOF ‘ memory ‘ time ‘

Qs-Pi 30x30 | 10142 | 792MB | ~35h

Crouzeix-Raviart 40 x 40 17922 | > 1.5 GB —

finite elements 256 x 256 | 722946 — —

di " 30 x 30 4743 11 MB ~ 1.5 min

ﬁ“{ergelnce‘ ree 40 x 40 | 8323 12MB | ~ 5.6 min
nite elements 256 x 256 | 329731 | 256 MB | ~28h

Table 4.1: Comparison of the memory and time requirements for solving
fluid problems with a different number of finite elements while using Q»-P;
Crouzeix-Raviart finite elements or divergence-free finite elements, respec-
tively. With DOF, we denote the number of degrees-of-freedom of the finite
element mesh. A hyphen indicates, that no value has been determined.

approximately by half, if the number of finite elements in each direction re-
mains constant. The exact difference in degrees-of-freedom between QQ-P;
Crouzeix-Raviart finite elements and divergence-free finite elements counts
to 22N +1)24+3N? — (2(N+1)(2N +1) + (N +1)?) = 6N? — 1. According
to the improved numerical properties of the stiffness matrix A when using
divergence-free finite elements, the amount of memory space drops also sig-
nificantly such that 2D images of sizes 256 x 256 pixel can be handled since
sparse matrix storage schemes may be applied. Also, the computation times
using divergence-free finite elements are several orders of magnitude smaller
compared to QQ2-P; Crouzeix-Raviart finite elements due to the possibility
of applying iterative solution methods. In case of the latter type of finite
elements, the huge amount of more than 1.5 GB storage space for the final
linear matrix system usually prevents an application of fluid models to finite
element mesh sizes larger than 40 x 40 elements.

4.4 Inhomogeneous materials

4.4.1 Physical theory

So far, we presented the physical theory necessary to determine the defor-
mation of a homogeneous body €2 only, i.e. a body whose response function
is independent of x € Q. But based on the results of Section 4.1, it turns
out that a reliable simulation of a composite anatomical structure consist-
ing of skull bone, brain tissue, and cerebrospinal fluid demands the usage of
different constitutive equations, namely Hooke’s law (2.37) and the Navier-
Poisson law (2.42), respectively. According to Section 2.2, a substitution of
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these constitutive equations into the equilibrium equation (2.29) leads either
to the Navier equation as description of the physical deformation behav-
ior of skull bone and brain tissue or to the Stokes equation simulating the
physical deformation behavior of cerebrospinal fluid. To model such inho-
mogeneous structures, which refers to the case where the response function
depends on the spatial coordinates of a particular point x € 2, we decompose
the inhomogeneous body €2 into a finite number M of homogeneous regions
;. Note, that no relationship between the regions 2; and finite elements
), exists since each of the former one corresponds to a specific anatomical
structure of the modeled biological organ while the latter one simply divides
an inhomogeneous body Q (or even a homogeneous region §2;) into a set of
areas, irrespectively of the underlying anatomical structure of 2. Denoting
with Q; the closure of the region ;, the decomposition of the inhomoge-
neous body (2 into a finite number M of homogeneous regions must satisfy
the following properties

oQ,ﬂQ]:Q)lfz#j,and
e O, N Qj = I}; if ; and §2; have a common boundary I7j;.

A physical interaction in the sense of a mutual deformation between two
neighboring regions {2; and 2; takes place through their common surface I;
only, or, in other words, the boundary conditions applied to I}; completely
determine the physical deformation behavior of the connected regions [47].

In the state of equilibrium between two adjacent regions €; and €2;, the
sum of applied surface forces g along I}; must be zero as a consequence of
Newtons third law [47]. With (2.24), this can be likewise expressed in terms
of the Cauchy stress vector t. Therefore, the stress vector t; acting at an
arbitrary point x € I}; on the surface of {2; must be equal to the stress vector
t; acting on the surface of {2;, hence

ti(X, 1’1) = tj(X, 1’1), Vx € Fij (489)

must hold. Equation (4.89) is also known as equilibrium boundary condition
[8, 77, 47].

A rather similar boundary condition at Ij; exists for the displacement
fields u;(x) and u;(x) at the common boundary between two solid regions
Q; and ;, known as compatibility condition [8, 77]. This condition simply
states that the displacements at the common boundary should be equal:

ui(x) = uj(x), Vx € F” (490)
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In contrast to the boundary between two solid regions, the validity of (4.90)
at a boundary between a solid and a fluid depends on the physical properties
of both materials. If the solid is impermeable for the fluid, the latter one
must not penetrate the solid. Mathematically, this requires that the relative
velocity component of the fluid normal to the surface I';; must vanish, i.e.

J(V)l’l = 0, Vx € FZ] (491)

must hold [100, 47]. Here, J(v) denotes the velocity gradient according
to (2.2) and n the unit outward vector of the surface I;;. This boundary
condition is also known as no-penetration condition. Additionally, the no-slip
condition [47] prevents from a tangential movement of viscous fluids at the
common boundary I};, while non-viscous fluids® are permitted to slide along
the surface, resulting in different tangential components of the velocity. In
conjunction with (2.45), it becomes clear, that the compatibility condition
(4.90) holds for non-penetrating, viscous fluids only, as in the case of the
boundary between brain tissue and cerebrospinal fluid.

Collecting all conditions together, the physical deformation behavior of
an inhomogeneous body €2 = ; U2; comprising an elastic solid €2;, which is
modeled by the Navier equation

(A + p)Vdiv[w] + pV?a; +f =0 in Q;, (4.92)

and an incompressible, no-penetrating, and viscous fluid 2;, modeled by the
Stokes equation

—Vp+p*dt™'Vu;+f=0 in Q;, (4.93)
can be completely described through the coupled system

(A + p)Vdiviw] + pV?u; + £ =0 in €,

i on iy (4.94)
u; = uy on Fija
—Vp+ p*dt™ 'V + £ =0 in Q;,

provided that infinitesimal displacement fields as well as time intervals dt are
considered such that

ll]' = det (495)

3 As shown in a large number of experiments, only viscous fluids exist, see [47] for more
details.
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holds. Note, that further Dirichlet, Neumann, or Robbins boundary condi-
tions apply to the remaining parts I';\I';; and I';\I;; of the boundaries I; and
I; of Q; and €);, respectively, and that the continuity equation

div[uj] =0 in Qj (496)

holds for €2; due to the incompressibility of the fluid. The combined param-
eter u*dt~' occurring in (4.93) has the physical unit of a pressure.

Besides the formal restrictions in terms of infinitesimal small displacement
fields and time intervals dt, which allow to drop the distinction between the
Lagrangian and the Eulerian configuration (see Section 2.2.3 for details),
(4.94) leads to reasonable physical deformation results in case of finite small
deformations, see Chapter 5 for an intensive treatment. In contrast, the
simulation of large deformations requires the introduction of a so-called arbi-
trary Lagrangian-Eulerian (ALE) formulation which allows a description of
all regions €2; in their preferred configurations [31, 73, 159].

4.4.2 Coupling of matrix systems

For a solution of the coupled problem (4.94), we apply the finite element
method to each homogeneous region §2;, leading to a set of linear matrix
systems due to the number of regions contained in the inhomogeneous body
2. These matrix systems can be assembled together into a global matrix
system using the equilibrium boundary condition (4.89), the compatibility
boundary condition (4.90), and the no-penetration condition (4.91) [8, 77].
Considering, e.g., two regions €); and €2;, connected through a common
boundary I};, the matrix assembly process proceeds as follows [77]: First, all
linear matrix systems At = f + t have to be reordered thus giving for the

region (2;
Lo Al i f+t!
QQ ar Q) ) 4.97
(Al A (o) = () (897
and for Q;
Al A{ZF> (ﬁ@) <f+tj>
. or ) (Yo ) _ Al 4.98
(A{m A i) = e+l (4.98)

Here, u}, and u), denote the displacements inside each region, ti and t.
are the stress vectors acting on I};, while A%, etc. denotes the submatrices
of the corresponding stiffness matrices A* and A’ for the regions €; and
Q;, respectively. An index I', as appearing in A%, etc., indicates those
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submatrices which comprise degrees-of-freedom belonging to the common
surface I; between the regions ); and 2;. Second, using the boundary
conditions (4.89) and (4.90) and bearing the definition of Cauchy’s stress
vector (2.24) in mind, all matrix systems can be coupled together into the
single system

Afq Apr 0 i, f+t
AL, AL + Al A]FQ ﬁ? = f , (4.99)
o A, Al ) \&, £t
~ 7 T
A a

where @ denotes the displacements at the common boundary I;. The global
matrix A is commonly denoted as stiffness matrixz while the right-hand side
vector b = £+t is known as load vector [20, 25]. Note, that this construction
scheme holds for an arbitrary number of regions 2;, provided that all linear
matrix systems are properly reordered, as indicated in (4.97) and (4.98).
The linear matrix system (4.99) completely describes the equilibrium of an
inhomogeneous body subjected to externally applied forces.

In order to apply this construction scheme to our coupled problem (4.94),
we have to identify the appropriate mathematical terms in our finite element
formulations of the Navier equation

/Q, A(tre(w;))(tre(w)) + 24 (e(u;), e(w)) dQ; =
/ (f, w)dQ; + / (g, w)dL;; (4.100)

and of the Stokes equation
[ —pdiviw) + i (3(u,), 3(w)) o =
Q.

| (faW)de—/

J

(gja W) dFZ] + / /,6* (dt_lJ(u]')l’l]‘, W) dFij, (4101)
Tij
thus allowing an application of the equilibrium and compatibility boundary
conditions. Considering the boundary integral appearing on the righthand
side of (4.100) reveals that the stress vector t; acting on the common bound-
ary [}; is identical to the density of the surface force g; according to (2.24). A
similar statement holds for the stress vector t; and the density of the surface
force g; appearing on the righthand side of (4.101). From the no-penetration
boundary condition (4.91) follows, that

dt 'J(uj)n; = J(v;)n; =0, Vx €Ty (4.102)
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holds and the last boundary integral appearing on the right-hand side of
(4.101) therefore vanishes. Thus, we can directly merge the linear matrix
systems derived for the Navier equation (4.28) and the Stokes equation (4.52)
using the equilibrium boundary condition and the compatibility boundary
condition, ending up with a single, linear matrix system that completely
describes the deformation behavior of an inhomogeneous body comprising
rigid, elastic, and fluid materials.

4.4.3 Finite elements for coupled systems

In order to solve the linear matrix system (4.99), we have to choose ap-
propriate types of finite elements for the rigid or elastic regions §2; and the
fluid regions ;. Optimal choices from the point of minimizing the num-
ber of degrees-of-freedom and thus the computation times are bilinear finite
elements for elastic regions €2; and divergence-free finite elements for fluid
regions 2, (see also Section 4.3). However, such finite elements cannot be
directly linked at the common boundary Ij; since the stream function {b,
which has to be introduced for fluid regions €; if divergence-free finite ele-
ments were used, is not defined for elastic regions §2;. Instead, new types of
finite elements have to be derived for this case ensuring a transition between
bilinear finite elements and divergence-free finite elements. But to our knowl-
edge, no such transition elements exist. For this reason, we still use Q2-P;
Crouzeix-Raviart finite elements for all fluid regions §2;. To ensure further-
more the continuity of the resulting displacement vector field as well as the
solvability of the final linear matrix system (4.99), we use biquadratic finite
elements for all rigid and elastic regions €); since a direct coupling between
Q2-P; Crouzeix-Raviart finite elements and bilinear finite elements is impos-
sible. This prohibition is justified by the fact that two neighboring finite
elements may only share a common surface, side, or node, which is violated
in case of neighboring bilinear finite elements and @Q,-P; Crouzeix-Raviart
finite elements, see Section 4.3 for details. Note, that a coupling between
finite elements used for rigid as well as elastic regions €2; and fluid regions
(1; is limited to mixed finite elements with pressure functions defined with
respect to internal nodes only. Otherwise, similar to the stream function, the
pressure function prevents a coupling of mixed finite elements with common
quadrilateral finite elements.
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4.5 Specified displacements

For the solution of a linear equation system Au = b, with b = f + g,
like, e.g., (4.28), (4.52), or (4.99), values specified by given Dirichlet, Neu-
mann, or Robbins boundary conditions have to be introduced. Otherwise,
the linear matrix system cannot be solved according to the singularity of the
stiffness matrix A [72]. In the following, we concentrate on pure displacement
problems with given Dirichlet boundary conditions only. Note, that for all
regions modeled by the Stokes equation, the assumption that the displace-
ment vector field @ is related to the velocity vector field v by (4.95), leads
to a linear matrix system A = b which is directly expressed in terms of
the displacement vector field 1. The entries of the stiffness matrix A are
determined in this case through (4.101) instead of (4.40). Thus, our ap-
proach can actually be considered as a landmark-based registration scheme
like, e.g., [6, 125, 40, 124, 42], where the specified displacements represent
the landmark correspondences. The handling of pure traction problems with
given Neumann boundary conditions instead, is a straightforward task which
will be not considered here due to the difficulties associated with a reliable
determination of forces directly from corresponding image data [27].

For the incorporation of specified displacements, the procedure described
in [72, 119, 120] is applied: Given a value for the unknown 4;, it can be
incorporated into the linear equation system by a subtraction of the product
@;A;, where A; denotes the jth column of the stiffness matrix A, from the
right-hand side vector b=f + g,

b=b—a;A,, (4.103)

followed by a substitution of the given value @; into the jth row of b. There-
after, the jth row and column of A are set to zero and, respectively, the
diagonal element A;; to one. By repeating this procedure for a set of dis-
placements, e.g., to be given at the surface of an anatomical structure, a
direct mapping from the undeformed to the deformed state of the anatomical
structure results. It follows from the construction scheme, that the specified
displacements are always exactly satisfied, independently of the material pa-
rameter values used, or, in other words, the model automatically adjusts the
necessary forces f and g [21, 118]. Figure 4.8 shows the difference between
a pure displacement and a pure traction problem if the material parameter
values of the body €2 were changed. In case of a pure traction problem, the
significant influence of the underlying material parameter values on the ap-
plied force field is clearly visible. Additionally, the applied force fields do not
have equal magnitudes compared to the given correspondences of a pure dis-
placement problem. Note, that all specified displacements were integrated in
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Figure 4.8: Differences between a pure displacement and a pure traction prob-
lem for different material parameter values. In the former case, the specified
displacements in (a) are always satisfied, independent of the assumed mate-
rial parameter values. For a pure traction problem, the force field in (b) must
be applied to ensure that the solution satisfies these displacements. If the
underlying material parameter values are changed, the force field (c¢) must
be applied instead to satisfy the given displacements.

a way that the original number of equations remains unchanged, thus avoid-
ing a time-consuming restructuring of the internal matrix storage scheme. A
proof concerning the invertibility of the modified matrix system can be found
in [118].

For the specification of prescribed displacements for biomechanical mod-
els based entirely on the Stokes equation, i.e. models where all regions are
simulated as fluids, special attention is required if divergence-free finite ele-
ments are used, since given values for 1 must be transformed with respect
to the new unknowns #g; and 1/;% as pointed out in Section 4.3. This trans-
formation is straightforward for all 4, if the direction of the corresponding
tangential vector t is taken into account. But for the stream function 9, the
boundary conditions have to be computed from line integrals

Yir1 =P +/ (@, n)dly; (4.104)

Tk

according to (4.69). Setting an arbitrary ¥; to zero allows for a direct com-
putation of all values for 1 along the boundary [25]. For the final integration
of these values into the linear matrix system, we use the procedure described
above.
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However, the usage of divergence-free finite elements for image correction
purposes leads to some problems if each image pixel is directly mapped onto
the center of a divergence-free finite element, see also Appendix B. Due to
the elimination process of the center node xg of the divergence-free element
described above, the prescribed displacement value has to be mapped onto
the remaining nodes of the element such that the final transformation o =
Rty gives the desired value at the center node xg9. This can be directly
achieved by assuming a constant displacement vector field G = (@, d2)”
within the divergence-free element, thus giving

b o= 0

Py = —iiy
by = Gy — i
Py = Wy

as necessary boundary conditions for the stream function {b Here, the value
of ¥ was arbitrarily set to zero. But the choice which v; has been set to
zero has a significant influence on the resulting stream function and, as a
consequence, on the calculated displacement vector field, as demonstrated
by the following example shown in Figure 4.9.

The left column of Figure 4.9 displays the stream function (top), the
displacement vector field (middle), and the corresponding grid deformation
(bottom) resulting from using @ = (5.0,0.0)” as prescribed displacement.
Setting ¢; = 0 leads to larger magnitudes of the displacement vector field
in the lower part of the image (left column of Figure 4.9), i.e. the resulting
deformation is non-symmetric with regard to the prescribed displacements.
Assuming that @Z~)4 = 0 holds instead, leads to the results shown on the right
column of Figure 4.9. Again, a non-symmetric behavior is observable, but
now the displacement vector field has larger magnitudes in the upper part
of the image. Comparing the corresponding subfigures of the second and
third row in Figure 4.9 with each other shows the significant influence on
the resulting deformation of setting an individual ; to zero. As a conse-
quence, the specification of boundary conditions for the stream function, i.e.
the assignment of explicit values to any 1@-, should generally be avoided. In-
stead, a mapping of image pixels on the corner nodes of the divergence-free
finite elements should be preferred such that each pixel is mapped onto a
node where four neighboring elements of the underlying finite element mesh
meet. A disadvantage in this case is, that the boundaries between different
anatomical structures must follow exactly the boundaries of the underlying
finite element mesh, as shown in Appendix B.
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4.6 Material parameter values

The application of biomechanical models for image correction purposes re-
quires a specification of the material parameter values entering the corre-
sponding stiffness matrices A. Depending on the assumed biomechanical
model, which is either a pure elastic model based entirely on the Navier
equation, a pure fluid model based entirely on the Stokes equation, or a cou-
pled model based on both equations, values for the Lamé constants A and u
and/or the combined parameter u*d¢t ™' have to be specified in (4.28), (4.52),
or (4.99), respectively.

4.6.1 Material values for the Navier equation

In order to determine appropriate values of the Lamé constants for a biome-
chanical model based entirely on the Navier equation, we carried out a com-
prehensive literature study about reported values on skull bone and brain
tissue. It turns out, that a variety of different values can be found for the
Lamé constants for both materials, as summarized in Tables 4.2 and 4.3. In
the original papers nearly all values were given in terms of Poisson’s ratio v,
measuring the ratio between the relative transversal contraction and the rel-
ative longitudinal dilation, and Young’s modulus E, which relates the tension
to the relative stretch in the longitudinal direction [21]. These values can be
directly converted into values for the Lamé constants A and p through the
well-known relationships [44, 100]

Ev
A= 1+ v)(1—2v) (4.105)
and
= % (4.106)

Some of the values given in Tables 4.2 and 4.3, i.e. those used by [146,
90, 91, 67], were taken from other work, mainly the works of Sauren and
Classens [136] as well as Nagashima et al. [114]. Other authors like [71, 162,
131, 166, 19, 165] incorporated measured in vitro data, reported by, e.g.,
McElhaney et al. [103] or Nahum et al. [115]. In our approach, where the
deformations are driven by given correspondences, the Navier equation (2.47)
can be transformed into

A f
(; +1)Vdiv[u] + V?u + e 0, (4.107)
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material parameter values for brain tissue
article | Mor [kPa] | pr [kPa]
Hosey and Liu 1982 [71] 11101.8 | 22.2482
Ward 1982 [162] 5270.27 | 219.595
Ruan et al. 1991 [131] 540.811 | 22.5338
Willinger et al. 1992 [166] 5472.97 | 228.041
Chu et al. 1994 [19] 4110.74 | 83.8926
Tada et al. 1994 [146] 8060.27 | 164.495
Takizawa et al. 1994 [147] 41.7945 | 2.66773
Kuijpers et al. 1995 [90] 8108.11 | 337.838
Kumaresan and Radhakrisnan 1996 [91] | 540.811 | 22.5338
Hartmann and Kruggel 1998 [67] 12483.3 | 25.0167

Table 4.2: Reported values of the Lamé constants A and p for brain tissue.
Tada et al., Takizawa et al., as well as Hartmann and Kruggel distinguished
originally between grey matter and white matter, but here, only the values
for grey matter are given.

material parameter values for skull bone
article ‘ Ask [k Pal ‘ sk [k Pal
Hosey and Liu 1982 [71] 1334570 | 1842980
Ward 1982 [162] 1334570 | 1842980
Ruan et al. 1991 [131] 2093090 | 2663930
Willinger et al. 1992 [166] 1388890 | 2083330
Chu et al. 1994 [19] 1805560 | 2708330
Tada et al. 1994 [146] 1466820 | 2025600
Kuijpers et al. 1995 [90] 1805560 | 2708330
Kumaresan and Radhakrisnan 1996 [91] | 1945000 | 2685950
Whitman et al. 1996 [165] 180556 270833
Hartmann and Kruggel 1998 [67] 2093090 | 2663930

Table 4.3: Reported values of the Lamé constants A and p for skull bone.

such that only the ratio

A (4.108)

po (-2
of the Lamé constants is important since the external forces f/u are auto-
matically adjusted in this case, see Section 4.5 for a detailed treatment. In
Table 4.4, the calculated ratios for the values given in Tables 4.2 and 4.3
are summarized. Analyzing Table 4.4 reveals the interesting fact that only
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ratios of the material parameter values
article ‘ Abr/ubr ‘ Ask/usk ‘ )‘sk/Abr
Hosey and Liu 1982 [71] 498.998 | 0.724137 | 120.212
Ward 1982 [162] 24.0 0.724137 | 253.226
Ruan et al. 1991 [131] 24.0 0.785715 | 3870.28
Willinger et al. 1992 [166] 23.9999 | 0.666668 | 253.773
Chu et al. 1994 [19] 49.0 0.666669 | 439.23
Tada et al. 1994 [146] 49.0001 | 0.724141 | 181.981
Kuijpers et al. 1995 [90] 24.0 0.666669 | 222.686
Kumaresan and Radhakrisnan 1996 [91] | 24.0 | 0.724139 | 3596.45
Hartmann and Kruggel 1998 [67] 498.999 | 0.785715 | 167.671

Table 4.4: Calculated ratios for the Lamé constants for brain and skull tissue.
Only those articles have been listed where material parameter values have
been reported for both, brain tissue and skull bone.

a small number of different Lamé constant ratios for brain tissue and skull
bone exists. The highly different ratios for brain tissue result from a small
variation of the underlying Poisson’s ratio v (between v = 0.48,...,0.499)
according to (4.108).

To analyze the influence of the variations of the Lamé constant ratios on
the deformation result, we carried out several experiments using a 30 x 30
grid to visualize the resulting deformation. In Figure 4.10, four parallel
correspondences were given while taking the calculated ratios A/u = 24.0,
A/p=49.0, and A\/p = 498.999 in Table 4.4 into account, respectively. The
applied correspondences in all cases point in the direction of the lower right
corner of the grid. As can be seen from Figure 4.10, only relatively slight
differences in the deformations result. Thus, we conclude that the mean
values of the ratios, namely Ay, /gy = 135.111 and Ag /s = 0.718666, serve
as valid estimates for the corresponding Lamé constant ratios [64].

For the simulation of different anatomical structures, we also have to de-
termine appropriate ratios for the Lamé constants between those structures.
Following our previous practice for homogeneous materials, we calculated the
ratios for the A-values of skull bone and brain tissue and listed them in the
last column of Table 4.4. Here, a larger variability of the calculated ratios can
be observed. However, it seems reasonable to choose again the mean value
as ratio between the A-values, namely A /Ay = 1011.72) while keeping the
internal Lamé constant ratios of each material constant. To demonstrate the
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lead to a pure translation of the simu-

lated bony rectangle, surrounded by soft brain material. The corresponding

Four parallel
displacement vector field reveals, that the behavior of the surrounding soft

correspondences, given in the upper left part of a 30 x 30 grid, were applied.
and A\/p = 498.999

(top row) and displacement vector fields
)
tant values on the deformation result,

= 240, \/u = 49.0

e cons

7

we obtain the result shown in Figure 4.11

behavior compared to homogeneous brain tissue. By dividing the whole grid
, the applied correspondences

four parallel correspondences were applied again while taking the calculated
mean ratios into account. As indicated by the resulting grid deformations as
rial parameter values for homogeneous skull bone result in a significant stiffer

Figure 4.10: To investigate the influence of different Lamé constant ratios,
well as calculated displacement vector fields shown in Figure 4.11, the mate-

we compared the deformations of homogeneous brain tissue.
(from left to right) show only relatively small differences.

The calculated grid deformations
(bottom row) for values of A/u
influence of the determined Lam

into two regions £2; and {29,

this case
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the assumed skull material results in a much stiffer
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respectively. As expected

we can combine differ-

behavior. By spatially different Lamé constant ratios

)

simulated bony

rectangle embedded

)
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Here, a

(c).

in simulated brain tissue results in a pure translation of the rectangle.

ent materials as shown in

of the soft material occurs, while two vortices can be observed due to the
For a biomechanical model based entirely on the Stokes equation (2.53), we
also launched a literature study to determine appropriate values for the com-
bined parameter p*dt=t. This study revealed that, in contrast to the material

material is physically plausible: Along the path of translation, a stretching
lateral inflow of soft material.

4.6.2 Material values for the Stokes equation
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Figure 4.12: Resulting grid deformation (top row) and displacement vector
field (bottom row) for different combined parameter ratios while using a fluid
model. The ratio uj.dt '/t dt ' varies between 0.1 (left column) and 0.01
(right column), see also the continuation of these experiments in Figure 4.13.

parameters for the Navier equation, no reliable values for the viscosity pa-
rameter exist. Also those approaches entirely based on the Navier-Stokes
equation (2.49) [17, 97] use heuristically determined values in the range of
0.1 < pu < 1.0. To study the influence of different ratios between ;. dt*
and pfdt™! on the deformation, we calculated the deformation of a rigid
structure, modeled as a thick liquid, embedded into soft material, modeled
as a thin liquid*. Note, that all regions were simulated using the Stokes
equation, i.e. only the viscosity of the fluid is spatially changed. Figure 4.12

“In German, the term thick liquid denotes a zihfliissige Fliissigkeit while the term thin
liquid can be translated into dinnflissige Flissigkeit, according to [145].
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Figure 4.13: Same as Figure 4.12, but the ratio uj.dt™'/u%.dt™ varies be-
tween 0.001 (top row) and 0.0001 (bottom row).

shows the deformation of the 30 x 30 grid in case of the single prescribed
displacement u = (5.0,5.0)% acting on the lower right corner of a thick liquid
structure of rectangular shape. It can be easily seen from Figures 4.12(a) and
(c), that a ratio of u}.dt™/u%.dt™" = 0.1 between the combined parameters
for thin liquids and thick liquids, results in a significant deformation of the
thick liquid structure. Since the time interval dt remains constant over the
inhomogeneous body €2, this experiment equals those carried out by Lester
et al. [97, 98] while assuming a ratio of uj,./pk, = 0.1 between the viscosity
parameters of soft and rigid regions. Thus it seems that the shape of rigid
structures in [97, 98] is mainly maintained through the additional weighting
function applied to the assumed forces.

By increasing the ratio between the combined parameters, for the ratios
prdt™t /ptdt™ = 0.001 and pf.dt™/pk.dt™" = 0.0001 see Figure 4.13, the
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shape of the thick liquid region is more and more preserved, until a ratio of
0.0001 leads to a well translation of the thick liquid structure, see Figure 4.13.
Based on these experiments, we will use the ratio p}.dt™'/u%.dt™" = 0.0001
for the experiments carried out in Chapter 5.

4.6.3 Material values for the coupled system

After having estimated appropriate material parameter ratios for our biome-
chanical models based entirely on the Navier equation or the Stokes equation,
respectively, we will now determine appropriate material parameter ratios for
our new coupled approach.

Since our previously determined ratios for skull bone and brain tissue
are based on reported and measured values, we will use these ratios, namely
Ao/ sk = 0.718666, Npr /oy = 135.111, and A /A = 1011.72, for the corre-
sponding rigid and elastic regions of our coupled approach (4.99). However,
we still have to determine a ratio for the combined parameter p*dt=! with
respect to the material parameter values of skull bone and brain tissue. In
the absence of reliable parameter values for cerebrospinal fluid, we use as a
first step an experimentally determined ratio, in our case p*dt—'/uy = 0.01,
leading to visually appealing deformation results, see Figure 4.14. Since no
real measurements concerning the viscosity of cerebrospinal fluids have been
carried out, the choice of a reliable parameter value remains an open problem.

4.7 Summary

In this chapter, we presented the derivation of a new biomechanical model
of the human head. Our model copes with rigid, elastic, and fluid structures
whose deformation behaviors are simulated using the appropriate physical
model, namely the Navier equation for rigid and elastic structures as well as
the Stokes equation for fluid structures. We decompose an inhomogeneous
body comprising different anatomical structures into a set of homogeneous
regions and apply the appropriate physical model to each structure seper-
ately. For the solution of these differential equations, we apply the finite
element method, leading to a set of linear matrix systems, depending on
the number of homogeneous regions. This set of linear matrix systems can
be further merged together using appropriate boundary conditions. These
physical conditions are the equilibrium and compatibility boundary condi-
tions between regions of different elastic solids as well as the equilibrium,
no-slip, and no-penetration boundary conditions between regions simulating
elastic solids and incompressible fluids. The result is a single linear matrix
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Figure 4.14: Resulting grid deformations (top) and displacement vector fields
(bottom) of a rectangular fluid region embedded into an elastic region for dif-
ferent ratios between the combined parameter p*dt ! and the Lamé constant
por- The ratio p*dt—'/py, varies between 1.0 (left), 0.1 (middle), and 0.01
(right).

system completely describing the deformation behavior of an inhomogeneous
body comprising rigid, elastic, and fluid regions.

Note, that an application of the Navier equation and of the boundary
conditions (namely the compatibility and the no-penetration boundary con-
ditions in case of adjacent elastic solid and fluid regions) restricts the result-
ing deformation field to small deformations only. For large deformations, the
linearization of the Navier equation with respect to the strain tensor is not
valid and the full time derivative has to be used instead to determine the de-
formation field of the fluid regions. Additionally, Hooke’s law will no longer
serve as a sufficient approximation to model the biomechanical behavior of
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brain tissue in this case hence a more apt constitutive equation has to be
used instead.

Using the finite element method, the underlying solution space of each
differential equation is approximated by a finite dimensional space, spanned
by a finite number of basis functions. These basis functions serve as interpo-
lation functions for the solution and must be chosen carefully to ensure the
solvability of each resulting linear matrix system. While biomechanical mod-
els based entirely on either the Navier equation or the Stokes equation may
use bilinear finite elements or divergence-free finite elements, respectively,
for our coupled approach one may not apply these types of finite elements.
Instead, we use biquadratic finite elements for rigid and elastic regions, and
Q»-P; Crouzeix-Raviart finite elements for fluid regions. Otherwise, problems
arise at the boundary between regions modeled through the Navier equation
and the Stokes equation.

To apply our biomechanical model for image correction purposes, we use
specified displacements instead of forces since a reliable determination of
the latter one from given corresponding image data remains problematic, as
demonstrated in Section 4.5 above. The prescribed displacements can be
easily integrated into the linear matrix system and they are always satisfied
by the resulting deformation. Thus, our approach can actually be regarded
as a landmark-based registration scheme. Additionally, it is not necessary to
specify explicit values for the material parameters, instead it suffices to use
ratios between the material parameters. Such ratios for the Lamé constants A
and p have been determined through a comprehensive literature study while
appropriate ratios for the combined parameter p*dt~! have been determined
through experimental parameter studies due to the lack of reported values.

It has to mentioned, that the validity of the chosen values for the com-
bined parameter p*dt ! remains unclear, although visual appealing defor-
mations result using these values. In contrast to the Lamé constant values
determined for skull bone and brain tissue, respectively, no real physical
measurements have been used as basis for choosing appropriate values for
the combined parameter pu*dt . Thus, further research is necessary in this
case to determine more reliable material parameter values.



Chapter 5

Experimental results

Based on the investigations of Chapter 4, we apply in the following different
biomechanical models of the human head to simulate brain deformations
given prior specified displacements. In Section 5.1, we start with an outline of
our experimental strategy. In Sections 5.2 and 5.3, we describe experiments
using different biomechanical models based on either the Navier equation
(called the elastic model) [62, 64, 61] or the Stokes equation (called the fluid
model) to assess the general validity of the deformation results using these
approaches. Section 5.4 then reports results using our new approach, which
allows for a physically adequate simulation of the effect of forces acting upon
rigid, elastic, and fluid regions by coupling the Navier equation and the Stokes
equation (called coupled rigid/elastic/fluid model) [63, 59]. We compare the
results with the elastic model as well as the fluid model.

All biomechanical models have been developed and implemented within
the finite element programming environment DIFFPACK [95]. For the final
transformation of the original image into the deformed image, we used a
bilinear interpolation for both, the calculated displacement vector field and
the image intensity function.

5.1 Experimental strategy

In the following Sections 5.2 and 5.3, we carry out experiments using a pure
elastic model and a pure fluid model. To simulate inhomogeneous anatomi-
cal structures, we use spatial variations of the underlying material parameter
values. In both cases, we start with experiments based on synthetic images,
comprising translation, scaling, shear, and rotation of a rigid structure, to as-
sess the general properties of the approaches. In particular, we are interested
in the physical plausibility of the calculated deformations which has been

89
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assessed through visual inspection of the computed results. Therefore, we
investigated whether the shape of rigid structures has been preserved while
the deformation of the surrounding soft material matches the physical per-
ception of the observer. Note, that a ground truth in form of intraoperative
image data combined with reliable stress and strain measurements of living
tissues for validation purposes of biomechanical models [28] has not been
given so far, since medical (as well as legal) problems arise in conjunction
with the accurate measurement of such data from patients. Additionally, less
is known on the effects of additional surgical parameters like, e.g., specific
narcotics, which influence the deformation behavior of living brain tissue [70].

After the experiments with synthetic images, we carry out registration
experiments using real MR datasets and investigate the potential of our ap-
proach with respect to intraoperative image correction applications. Due to
the lack of intraoperative MR images, we use a set of corresponding pre-
and postoperative MR images to verify the accuracy of the calculated defor-
mation. For comparison purposes, we always compute the deformation of a
pure homogeneous model first, thus allowing us to analyze the influence of
different simulated material properties on the final deformation.

In Section 5.4, we finally compare the pure elastic model and the pure
fluid model with our coupled rigid/elastic/fluid model to assess the effect of
different physical models on the calculated deformation. Again, we will start
with some experiments using synthetic images. Following this, we carry
out experiments using a section of a real preoperative MR image. In the
experiments, we simulate the growth of a tumor compressing a nearby fluid
structure. Due to the lack of ground truth or of at least a real MR image
showing the final deformation caused by such a tumor growth, we are only
able to compare the calculated deformation results on the basis of a visually
observable physical plausibility of the resulting deformation.

5.2 The elastic model

Our elastic model described in Section 4.2 above, which is completely based
on the Navier equation as underlying physical model, has been tested using
2D synthetic and tomographic datasets, as well as using 3D synthetic images.
As ratios for the Lamé constants A and u, we took the values determined in
Section 4.6, namely the ratios Ay /e = 135.111 for soft materials, Agr,/ sk, =
0.718666 for rigid materials, and Ay, /Ay, = 1011.72 as ratio between rigid and
soft materials.

For the assignment of individual material parameter values to the under-
lying finite element mesh, a direct mapping of each pixel (voxel) to the center
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(a) (b) (c)

Figure 5.1: Synthetic images used in our experiments. The dark regions
represent the rigid structures, while the bright ones represent the soft ma-
terial. For better visualization purposes of the deformation process in the
experiments, a white grid is overlaid in all cases.

of a four node (eight node) quadrilateral finite element in 2D (3D) has been
used. This results in 2(N +1)? degrees-of-freedom for a 2D image with N x N
pixels. In the concrete case of a 256 x 256 image, the final matrix system
contains 132098 degrees-of-freedom which can be solved with the current,
non-optimized implementation in about 45 minutes on a Sun ultra 2/1300
workstation with 300 MHz.

5.2.1 2D synthetic images

Our synthetic experiments comprise different types of movements (transla-
tion, rotation) and affine transformations (scaling, shearing) of a simulated
rigid object, embedded into simulated soft material. Figure 5.1 depicts the
synthetic source images which have been used in the experiments. The size
of these images are 301 x 301 pixels. As usual, it is assumed that the origin
of the image coordinate system is in the upper left corner of the respective
image.

Translation of a rigid structure

In our first experiments, we systematically investigated the translation of a
simulated rigid structure of size 61 x 121 pixels, given a sparse set of pre-
scribed displacements (or landmark correspondences). Figure 5.2 depicts the
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Figure 5.2: Usage of two prescribed displacements (left column) vs. one (right
column) in order to enforce a translation of the simulated rigid rectangle, see
text for details.



93

5.2 The elastic model

jEEEesEes

m--_llln
T

right

(

) vs. one

left column

(

column) in order to enforce a translation of the simulated rigid star

Figure 5.3: Usage of two prescribed displacements
structure.

shaped



94 EXPERIMENTAL RESULTS

deformation results while using a different number of prescribed displace-
ments to enforce such a translation of the rectangular structure. For the
results shown at the left column of Figure 5.2, two displacements were ap-
plied at the lower corners of the rectangle. As prescribed displacements,
we used the vectors (a) u = (10.0,10.0)T, (c) u = (20.0,20.0)T, and (e)
u = (30.0,30.0)T, respectively, serving as different scales of translation from
top to bottom in Figure 5.2. At the right column of Figure 5.2, only a single
prescribed displacement with identical translation magnitudes as before was
used instead, acting on the lower right corner of the rectangle.

A visual inspection of the deformation results reveals that the shape of the
rigid structure is well-preserved in all cases. The grid lines inside the rectan-
gle remain parallel and the whole deformation is limited to the surrounding
soft material. The application of two prescribed displacements forces the
rectangle into a pure translation, leading to large deformations in the sur-
rounding soft material. In contrast, if only a single prescribed displacement
is used, the surrounding material forces the rectangle into a combined motion
of translation and rotation.

Figure 5.3 depicts the results for the star-shaped rigid structure of Figure
5.1(b), using the same prescribed displacements as in the previous examples.
For the left column of Figure 5.3, a prescribed displacement acts on each, the
right tip and the lower right tip of the star-shaped structure, respectively,
while the single prescribed displacement used at the right column of Figure
5.3 acts on the right tip only. The results are still remarkably good, because
the shape of the rigid structure remains preserved in all cases, even at the
convex tips of the star.

An interesting point is the apparent broadening of the grid lines, as clearly
visible in, e.g., Figures 5.3(e) and (f). Considering the section of the com-
puted displacement vector field in Figure 5.4, taken from the lower left tip
of the star, reveals the source of this behavior: The deformation process sig-
nificantly spreads the regular pixel positions, each originally located at the
back ends of the corresponding displacement vectors shown in Figure 5.4(a),
such that a non-regular pixel structure results after the deformation. This
leads to areas in the regular pixel structure of the deformed image which
have not been assigned to any intensity values. To fill these gaps in the in-
tensity function of the deformed image, appropriate intensity values have to
be interpolated (using here a bilinear interpolation based on the four nearest
neighbors) thus leading to the apparent blurring of the grid lines.
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Figure 5.4: A 10 x 10 section of the computed displacement vector field which
transforms the star-shaped structure of Figure 5.1(b) into Figure 5.3(f). At
the left side, a part of the original computed displacement vector field near
the lower left tip of the star-shaped structure is shown. To obtain a better
impression of the vector field, the right side depicts the same section, but in
an enlarged and normalized vector representation, i.e. all displacements were
appropriately scaled with respect to the largest displacement magnitude.

Scaling of a rigid structure

We also investigated the scaling of a rectangular structure. Looking at the
results shown in Figures 5.5(a) and (c), where four prescribed displacement
vectors u = (£20.0,420.0)7 or u = (£30.0,430.0)7 were placed at each
corner of the rectangle such that a magnification of the structure results,
reveals an interesting property: While the rectangular structure is stretched
in longitudinal direction, it simultaneously shrinks in the lateral direction.
This deformation behavior is in contrast to a shape-preserving growth of
biological structures like, e.g., some lesions, but it is physically plausible for
real materials that are stretched without additional mass supply, since the
Poisson ratio v, which measures the ratio between the relative transversal
contraction and the relative longitudinal dilation, is greater than zero for all

real materials [21, 68].
To simulate a shape-preserving growth of a biological structure, we en-
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(c) (d)

Figure 5.5: Left column: Magnification of a rectangle using a sparse set of
prescribed displacements. Right column: Magnification of a rigid block using
five equidistant prescribed displacements on each side. The components of
the prescribed vectors are u = (£20.0,£20.0)7 in the top row and u =
(£30.0, £30.0)T in the bottom row, respectively.

larged the rigid block in Figures 5.5(b) and (d) using an increased number of
5 prescribed displacements at each side. Again, a shrinking is visible between
the loci where the prescribed displacements act. It follows, that a relatively
large number of prescribed displacements would be necessary to simulate an
ideal shape-preserving magnification of a rigid object.
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(c) (d)

Figure 5.6: Shearing of a rectangular structure. The magnitude of the pre-
scribed displacements used for the shear is either u = (10.0,0.0)T (left col-
umn) or u = (20.0,0.0)T (right column).

Shear of a rigid structure

Next, we carried out experiments with a rigid object undergoing a shear.
For the purpose of comparing the deformations with the results of our fluid
model presented below, we reduced the image size in these experiments to
151 x 151 pixels.

To enforce a shear of a rectangular structure, we applied two identical
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displacements at both upper corners of the rectangle while using two vec-
tors with components u = (0.0,0.0)7 at the lower corners of the structure.
The left column of Figure 5.6 shows the result and corresponding grid de-
formation, if the vector components of both prescribed displacements read
u = (10.0,0.0)%. For the right column of Figure 5.6, prescribed displacements
with components u = (20.0,0.0)7 have been used instead.

Especially the grid deformations in the bottom row of Figure 5.6 indicate,
that deformations occur within the rigid structure. Furthermore, the amount
of bending significantly increases with the magnitude of the shear. The
physical reason of this deformation behavior lies in the fact, that an elastic
body, which is simulated using the Navier equation, can sustain a shear
stress at rest. In other words, o;; # 0 for ¢ # j holds for the components
of the Eulerian stress tensor o and with Hooke’s law (2.37) also for the
corresponding components ¢;; of Cauchy’s infinitesimal strain tensor €. It
follows from

eij =

DO | =

due to definition (2.36), that changes of the ith component of the displace-
ment field u in the jth direction occur, i.e. a bending of the rigid structure
occurs as a result of the shear stress.

Rotation of a Rigid Structure

Our final experiments with 2D synthetic images comprise the rotation of the
rigid square shown in Figure 5.1(c) around its center in a clockwise direction.
To enforce the rotation, we used two prescribed displacements, one acting
at the upper right corner and one acting at the lower left corner of the
square. Appropriate components for the applied displacement vectors have
been calculated through the relations [39]

X] = X1 cos ¥ + Xg sin ¢ (5.2)
and
Xy = Xp €08 ¥ — xq sin ¥, (5.3)

where x] and x5, denote the components of the new position x’ of the corner
point x = (x;,%2)7 and ¥ the rotation angle. Figure 5.7 depicts the results
for a rotation of 10°, 20°, 45°, and 90° degree, respectively.

Interestingly, our approach works well for rotation angles up to about
45°, but fails otherwise. Especially in case of a rotation about 90° degree,
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(c) (d)

Figure 5.7: Clockwise rotation of a rigid square around its center. The
necessary prescribed correspondences were calculated using equations (5.2)
and (5.3). The applied angles ¥ were (a) 10°, (b) 20°, (c) 45° and (d) 90°
degree.

the whole square is strongly deformed, as indicated by the curved grid-lines
inside the square shown in Figure 5.7(d). Since the assumption of small
deformations is violated here, the linear elasticity theory, assuming infinites-
imal displacements (see Section 2.2.3 for details) cannot be used. Instead,
large deformations occur such that the second Piola-Kirchhoff stress tensor
3 as well as the Green-St. Venant strain tensor E have to be used. An al-
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Figure 5.8: Left side: Synthetic 3D image used in our experiments. The coor-
dinates of the lower left corner of the embedded rigid cube read (40, 40, 40)7.
Right side: Enlarged section of the synthetic 3D image with four prescribed
displacements (shown as solid and dashed lines) whose components read
u = (—15.0,—-15.0,0.0)7, each acting on a corner of the rigid cube. For
our second experiment, we used the two prescribed displacements denoted
by solid lines only.

ternative formulation for the simulation of large deformations represents the
Lagrangian incremental approach [21, 118] which allows an approximation of
the solution by successively solving linear problems.

5.2.2 3D synthetic images

After the experimental analysis of the behavior of the elastic model in 2D,
we will now carry out some 3D experiments. The used synthetic 3D image
showing a rigid cube embedded into soft material, has the dimensions of
71 x 71 x 71 voxels, while the size of the embedded cube is 15 x 15 x 15
voxels, see Figure 5.8(a). For the material parameter values, we took the
same ratios as in the previous section.

Our first experiment simulates the translation of the rigid cube using four
parallel prescribed displacements with components u = (—15.0, —15.0,0.0)”
thus forcing the cube into a pure translation within a zy-plane of the image.
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(a) (b) (c)

Figure 5.9: Translation of a rigid cube in the zy-plane: projections of the
displacement vector field in three orthogonal planes, namely (a) slice 40 of
the zy-plane, (b) slice 40 of the zz-plane, and (c) slice 40 of the yz-plane.
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Figure 5.10: Translation of a rigid cube using two displacements in the xy-
plane: projections of the displacement vector field in three orthogonal planes,
namely (a) slice 40 of the zy-plane, (b) slice 40 of the zz-plane, and (c) slice
40 of the yz-plane.

Figure 5.8(b) depicts the cube with the four prescribed displacements acting
at the corners of the cube.

The resulting deformation is shown in Figure 5.9. Here, three orthogonal
views are presented, namely the projections of the displacement vector field
onto (a) the zy-plane, (b) the zz-plane, and (c) the yz-plane, respectively. At
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first glance, it seems that a violation of the underlying grid topology occurs
within the zy-plane, but Figures 5.9(b) and (c) reveal, that this apparent
violation is merely a consequence of the projection of the displacement vector
field onto the zy-plane. In fact, the soft material is mainly deformed in the
z-direction, as indicated by the significant compression of the grid in Figures
5.9(b) and (c). The shape of the rigid cube is still well-preserved here thus
leading to a physically plausible 3D deformation result of our biomechanical
model.

In a second experiment, we applied two prescribed displacements with
components u = (—15.0, —15.0,0.0)T at the upper corners of the cube, i.e. we
used only a subset of the prescribed displacements as shown in Figure 5.8(b).
The lack of given displacements at the lower corners of the cube leads to a sig-
nificantly different deformation result compared to the previous experiment.
Figures 5.10(a) and (c) reveal, that the deformations with respect to the zy-
plane and the yz-plane are identical to the previous translation experiment.
This is in accordance with the application of two parallel correspondences,
spanning a single plane in the space, which forces the cube to a pure trans-
lation along this plane. But within the xz-plane, which is depicted in Figure
5.10(b), the influence of the soft material on the calculated deformation is
clearly visible. The lack of prescribed displacements given outside the plane
defined by the first two correspondences leads to a rotation of the rigid cube
due to the influence of the surrounding soft material.

Based on these first experiments with a 3D synthetic image, it can be
summarized that our elastic model leads to physically plausible deformation
results in the 3D case. Nevertheless, further experiments should be carried
out to assess the behavior of the approach in 3D under different conditions.

5.2.3 2D MR images

For the experiments with real data, we used pre- and postoperative 3D MR
images which were routinely acquired in conjunction with the planning and
radiological control of a tumor resection. Although our elastic model is valid
in 3D, we carried out 2D experiments only since the necessary region seg-
mentation as well as the finding of correspondences in 3D is generally more
difficult and costly than in the case of 2D images.

The used 2D images, as shown in Figure 5.11, are corresponding slices
of the 3D datasets which were aligned prior to our experiments by a rigid
registration using 34 manually determined landmarks. Due to the lack of
intraoperative image data, a postoperative image was used to simulate an
intraoperative one.

To determine correspondences which can be used as input data for our
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Figure 5.11: Slices 34 of pre- (left side) and postoperative (right side) MR
datasets (Courtesy of Neurosurgical Clinic, Aachen Institute of Technology
(RWTH Aachen).

(a) (b) (c)

Figure 5.12: Manually determined outlines in (a) the pre- and (b) the post-
operative image. In (c), the regions as segmented with an interactive 2D
watershed algorithm are depicted.

model to match the pre- with the postoperative image, the corresponding
tumor and resection area outlines in both images were manually determined
by a medical expert as indicated in Figures 5.12(a) and (b) by the white
outlines. Thereafter, a snake algorithm [79] has been applied to each im-
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age, which resulted in 618 correspondences between the contours of Figures
5.12(a) and (b) [118]. For this purpose, the two snakes were represented
as two sets of points whose evolution over time have been tracked and fi-
nally used for correspondence finding [118]. To determine correspondences
for a 3D application of the elastic model, it seems most promising to use
deformable models [104] instead. In clinical applications, other input data
like the insertion depth of surgical instruments could be used to determine
correspondences.

According to our experimental strategy, which allows to assess the in-
fluence of different material properties in subsequent experiments, Figure
5.13(a) shows a locally erroneous registration result since homogeneous soft
material for the whole image was only assumed. Note that local errors are
clearly visible, especially in the vicinity of the ventricular system (see also
the enlarged part of the ventricular system depicted in Figure 5.15(a)).

In order to improve this registration result, different materials were incor-
porated by assigning spatially different Lamé constants A and p in accordance
with the underlying anatomical structures. To this end, the preoperative
image was segmented with a 2D interactive watershed algorithm [150] into
four different regions, shown in Figure 5.12(c): Combined skin/skull region
(white), brain (dark grey), cerebrospinal fluid (light grey), and surround-
ing air, i.e. image background (black). The air in the frontal sinus of the
skull bone was assigned to the skull bone region since Hooke’s law does not
describe the physical behavior of air. Intracranial air and subarachnoidal
CSF spaces between skull and brain were assigned to the brain tissue region,
resulting in a rather simplified border between brain tissue and skull bone.
But due to the viscosity of fluids like cerebrospinal fluid, the applied compat-
ibility boundary condition seems to be valid [47]. For brain tissue and skull
bone, the previously determined ratios for the material parameter values were
used, while the cerebrospinal fluid, motivated by its reported incompressibil-
ity [135, 146], was roughly approximated as rigid material using the same
ratios as for skull bone. The air of the image background was modeled as a
highly soft material, i.e. we arbitrarily assumed the ratios A/ ptair = 100.0
and Ay, /Mgy = 1490.0, respectively.

The registration result is shown in Figure 5.13(d). Here, a global move-
ment of the head, forced by the given correspondences, can be observed which
leads to a surprisingly poor registration result. Nevertheless, the assumption
of inhomogeneous material properties leads to a completely different defor-
mation behavior as shown in the section of the displacement vector field in
Figure 5.13(f). According to the rigid material assumption, the ventricular
system cannot deform here thus leading to a small rotation of the whole
ventricular system with respect to the postoperative image, best seen in the



5.2 The elastic model 105

(d) (e) (f)

Figure 5.13: Top row: (a) Registration result assuming homogeneous soft
material properties for the whole image (with overlaid Canny edges of the
original postoperative image), (b) resulting grid deformation after application
of the calculated displacement vector field, and (c) section of the displacement
vector field from the bottom part of the ventricular system. Bottom row:
Based on the segmentation given in Figure 5.12(c), inhomogeneous material
properties in conjunction with a soft image background have been assumed
instead.

enlarged section depicted in Figure 5.15(b). As indicated by the correspond-
ing grid deformation in Figure 5.13(e), there is a global movement of the
head. This movement can be suppressed by preventing a deformation of the
image background, i.e. by using the Lamé constant ratio of a rigid body for
the image background, see Figures 5.14(a)-(c). In this case, an overall good
registration result can be achieved, even in the vicinity of the ventricular
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Figure 5.14: Same as Figure 5.13(d)-(f) but assuming a rigid image back-
ground (top row) plus additionally 68 correspondences given at the midline
in the posterior half of the brain (bottom row).

system, as clearly depicted in Figure 5.15(c). Note, that no correspondences
were given at the ventricular system, only the assumed inhomogeneous mate-
rial properties suppress a deformation of the ventricular system with respect
to the postoperative image.

However, a closer consideration of the results shown in Figures 5.13(a),
5.13(d), and 5.14(a) reveals a significant shift of the midline in the posterior
half of the brain which is in contrast to the postoperative image in Figure
5.11(b) (see also [102]). This shift can be suppressed by using additional
correspondences at the posterior midline (in this case, we used 68 manually
determined correspondences) thus giving the result shown in Figure 5.14(d).
Here, an overall good registration result is achieved and no shift of the poste-
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Figure 5.15: Enlarged parts of the ventricular systems of Figures 5.13(a),
5.13(d), 5.14(a), and 5.14(d) with overlaid Canny edges of the original post-
operative image. Subfigure (a) shows the result for homogeneous soft ma-
terial, (b) for the inhomogeneous case, (c) for the inhomogeneous case with
rigid image background, and (d) for the case with additional 68 correspon-
dences.

rior midline occurs, see the enlarged sections in Figure 5.16 for a comparison
of the posterior midlines. As indicated by the corresponding grid deforma-
tions in Figures 5.14(b) and (e), the additionally applied correspondences
significantly suppress the deformations in the left hemisphere. Deformations
occur only between the top end of the posterior midline and the ventricular
system due to the deformation of the soft brain tissue, see Figure 5.14(f).
Since real measurements indicate that deviations of the posterior midline sel-
dom occur as intraoperative deformations during surgical interventions [102],
a movement of the latter one should be generally suppressed using appropri-
ate correspondences at the posterior midline.

5.3 The fluid model

Our fluid model derived in Section 4.2 above, which is completely based
on the Stokes equation as underlying physical model, has been tested using
synthetic and tomographic datasets. As material parameter values for the
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(a) (b) (c) (d)

Figure 5.16: Enlarged parts of the posterior midline from (a) the preopera-
tive image, (b) the postoperative image, (c) the image in Figure 5.14(a) with
inhomogeneous material properties, and (d) the image in Figure 5.14(d) with
inhomogeneous materials and additional correspondences given at the poste-
rior midline. For visualization purposes, we manually marked the posterior
line with white squares. A comparison with the pre- and postoperative im-
ages reveals, that in (c) larger deviations are visible while in (d) no shift of
the midline occurs.

combined parameter ;*dt~! of the underlying Stokes equation, we took the
ratio determined in Section 4.6, namely the ratio uj,dt™"/pk.dt~ = 0.0001
between rigid and soft materials, which have been modeled here as thick
liquids and thin liquids, respectively.

According to the advantages of divergence-free finite elements compared
to the @s-P; Crouzeix-Raviart finite elements, see Section 4.3.3, we use
divergence-free finite elements. Although the concept of divergence-free finite
elements is generally extendible to 3D [57, 25], we restrict our investigations
here to 2D images only since the complexity of the approach increases sig-
nificantly otherwise. For the construction of the underlying finite element
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mesh, a direct mapping between image pixels and finite elements is used
since this allows a simple assignment of different material parameter val-
ues to the corresponding anatomical structures. Additionally, the segmen-
tation of an inhomogeneous body is simplified such that the segmentation
must not follow the finite element boundaries of the underlying finite element
mesh exactly, see Appendix B for further details. This mapping results in
2(N+1)(2N +1)+ (N +1)> = 5bN? 4+ 8N + 3 degrees-of-freedom for a 2D
image with N x N pixels. In the concrete case of an image with 256 x 256
pixels, the final matrix system contains 329731 degrees-of-freedom. To fur-
thermore prevent from an assignment of explicit values to the stream function
9, see Section 4.5 for details, all given correspondences are incorporated by
assigning the given displacement vectors to the four corner nodes xy,..., x4
of the appropriate divergence-free finite elements only. As a consequence,
the resulting displacements of the image pixels will usually not preserve the
given displacement vectors, instead the vectors calculated for the mid-node
xg of the divergence-free finite elements will result.

5.3.1 2D synthetic images

Our synthetic experiments with the fluid approach consists of different types
of movements (translation) and affine transformations (scaling, shear) of a
simulated rigid object, embedded into simulated soft material. As mentioned
above, since all structures being physically simulated using the Stokes equa-
tion are treated as fluids, we model rigid structures by using thick liquids
and soft structures by using thin liquids. The image size in all experiments
is restricted to 151 x 151 pixels due to the significantly higher calculation
times for larger image sizes, see Table 4.1 in Section 4.3.3.

Translation of a rigid structure

Again, we start our experiments with investigating the effect of a transla-
tion of a thick liquid structure of rectangular shape, originally centered at
the middle of the image. For these experiments, we use a set of two iden-
tical prescribed displacements, each acting at one of the right corners of
the rectangle. The calculated deformed images as well as the correspond-
ing grid deformations for the prescribed displacements u = (10.0,0.0)T and
u = (20.0,0.0)T are shown in the left and right columns of Figure 5.17, re-
spectively. It is clearly visible from Figure 5.17, that the shape of the thick
liquid structure is well preserved in both cases while the surrounding thin
liquid deforms in a physical plausible way.
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Figure 5.17: Resulting deformations (top row) and corresponding grid de-
formations (bottom row) for different magnitudes of translation using the
prescribed displacement vectors u = (10.0,0.0)T (left column) and u =
(20.0,0.0)T (right column), respectively.

Scaling of a Rigid Structure

In our second experiment, we analyze the effect of scaling a thick liquid
structure of rectangular shape by applying a set of prescribed displacement
vectors pointing outwards such that a magnification of the thick liquid struc-
ture results. The components of the prescribed displacements, each acting at
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Figure 5.18: Scaling of a thick liquid structure of rectangular shape with
a sparse set of prescribed displacements. The vector components acting on
each corner of the rectangle read u = (410.0,£10.0)T (left column) and
u = (£20.0, £20.0)T (right column).

a corner of the rectangle, read u = (4:10.0, £10.0)” or u = (£20.0, +20.0)”
where the signs of the components have to be adjusted to match the corre-
sponding corner considered. The deformed images and corresponding grid
deformations are shown in Figure 5.18. It turns out, that the deformation
result is somewhat similar to the calculated deformation result using our
elastic model (compare Figure 5.18 with the results shown in the left column
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of Figure 5.5). Interestingly, the deformation behavior of the surrounding
thin liquid shows a more global behavior in this case for the fluid model than
for the elastic model.

Shearing of a Rigid Structure

The last synthetic image experiments with our fluid model comprise differ-
ent magnitudes of shearing of a thick liquid structure of rectangular shape.
To enforce the shear, we applied two identical displacements at each upper
corner of the rectangle while preventing a movement of both lower corners
of the rectangle using the displacement vectors u = (0.0,0.0)7. The left
column of Figure 5.19 shows the deformation result and corresponding grid
deformation, if the vector components of the upper prescribed displacements
read u = (10.0,0.0)”. For the results shown in the right column of Figure
5.19, prescribed displacements with components u = (20.0,0.0)T have been
used instead.

In both cases, the calculated deformation shows that the used displace-
ments lead to a roughly ideal shearing of the thick liquid structure since the
resulting shape of the rectangle is rather similar to a parallelogram. A com-
parison of these results with those of our elastic model, which were depicted
in Figure 5.6, reveals, that the fluid model leads to a significantly different
deformation in the case of shearing. Using the fluid model, hardly any bend-
ing of the thick liquid structure is visible, neither at the boundary nor inside
the rectangle. This is in contrast to the results of the elastic model where
significant bendings are clearly visible (compare these results with those of
the elastic model in Section 5.2.1 above). The physical reason for this de-
formation behavior of the fluid model can be found in the fact, that fluids
cannot sustain a shear stress at rest or uniform flow [100, 47|, i.e. the shape
of a structure in the equilibrium is such that the Cauchy stress vector t(%, n)
acts always normal to the boundary [100, 21] and consequently the shape is
preserved.

5.3.2 2D MR images

Following our experimental strategy described in Section 5.1, we carried out
registration experiments using the pre- and postoperative MR images of Fig-
ure 5.11 as well as the previously used set of 618 prescribed displacements,
which were determined by applying a snake algorithm using the contours
depicted in Figures 5.12(a) and (b). Again, our first registration experiment
assumes a homogeneous fluid model only. The combined parameter of the
underlying Stokes equation was set to u*dt~! = 1.0 for all image regions.
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Figure 5.19: Resulting deformation (top row) and corresponding grid de-
formation (bottom row) for different amounts of shearing a rectangle (see

text).

The second experiment assumes an inhomogeneous fluid model instead with
spatially varying values of the viscosity parameter (applying the same ratios
as in the synthetic experiments), based on the segmentation shown in Figure
5.12(c). For comparison purposes with the elastic model, we simulated the
skull, the image background, and the ventricular system as rigid structures
using a thick liquid, while the brain tissue was simulated as soft material
using a thin liquid. Although it seems inappropriate, the simulation of the
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Figure 5.20: Registration result using a homogeneous fluid model (top row)
and an inhomogeneous fluid model (bottom row): Transformed preoperative
image with overlaid Canny edges of the original postoperative image (left
column), corresponding grid deformation (middle column), and a section of
the interpolated displacement vector field (right column).

ventricular system as a thick liquid structure allows a direct comparison of
the deformation results with those obtained by the elastic model. However,
we expect that the simulation of the ventricular system as a thin liquid struc-
ture instead will lead to results that are rather similar to those calculated by
the homogeneous fluid model.

Figure 5.20 shows the registration results, the corresponding grid defor-
mations, and a section of the displacement vector fields, taken from the vicin-
ity of the ventricular system, for the homogeneous fluid model (top row) and
the inhomogeneous fluid model (bottom row), respectively. Note, that both
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Figure 5.21: Difference image between Figures 5.20(a) and (d).

sections of the displacement vector fields shown in Figures 5.20(c) and (f)
merely display the displacement vector fields used for transforming the im-
age, i.e. only the vectors belonging to the mid-node xg of the divergence-free
finite elements are depicted. All vectors associated to the nodes xy, ..., xg of
the divergence-free finite elements have been dropped here since these vectors
do not contribute to the final image deformation using the homogeneous and
the inhomogeneous fluid models.

Surprisingly, both registration results are rather similar, although Figure
5.21, showing the difference image between Figures 5.20(a) and (d), reveals
that slight differences at the combined skin/skull surfaces in the lower left
part of the image occur. Compared to the results of the inhomogeneous
elastic model, see Figures 5.13 and 5.14, equivalent registration results are
obtained in the vicinity of the ventricular system for both fluid models. In
contrast to the results of the elastic model, a shift of the posterior midline
is always suppressed here without any additional correspondences, irrespec-
tively whether homogeneous or inhomogeneous material properties are as-
sumed for the fluid model. For better visualization purposes of this behavior,
Figure 5.22 depicts enlarged sections of the posterior midline.

However, as shown in Figure 5.23, the lower left part of the combined
skin /skull region of the preoperative image is mapped with a somewhat worse
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(a) (b) (c) (d)

Figure 5.22: Enlarged parts of the posterior midline for (a) the preoperative
image, (b) the postoperative image, (c) the homogeneous fluid model and
(d) the inhomogeneous fluid model. For better visualization purposes, we
manually marked the posterior line with white squares.

accuracy onto the corresponding region of the postoperative image compared
to the elastic model. Especially in the vicinity of the tumor region, the
calculated deformation using both fluid models remain unsatisfactory since
no significant compression of the tumor occurs. This can be best seen in
the corresponding grid deformations depicted in Figures 5.20(b) and (e). In
contrast, the elastic model leads to a significant compression of the tumor and
hence, to a better registration result in this case (compare the deformation
results of the fluid model with those obtained by the elastic model in Figures
5.13 and 5.14).

A closer look at some parts of the calculated displacement vector field
of the inhomogeneous fluid model, which are shown on the right hand side
of Figure 5.24, reveals that the displacement vectors indicate a significant
material flow in the vicinity of the tumor region. As clearly visible in the
displacement vector field shown in the upper right part of Figure 5.24, a large
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Figure 5.23: Enlarged sections of the lower left part of the combined
skin/skull regions of (a) the homogeneous fluid model and (b) the inho-
mogeneous fluid model. The desiderative accuracy of the mapping at the
combined skin/skull surface is clearly visible.

mass transport to the upper right corner of the section, which is located be-
tween the skull and the tumor regions, occurs. Due to the physical properties
of the underlying fluid model, this mass transport is a consequence of the
material inflow enforced by the given correspondences at the location where
skull and tumor are directly adjacent to each other. The corresponding sec-
tion of the displacement vector field of this location is shown in the lower
right part of Figure 5.24.

As pointed out above, the registration results of the fluid model in the
vicinity of the tumor region are rather poor compared to the registration
results of the elastic model since both fluid models yield no compression of
the tumor and hence the white tumor outline remains nearly unchanged. To
further investigate the rather sobering registration results of the fluid model
at the tumor region, we consider an enlarged section of the complete displace-
ment vector field of the inhomogeneous fluid model at the tumor boundary,
as shown in Figure 5.25. The given correspondences, which are the set of
large displacements pointing to the lower right corner of Figure 5.25, are
clearly visible here. Looking at a single divergence-free finite element only,
as marked by the black square, reveals a relatively small displacement of the
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Figure 5.24: Different sections of the calculated displacement vector field of
the inhomogeneous fluid model, taken from the marked parts of the image.
The sections show the complete displacement vector field, i.e. the calculated
displacement vectors from all nodes of the underlying divergence-free finite
element mesh.

mid-node xg, which is indicated by the black arrow. This small displace-
ment results from the necessary final multiplication 1 = Ry, as described
in Section 4.3.2, to reconstruct the displacement of the mid-node xg since
this node determines the displacement of the associated pixel, see Appendix
B for further details. As a consequence, the fluid-based approach leads to
a locally bad result. Additionally, the displacement vectors located at the
mid-side nodes xs, ..., Xg, according to the notation in Figure 4.6, of the
finite element boundary point in directions opposite to the given correspon-
dences. This behavior is forced through the tumor compression as a result
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Figure 5.25: Enlarged section of the calculated displacement vector field
depicted in the top row of Figure 5.24, showing some of the given correspon-
dences at the tumor boundary. The black square indicates a single finite
element while the black arrow points to the center node xg.

of the given correspondences since the incompressibility of the fluid demands
a material outflow. However, a significant improvement of the registration
result is expected, if the underlying mapping between image pixels and finite
elements is changed. It seems most promising instead, to use a mapping that
aligns each image pixel to those nodes of the underlying finite element mesh
where four neighboring finite elements meet, or, in other words, a mapping
that aligns the pixels to the appropriate nodes xi,...,x4 of the underlying
divergence-free finite elements, see also Appendix B.

5.4 The coupled rigid/elastic/fluid model

In this section, we describe experiments using our coupled rigid/elastic/fluid
model which allows for a simulation of deformations of inhomogeneous ma-
terials under load using the appropriate physical models, namely the Navier
equation for rigid and elastic materials coupled with the Stokes equation
for fluid regions, see Section 4.4 for details. In order to investigate the in-
fluence of different physical models on the calculated deformations, we will
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directly compare the results of the coupled approach with those determined
previously by a pure elastic model and a pure fluid model, respectively.

For the coupled rigid/elastic/fluid model, we use the common Q,-P;
Crouzeix-Raviart finite element for all fluid regions and the biquadratic fi-
nite element for all elastic and rigid regions, respectively. Both types of
finite elements have been described in detail in Section 4.3.2. As mentioned
in Section 4.4.3 above, we have to use these types of finite elements here
since a direct coupling between divergence-free finite elements and bilinear
finite elements is not possible. Therefore, the here used elements result in
2(2N + 1)* + 3N? — 3M? degrees-of-freedom for a 2D image with N x N
pixels, where M denotes the number of biquadratic finite elements included
in the finite element mesh. This limits the image sizes used in our experi-
ments to 61 x 61 pixels since the large number of degrees-of-freedom leads
to very long calculation times, see Table 4.1 for details. To further reduce
the degrees-of-freedom (as well as the memory requirements of the approach)
to manageable sizes, we directly map each image pixel onto a node of the
underlying finite element mesh such that all regions of the inhomogeneous
body must follow exactly the finite element boundaries, see Appendix B for
detailed informations.

As material parameter values for the coupled rigid/elastic/fluid model,
we took the ratios determined in Section 4.6 for the Lamé constants A and p
in case of the skull bone and brain tissue (i.e. Ay, /ey = 135.111, Agp, /s, =
0.718666, and Ay /Ay = 1011.72), respectively, and a value of 0.01 for the
combined parameter p*dt ! of the fluid regions. For the elastic model and
the fluid model, we applied material parameter ratios identical to those in
Sections 5.2 and 5.3.

5.4.1 2D synthetic images

The synthetic images used in our experiments are depicted in Figures 5.26(a)
and (b). Each image contains the following three different materials: rigid
skull bone (black), soft brain tissue (dark grey), and cerebrospinal fluid
(bright grey). Note, that the terms rigid, soft, and fluid are used here to
describe the expected material behavior of the corresponding regions while
the actual simulation of these structures depends on the applied physical
model. In fact, the fluid model can simulate rigid and elastic regions by
treating them as thick liquid and thin liquid structures, respectively.

As pointed out in Section 5.1, we directly compare the calculated re-
sults of our coupled rigid/elastic/fluid model with those determined by the
pure elastic model and the pure fluid model. Using these models, we car-
ried out experiments firstly assuming a homogeneous body only and secondly
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(a) (b)
-
L
(c) (d)

Figure 5.26: The synthetic images used in our experiments (top row) and
the prescribed displacements (bottom row). Both images comprise three
different materials: rigid skull bone (black), soft brain tissue (dark grey),
and cerebrospinal fluid (bright grey).

assuming an inhomogeneous body comprising brain tissue, skull bone, and
fluid treated as a rigid object. As mentioned above, this kind of simulation of
fluid regions was motivated by the reported incompressibility of cerebrospinal
fluid [135, 146]. In the following, we will refer to these five approaches as
homogeneous elastic model, inhomogeneous elastic model, homogeneous fluid
model, inhomogeneous fluid model, and coupled rigid/elastic/fluid model, re-
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spectively.

In the first experiment, we simulated the movement of a rigid object
towards a nearby fluid region, using the synthetic image shown in Figure
5.26(a). The rigid object (represented by the small black square) may rep-
resent, e.g., a surgical instrument, a rigid foreign body, or a particle of
skull bone. For simplicity, the movement is modeled as a pure transla-
tion of the squared object using two parallel displacements with components
u = (7.0,—4.0)T each, as shown in Figure 5.26(c). We expect that the result-
ing deformation leads to a pure translation of the rigid object in the direction
of the fluid region which should deform accordingly.

As can be seen from the calculated results and the corresponding grid
deformations depicted in Figure 5.27, the homogeneous elastic model as well
as the homogeneous fluid model result in deformations where both, the ob-
ject and the surrounding skull bone were deformed which is in contrast to
the assumed rigid material behavior. With the inhomogeneous elastic model
this is not the case, but the assumed rigidity of the fluid structure leads to
physically incorrect violations of the grid topology as is clearly visible in Fig-
ures 5.28(a) and (b). Additionally, no deformations occur in the fluid region
and the soft material between the object and the fluid region is no longer
visible (note, that the rigid and elastic parts lie one above the other). Similar
considerations hold for the inhomogeneous fluid model in Figure 5.28(c), but
the corresponding grid deformation shown in Figure 5.28(d) indicates that
the deformation is more local here as compared to the inhomogeneous elastic
model. A complete different behavior shows the coupled rigid/elastic/fluid
model. Here, the shape of the rigid object is still preserved while the com-
plete deformation takes place in the fluid and soft tissue regions, see Figures
5.28(e) and (f).

In our second experiment we simulated the growth of a tumor located
inside a simulated skull bone, by applying 17 parallel correspondences given
by u = (0.0, —-6.0)" at the bottom part of the skull, as shown in Figure
5.26(d). We expect that, due to the incompressibility of the fluid and the
rigidity of the surrounding bone, the soft brain tissue will be compressed.
As can be seen from Figure 5.29, both, the homogeneous elastic model and
the homogeneous fluid model, lead to incorrect results: no compression of
the soft part can be observed and even at the rigid bone deformations occur.
Additionally, large, topology-disturbing deformations occur in the rear of the
given correspondences for the homogeneous elastic model due to the applied
homogeneous Dirichlet boundary conditions, as indicated by the sizeable grid
deformation at the bottom part of Figure 5.29(b).

Instead, the inhomogeneous elastic model leads mainly to a deformation
of the enclosed brain tissue with a slight compression at the bottom part,
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() (d)

Figure 5.27: Calculated deformations (left column) for the synthetic image
shown in Figure 5.26(a) and corresponding grid deformations (right column)
using the homogeneous elastic model (top row) and the homogeneous fluid
model (bottom row).

see Figures 5.30(a) and (b). Changing the Lamé constants A and u from soft
to rigid material values, the violation of the grid topology is completely pre-
vented. In contrast to these results, no compression of the soft region occurs
while using the inhomogeneous fluid model because the physical properties
of the underlying Stokes equation prevent from a compression of the soft ma-
terial. Therefore, only a slight deformation of the soft material results. The
deformation in the vicinity of the prescribed displacements is rather similar
to the homogeneous fluid model here since the underlying incompressibility
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(e) (f)

Figure 5.28: Calculated deformations (left column) for the synthetic image
shown in Figure 5.26(a) and corresponding grid deformations (right column)
using the inhomogeneous elastic model (top row), the inhomogeneous fluid
model (middle row), and the coupled rigid/elastic/fluid model (bottom row).
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() (d)

Figure 5.29: Calculated deformations (left column) for the synthetic image
shown in Figure 5.26(b) and corresponding grid deformations (right column)
using a homogeneous elastic model (top row) and a homogeneous fluid model
(bottom row).

constraint demands that the rigid skull region has to shrink elsewhere.

Again, only the inhomogeneous coupled rigid/elastic/fluid model gives
the expected result. In the simulation, the brain tissue has been significantly
compressed, as can be clearly seen in the corresponding grid deformation
shown in Figure 5.30(f). Also, after a detailed analysis of the pixels belonging
to each region (not shown here), it turns out that the tumor enlargement is
roughly equal to the shrinking of brain tissue which clearly demonstrates
that the incompressibility of the fluid region holds here.
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(e) (f)

Figure 5.30: Calculated deformations (left column) for the synthetic image
shown in Figure 5.26(b) and corresponding grid deformations (right column)
using an inhomogeneous elastic model (top row), an inhomogeneous fluid
model (middle row), and a coupled rigid/elastic/fluid model (bottom row).
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(a) (b) (c)

Figure 5.31: Enlarged part (b) of the ventricular system of the original pre-
operative image (a). The applied correspondences are depicted in (c).

5.4.2 2D MR images

For our experiment with a real tomographic image, we used the section of the
preoperative MR image marked in Figure 5.31. The resulting image of size
61 x 61 pixels shows a part of the ventricular system surrounded by soft brain
tissue. In order to segment both regions, we applied a Canny edge detector to
the image. Thereafter, the resulting segmentation has been locally corrected
such as to match the underlying finite element mesh. The final segmentation
thus follows exactly the finite element boundaries.

Figures 5.32 and 5.33 show the results and corresponding grid deforma-
tions for 8 prescribed, parallel displacements u = (7.0,0.0)7 given at the left
side of the ventricular system, as indicated in Figure 5.31(c). Using the homo-
geneous elastic model and the homogeneous fluid model, rather similar defor-
mations result, both leading to a remarkably bended shape of the ventricular
system, see Figures 5.32(a) and (c). As indicated by the corresponding grid
deformations in Figures 5.32(b) and (d) as well as by the displacement vec-
tor fields shown in Figures 5.34(a) and (b), this bending is symmetric with
regard to the applied correspondences. Significant displacements occur in
both cases in a rather local neighborhood, i.e. no material flows to remote
parts of the image. In contrast, the inhomogeneous elastic model leads to a
corrupted and physically incorrect result due to a violation of the underlying
topology, which is clearly visible in the grid deformation shown in Figure
5.33(b). As observed in the first synthetic experiment shown in Figure 5.28,
such foldings sometimes occur in the vicinity of rigid structures due to large
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() (d)

Figure 5.32: Resulting calculated deformations (left column) for the image
in Figure 5.31(b) and corresponding grid deformations (right column) while
using a homogeneous elastic model (top row) and a homogeneous fluid model
(bottom row).

deformations at the boundary between a soft and a rigid region (see also the
corresponding displacement vector field in Figure 5.34(c)). Additionally, the
shape of the ventricular system is nearly preserved thus indicating that the
inhomogeneous elastic model is insufficient in this case.

A similar deformation is obtained with the inhomogeneous fluid model.
According to the underlying direct mapping between image pixels and finite
elements, only slight deformations occur since the final multiplication @ =
Ry, suppresses large deformations at the boundary between brain tissue
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(e) (f)

Figure 5.33: Resulting calculated deformations (left column) for the image
in Figure 5.31(b) and corresponding grid deformations (right column) while
using an inhomogeneous elastic model (top row), an inhomogeneous fluid
model (middle row), and the coupled rigid/elastic/fluid model (bottom row).
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Figure 5.34: Parts of the calculated displacement vector fields for (a) the
homogeneous elastic model, (b) the homogeneous fluid model, (c) the inho-
mogeneous elastic model, (d) the inhomogeneous fluid model, and (e) the
coupled rigid/elastic/fluid model. Note, that the vector fields of the fluid
models in subfigures (b) and (d) show only the relevant displacement vectors
of the mid-node xg. The sections were taken from the middle of the image
shown in Figure 5.31(Db).

and ventricular system (see also Figure 5.34(d) as well as the discussion in
Section 5.3). In contrast, the coupled rigid/elastic/fluid model results in a
completely different behavior, see Figures 5.33(e) and (f). Due to the shape
of the enclosed fluid region, the calculated deformation is non-symmetric with
regard to the given correspondences. Also, a clearly visible flow of material
inside the fluid region to the upper part of the image occurs. The result
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is a roughly straight right side of the ventricular system. Interestingly, the
pressure of the fluid onto the brain tissue at the right side is nearly uniformly
distributed as indicated by the resulting overall small displacements of the
brain tissue there, see Figure 5.34(e).

5.5 Summary

In this chapter, we experimentally compared different biomechanical models
to assess the physical plausibility of the computed deformations. In Sections
5.2 and 5.3 experiments were carried out using a pure elastic model and a
pure fluid model only, i.e. all materials were simulated using either the Navier
equation or the Stokes equation. Experiments with 2D (and 3D) synthetic
images revealed, that both approaches lead to physically plausible deforma-
tions such that the shapes of simulated rigid structures have been preserved.
Differences occur in case of experiments with real MR data, where the fluid
model leads to insufficient registration results compared to the elastic model.
But this can be traced back to the underlying mapping process between im-
age pixels and finite elements. Consequently, a significant enhancement of
the quality of the registration results can be expected if another mapping
would be chosen.

In Section 5.4 we saw that problems arise for inhomogeneous elastic and
fluid models when prescribed displacements act in the vicinity of anatomical
structures whose physical behaviors differ significantly from the underlying
physical model. In this case, both approaches, the inhomogeneous elastic
model and the inhomogeneous fluid model, lead to insufficient deformation
results that are physically incorrect. Instead, the coupled rigid/elastic/fluid
model, which allows for an adequate physical simulation of rigid, elastic, and
fluid structures through a coupling of the Navier equation and the Stokes
equation, yields physically plausible deformation results. With this approach,
both, the shape of rigid structures and the volume of fluid regions, i.e. the
number of pixels representing each fluid structure, remain preserved in all ex-
periments while the soft regions deform in a physically plausible way. Never-
theless, we expect that problems arise in case of large deformations, since our
approach is valid for small deformations only. But these limitations should
be overcome by using either a Lagrangian incremental method [21, 118] or
an arbitrary Lagrangian-Eulerian (ALE) formulation [31, 73, 159]. However,
our experiments show, that the coupled rigid/elastic/fluid approach results
in a significant improvement of the computed deformation results compared
to either a pure elastic model or a pure fluid model.

To further investigate both, the potential properties and limits of our
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coupled rigid/elastic/fluid model, a larger number of experiments (especially
based on real image datasets) should be carried out. By using intra- or post-
operative image datasets as ground truth for comparison purposes with the
computed deformations, first steps in the direction of a more formal vali-
dation could be made. Additionally, such an experimental series, especially
with varying material parameter values for the combined parameter p*dt *,
would allow for a further judgement of the validity of the assumed material
parameter values for the fluid regions, which have been determined heuris-
tically only due to the lack of reported measurements. However, according
to our current experience with biomechanical models, we do not expect a
significant change of the physical plausibility of the computed deformation
results once the combined parameter p*dt ! changes.



Chapter 6

Conclusion

In this thesis, we developed a new biomechanical model of the human head
for intraoperative image correction purposes in order to increase the accu-
racy of image-guided neuronavigation systems. In contrast to the existing
biomechanical models, our new approach copes with different anatomical
structures consisting of rigid, elastic, and fluid materials while using the
appropriate physical models, namely the Navier equation and the Stokes
equation, respectively.

For the derivation of our model, we used the well-established physical
theory of continuum mechanics to handle inhomogeneous materials. With
our scheme, an inhomogeneous body is divided into a set of homogeneous re-
gions, each representing a different material for which the appropriate phys-
ical model is utilized. For the discretization and solution of the problem, we
apply the finite element method (FEM) to each region, leading to a corre-
sponding set of sparse linear matrix systems. To merge these linear matrix
systems into a single one, we apply appropriate boundary conditions, namely
the equilibrium boundary condition, the compatibility boundary condition, and
the no-slip condition, all of which establish a physical link between rigid,
elastic, and fluid regions. Using these boundary conditions, a single linear
matrix system results which completely describes the physical behavior of an
inhomogeneous domain, comprising rigid, elastic, and fluid materials.

Instead of using forces, which are generally difficult to be determined from
corresponding images, we used a set of prescribed landmark correspondences
to drive the deformation. In our approach, it is ensured that these prescribed
correspondences are exactly fulfilled by the computed deformation thus our
approach can be regarded as a landmark-based registration scheme. Addi-
tionally, it turns out that the external forces are automatically adjusted by
our approach such that the necessary material parameter values are decou-
pled from explicit physical units. As a result, only the ratios of all material
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parameter values with respect to each other determine the deformation be-
havior of an inhomogeneous domain. Based on a comprehensive literature
study, we determined appropriate ratios between the material parameters A
and p characterizing skull bone and brain tissue, respectively, by using the
mean of all values found. Due to the lack of reported material parameter
values for cerebrospinal fluid, we were forced to use heuristically determined
ratios between cerebrospinal fluid and other materials instead. Note, that
despite the visual appealing deformations resulting from the chosen value for
the combined parameter p*dt—!, the validity of this value remains unclear.
So further research and measurements are necessary to determine a reliable
value for p*dt . Additionally, since the development of more precise biome-
chanical models demands the incorporation of further anatomical structures
[91] like, e.g., the falx or the tentorium, further research is required to deter-
mine appropriate material values for those structures.

In the last part of this thesis, we reported on experiments carried out
using different biomechanical models of the human head and compared the
computed deformations to assess the influence of different physical models on
the results. Besides the coupled rigid/elastic/fluid model, we developed two
other biomechanical models, each of them based on a single physical model
only. This leads to an elastic model based entirely on the Navier equation
and a fluid model based entirely on the Stokes equation, respectively. In
the latter case, problems arise with the solution due to the additional pres-
sure function which demands the usage of mixed finite elements. The com-
monly applied Q2-P; Crouzeiz-Raviart finite element leads to a large number
of degrees-of-freedom and thus to unacceptable computation times as well
as memory requirements that usually prevent the application of such fluid
models. To reduce the computation times and storage requirements, we in-
troduced so-called divergence-free finite elements which reduce the number
of degrees-of-freedom and simultaneously enhance the numerical properties,
i.e. the condition number, of the final stiffness matrix. For the simulation of
different material properties in the purely elastic model and the purely fluid
model, we used a spatial variation of the underlaying material parameter val-
ues. The experimental comparison revealed, that the integrated treatment of
rigid, elastic, and fluid materials significantly improved the physical plausi-
bility of the calculated deformation results as compared to approaches based
on a single physical model only.

However, a larger number of further experiments (especially with clinical
relevant MR images) is necessary to fully investigate the properties and limits
of our coupled rigid/elastic/fluid model. In particular, we expect that prob-
lems arise in case of large deformations since the approach is formally valid for
small deformations only. But such limitations should be overwhelmed using
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either a Lagrangian incremental method [21, 118] or an arbitrary Lagrangian-
Eulerian (ALE) formulation [31, 73, 159]. By comparing the results of the
approach to real intra- or postoperative image datasets, a more precise esti-
mation of the physical plausibility of the computed deformations should be
obtained.

To further enhance the computational efficiency of the coupled rigid /elas-
tic/fluid model, an integration of divergence-free finite elements seems desir-
able. But this requires a derivation of transition elements which remains an
open problem. Alternatively, regions representing fluids could be simulated
using the boundary element method (BEM) instead [8]. Again, a linear ma-
trix system results which can be directly coupled with those linear matrix
systems derived with the finite element method by using the same scheme as
described in Section 4.4 [8, 77]. The advantage of using the boundary element
method is also a significant reduction of the number of degrees-of-freedom,
but the mandatory accuracy of the boundary representations in this case [53]
requires the usage of a finite element mesher to generate the underlying finite
element grid [65].

However, further investigations are necessary towards the development
of biomechanical models of the human head with a maximal physical re-
alism. As a first step in this direction, we propose the incorporation of
further anatomical structures. Additionally, as a second step, an integration
of anisotropic material behavior, where a preferred direction of the material
exists [77, 21|, arising from, e.g., arteries, veins, or variations of cell den-
sity between white matter and grey matter seems to be necessary [78]. But
both extensions require the derivation of new constitutive equations which
remains a challenging and complex task [46, 48, 32, 101]. All in all, the de-
velopment of as-precise-as-possible biomechanical models of the human head
with maximal physical realism remains an exciting and challenging problem.
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Appendix A

Notation

Rn

]Rnxn

space of real numbers

space of positive real numbers

space of real vectors

space of real square matrices

bounded, open, connected subset of IR?

closure of €2

boundary of 2

boundary of a region A C

empty set

scalar value

scalar function

vector valued function in the Lagrangian configuration
tensor valued function in the Lagrangian configuration

vector valued function in the Eulerian configuration
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A tensor valued function in the Eulerian configuration
AT transpose of a tensor
dij Kronecker delta symbol
0; partial derivative with respect to the ith component
o' partial derivative of order 7
\Y% Nabla operator

span(-,...,-)

Jacobian matrix

trace operator

determinant of a matrix
divergence of a vector or tensor field
curl of a vector or tensor field
absolute value

inner product of vectors or tensors
inner product of a function space
norm in the space V'

a subspace

a subspace or equal space
unification of sets

intersection of sets

set difference

space spanned by some functions
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orthogonal decomposition of a vector space

dual space of V()

Sobolev space of order m

space of quadratic integrable functions on €2

space of functions whose derivatives of arbitrary order exist
space of functions whose derivatives up to order m exist
space of polynomials of order m

space of polynomials of order m in each variable

space of all weakly solenoidal functions
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Appendix B

Finite element mesh generation

Throughout this thesis, the finite element method is used for solving the
Navier equation and the Stokes equation, respectively. As pointed out in
Sections 2.3 and 4.3, the finite element method is based on a discretization
of the body 2 into a set of disjunct areas €2, denoted as finite elements.
The underlying discretization process is usually known as finite element mesh
generation process, which is in general a computationally quite costly process
(72, 65].

In our case, the discrete pixel (voxel) structure of a 2D (3D) image already
provides the necessary discretization of the underlying body €2, such that it
suffices to define a mapping between the image pixels (voxels) and the nodal
points x; of each bilinear finite element ;. A simple choice of a mapping
function which has been used in this thesis, is depicted in Figure B.1, where
each nodal point x; € €, is directly mapped onto a pixel (voxel) of the 2D
(3D) image. The advantage of this simple mapping is a relatively small num-
ber of degrees-of-freedom and, moreover, that all calculated displacements
u; can be directly applied to their corresponding pixels (voxels) to transform
the image. But problems arise if the underlying body €2 consists of different
regions (2;, as indicated by the different grey values of the image pixels (vox-
els) in Figure B.1. Now, the nodal points x; of some finite elements 2; may
be assigned to different regions €2; of the inhomogeneous body such that an
assignment of appropriate material parameter values is difficult. For a direct
usage of this mapping in conjunction with inhomogeneous bodies €2, the fi-
nal segmentation of {2 into different regions €2;, according to the underlying
anatomical structure, must ensure that the boundaries between all regions
2; must follow exactly the boundaries between different finite elements €2
of the finite element mesh.

To circumvent this problem, another mapping according to Figure B.2
can be used. In this case, each nodal point x; is mapped in-between the
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Figure B.1: A direct mapping between the image pixels () and the nodal
points e using bilinear finite elements (2 leads to a finite element mesh laying
directly on the image pixels. Different grey values of the () denote pixels
belonging to different regions €2; of an inhomogeneous body 2. Note, that
the nodal points of the finite element €2; in the middle of the mesh have been
assigned to different regions €2;, thus causing problems with respect to an
assignment of appropriate material parameter values to the corresponding
finite element .

®)

N

N
(o)

image pixels (voxels) such that the resulting finite element mesh is displaced
with respect to the pixel (voxel) positions. All problems associated with in-
homogeneous material properties vanish here, but now the displacements u;
are calculated for positions which do not match the pixel (voxel) positions.
As a result, an interpolation of the displacement vector field u is manda-
tory to calculate the final pixel (voxel) displacements and thus the image
deformation.

Similar considerations hold if biquadratic finite elements are used instead.
Using a direct mapping as indicated in Figure B.1 requires again a segmen-
tation of the inhomogeneous body that follows exactly the boundaries of the
biquadratic finite elements. The usage of a mapping as indicated in Figure
B.3 instead relaxes the necessity of interpolation since the center node xq
of each biquadratic finite element is directly mapped onto the image pixel
(voxel) position while all other nodal points are mapped in-between the pixel
(voxel) positions. But for a 2D image consisting of N x N pixels, this results
in a large number of degrees-of-freedom where 3N? + 2N degrees-of-freedom
are related to nodal points in-between the pixel positions which are therefore



FINITE ELEMENT MESH GENERATION 143

O,0,0,0
ONN NECER®
@ &6 & O

Figure B.2: A mapping between the image pixels () and the nodal points
e using bilinear finite elements, where each pixel is mapped into the center
of the corresponding finite element thus leading to a displaced finite element
mesh with respect to the pixel positions. The differences in grey values of ()
denote pixels belonging to different regions €2; of an inhomogeneous body 2.
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Figure B.3: A mapping between the image pixels () and the nodal points
e using biquadratic finite elements such that each pixel is mapped onto the
center node xg of the corresponding finite element, see also Figure 4.4(a) for
the notation used for biquadratic finite elements. Again, different pixel grey
values denote different regions ;.
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Figure B.4: A mapping between the image pixels () and the nodal points e
using divergence-free finite elements such that each pixel is mapped into the
center of the corresponding finite element mesh. Again, different pixel grey
values denote different regions €2;.

unused for the final image transformation.

In order to use divergence-free finite elements instead, the transforma-
tion 1 = Ryuy is applied to each biquadratic finite element leading to the
finite element mesh shown in Figure B.4. Here, the nodal points xg of all
biquadratic finite elements, originally located at the pixel positions, have
been eliminated such that a direct assignment of prescribed displacements to
image pixels remains difficult, as pointed out in Section 4.5. To circumvent
this, four adjacent image pixels should be mapped onto the corner nodes of
a divergence-free finite element instead, see Figure B.5, but again, in this
case, the segmentation of an inhomogeneous body (2 into homogeneous re-
gions €2; has to follow exactly the boundaries of the finite elements. If this
requirement with respect to accuracy cannot be fulfilled, local errors in the
computed deformation will occur.
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Figure B.5: A direct mapping between the image pixels () and the nodal
points e using divergence-free finite elements {2, leads to a finite element
mesh laying directly on the image pixels. As usual, different grey values of
the (O denote pixels belonging to different regions §2; of an inhomogeneous
body 2. Note, that the nodal points of the finite element €2, embedded in the
middle of the mesh have been assigned to different regions €2;, thus causing
problems with an assignment of appropriate material parameter values to
the corresponding finite element €.



146 FINITE ELEMENT MESH GENERATION




Bibliography

1]

2]

3]

4]

[5]

(6]

[10]

S. H. Advani and R. P. Owings. Structural Modeling of Human Head.
Journal of the Engineering Mechanics Division, pages 257-266, 1975.

A. Anzelius. The Effect of an Impact on a Spherical Liquid Mass. Acta
Pathologica et Microbiologica Scandinavia (Supplementum XLVIII),
48:153-159, 1943.

F. A. Bandak and R. H. Eppinger. A Three-Dimensional Finite Ele-
ment Analysis of the Human Brain Under Combined Rotational and
Translational Accelerations. In Proceedings of the 38th Stapp Car Crash
Conference, pages 145-163. Society of Automotive Engineers, 1994.

M. Bertero, T. A. Poggio, and V. Torre. Ill-Posed Problems in Early
Vision. Proceedings of the IEEE, 76(8):869-889, August 1988.

D. E. Beskos. Boundary Element Methods in Mechanics. North-
Holland, 1987.

F. Bookstein. Principal Warps: Thin-Plate Splines and the Decompo-
sition of Deformations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(6):567-585, June 1989.

D. Braess. Finite Elemente: Theorie, schnelle Léser und Anwendungen
in der Elastizitatstheorie. Springer Verlag, 1997.

C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel. Boundary Element
Techniques. Springer Verlag, 1984.

M. Bro-Nielsen. Medical image registration and surgery simulation.
PhD thesis, Institute of Mathematical Modelling, Technical University
of Denmark, 1996.

M. Bro-Nielsen. Finite Element Modeling in Surgery Simulation. Pro-
ceedings of the IEEE, 86(3):490-503, March 1998.

147



148

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

M. Bro-Nielsen and S. Cotin. Real-time Volumetric Deformable Mod-
els for Surgery Simulation using Finite Elements and Condensation.
Computer Graphics Forum (Eurographics’96), 15(3):57-66, 1996.

I. N. Bronstein and K. A. Semendjajew. Teubner-Taschenbuch der
Mathematik. Teubner Verlagsgesellschaft, 1996.

R. D. Bucholz, D. D. Yeh, J. Trobaugh, L. L. McDurmont, C. D.
Sturm, C. Baumann, J. M. Henderson, A. Levy, and P. Kessman. The
Correction of Stereotactic Inaccuracy Caused by Brain Shift Using an
Intraoperative Ultrasound Device. In J. Troccaz, E. Grimson, and
R. Mosges, editors, Computer Vision, Virtual Reality and Robotics
in Medicine and Medicial Robotics and Computer-Assisted Surgery
(CVRMed-MRCAS’97), volume 1205 of Lecture Notes in Computer
Science, pages 459-466, Grenoble, France, 1997. Springer Verlag.

D. T. Chen and D. Zeltzer. Pump It Up: Computer Animation of
a Biomechanically Based Model of Muscle Using the Finite Element
Method. Computer Graphics, 26(2):89-98, July 1992.

G. E. Christensen. Deformable Shape Models for Anatomy. PhD thesis,
Sever Institute of Technology, Washington University, August 1994.

G. E. Christensen, S. C. Joshi, and M. I. Miller. Volumetric Trans-
formation of Brain Anatomy. IEEE Transactions on Medical Imaging,
16(6):864-877, December 1997.

G. E. Christensen, R. D. Rabbitt, and M. I. Miller. 3D Brain Mapping
Using a Deformable Neuroanatomy. Physics in Medicine and Biology,
39:609-618, 1994.

G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable Tem-
plates Using Large Deformation Kinematics. IEEE Transactions on
Image Processing, 5(10):1435-1447, October 1996.

C.-S. Chu, M.-S. Lin, H.-M. Huang, and Maw-Chang Lee. Finite
element analysis of cerebral contusion. Journal of Biomechanics,
27(2):187-194, February 1994.

P. G. Ciarlet. The Finite Element Method for Elliptic Problems, vol-
ume 4 of Studies in Mathematics and its Applications. North-Holland,
1978.



BIBLIOGRAPHY 149

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

P. G. Ciarlet. Mathematical Elasticity. Volume 1: Three-Dimensional

Elasticity, volume 20 of Studies in Mathematics and its Applications.
North-Holland, 1988.

S. Cotin, H. Delingette, and N. Ayache. Real Time Volumetric De-
formable Models for Surgery Simulation. In K. H. Ho6hne and R. Kiki-
nis, editors, Visualization in Biomedical Computing (VBC’96), volume
1131 of Lecture Notes in Computer Science, pages 535-540, Hamburg,
Germany, September 1996. Springer Verlag.

S. Cotin, H. Delingette, M. Bro-Nielsen, N. Ayache, J. M. Clément, and
J. Marescaux. Geometric and Physical Representations for a Simula-
tor of Hepatic Surgery. In Medicine Meets Virtual Reality IV: Health
Care in the Information Age - Future Tools for Transforming Medicine,
pages 17-20, San Diego, CA, USA, January 1996.

S. Cotin, H. Delingette, J. M. Clément, V. Tassetti, J. Marescaux, and
N. Ayache. Volumetric Deformable Models for Simulation of Laparo-
scopic Surgery. In H. U. Lemke, M. W. Vannier, K. Inamura, and A. G.
Farman, editors, Computer Assisted Radiology (CAR’96), volume 1124
of International Congress Series, pages 793-798, Paris, France, June
1996. Elsevier.

C. Cuvelier, A. Segal, and A. A. van Steenhoven. Finite Element Meth-
ods and Navier-Stokes Equations. D. Reidel Publishing Company, 1986.

C. Davatzikos. Nonlinear Registration of Brain Images Using De-
formable Models. In M. E. Kavanaugh, editor, Proceedings of the
IEEE Workshop on Mathematical Methods in Biomedical Image Anal-
ysis, pages 94-103, San Francisco, CA, USA, June 1996.

C. Davatzikos. Spatial Transformation and Registration of Brain Im-
ages Using Elastically Deformable Models. Computer Vision and Image
Understanding, Special Issue on Medical Imaging, 66(2):207-222, 1997.

H. Delingette. Toward Realistic Soft-Tissue Modeling in Medical Sim-
ulation. Proceedings of the IEEE, 86(3):512-523, March 1998.

F. P. DiMasi, R. H. Eppinger, and F. A. Bandak. Computational
Analysis of Head Impact Response Under Car Crash Loadings. In
Proceedings of the 39th Stapp Car Crash Conference, pages 425-438,
San Francisco, CA, USA, 1995. Society of Automotive Engineers.



150

BIBLIOGRAPHY

[30]

31]

32]

33]

[34]

[35]

[36]

[37]

[38]
[39]

F. P. DiMasi, J. Marcus, and R. H. Eppinger. 3-D Anatomic Brain
Model for Relating Cortical Strains to Automobile Crash Loading. In

Proceedings of the 13th International Technical Conference on Fxperi-
mental Safety Vehicles, pages 916-924, November 1991.

J. Donea. Arbitrary Lagrangian-Eulerian Finite Element Methods. In
T. Belytschko and T. J. R. Hughes, editors, Computational Methods for
Transient Analystis, volume 1 of Computational methods in mechanics,
pages 473-516. Elsevier, 1983.

A. D. Drozdov. Mechanics of Viscoelastic Solids. John Wiley & Sons,
1998.

P. J. Edwards, D. L. G. Hill, J. A. Little, and D. J. Hawkes. Deforma-
tion for Image Guided Interventions Using a Three Component Tissue
Model. In J. Duncan and G. Gindi, editors, Information Processing
in Medical Imaging (IPMI’97), volume 1230 of Lecture Notes in Com-
puter Science, pages 218-231, Poultney, VT, USA, June 1997. Springer
Verlag.

P. J. Edwards, D. L. G. Hill, J. A. Little, and D. J. Hawkes. A three-
component deformation model for image-guided surgery. Medical Image
Analysis, 2(4):355-367, 1998.

A. E. Engin. The Axisymmetric Response of a Fluid-filled Spherical
Shell to a Local Radial Impulse - a Model for Head Injury. Journal of
Biomechanics, 2:324-341, 1969.

M. S. Estes and J. H. McElhaney. Response of Brain Tissue to Com-
pressive Loading. American Society of Mechanical Engineers, 70-BHF-
13:1-4, 1970.

M. Ferrant, S. K. Warfield, C. R. G. Guttmann, R. V. Mulkern, F. A.
Jolesz, and R. Kikinis. 3D Image Matching Using a Finite Element
Based Elastic Deformation Model. In C. Taylor and A. Colchester,
editors, Medical Image Computing and Computer-Assisted Intervention
(MICCAI’99), number 1679 in Lecture Notes in Computer Science,
pages 202-209, Cambridge, UK, September 1999. Springer Verlag.

G. Fischer. Lineare Algebra. Vieweg, 1997.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer
Graphics: Principles and Practice. The System Programming Series.
Addison Wesley, 1992.



BIBLIOGRAPHY 151

[40] M. Fornefett, K. Rohr, R. Sprengel, and H. S. Stiehl. Elastic Medi-
cal Image Registration using Orientation Attributes at Landmarks. In
E. Berry, D. C. Hogg, K. V. Mardia, and M. A. Smith, editors, Proceed-
ings of the Medical Image Understanding and Analysis 98 (MIUA’98),
pages 49-52, Leeds, UK, July 1998.

[41] M. Fornefett, K. Rohr, and H. S. Stiehl. Elastic Medical Image Reg-
istration Using Surface Landmarks With Automatic Finding of Corre-
spondences. In A. Horsch and T. Lehmann, editors, Bildverarbeitung
fiir die Medizin (BVM’00), Informatik aktuell, pages 48—-52, Miinchen,
Germany, March 2000. Springer Verlag.

[42] M. Fornefett, K. Rohr, and H. S. Stiehl. Radial Basis Functions with
Compact Support for Elastic Registration of Medical Images. Image
and Vision Computing, 19(1 and 2):87-96, January 2001.

[43] O. Forster. Analysis 2. Vieweg, 1987.
[44] Y. C. Fung. Foundations of Solid Mechanics. Prentice-Hall, 1965.

[45] Y. C. Fung. Biomechanics: Motion, Flow, Stress and Growth. Springer-
Verlag, 1990.

[46] Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues.
Springer-Verlag, 1993.

[47] Y. C. Fung. A First Course In Continuum Mechanics. Prentice-Hall,
1994.

[48] Y. C. Fung. Selected Works on Biomechanics and Aeroelasticity, vol-
ume 1 of Advanced Series in Biomechanics. World Scientific, 1997.

[49] J. E. Galford and J. H. McElhaney. A viscoelastic study of scalp, brain,
and dura. Journal of Biomechanics, 3:211-221, 1970.

[50] K. A. Ganser, H. Dickhaus, A. Staubert, M. M. Bonsanto, C. R. Wirtz,
V. M. Tronnier, and S. Kunze. Quantifizierung von Brain-Shift durch
Vergleich von pra- und intraoperativ erzeugten MR-Volumandaten. In
T. Lehmann, V. Metzler, K. Spitzer, and T. Tolxdorff, editors, Bild-
verarbeitung fir die Medizin 1998 (BVM’98), Informatik aktuell, pages
422-426, Aachen, Germany, March 1998. Springer Verlag.

[61] S. Gibson, C. Fyock, E. Grimson, T. Kanade, R. Kikinis, H. Lauer,
N. McKenzie, A. Mor, S. Nakajima, H. Ohkami, R. Osborne,



152

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

J. Samosky, and A. Sawada. Volumetric object modeling for surgical
simulation. Medical Image Analysis, 2(2):121-132, 1998.

S. Gibson, J. Samosky, A. Mor, C. Fyock, E. Grimson, T. Kanade,
R. Kikinis, H. Lauer, N. McKenzie, S. Nakajima, H. Ohkami, R. Os-
borne, and A. Sawada. Simulating Arthroscopic Knee Surgery Using
Volumetric Object Representations, Real-Time Volume Rendering and
Haptic Feedback. In J. Troccaz, E. Grimson, and R. Mosges, editors,
Computer Vision, Virtual Reality and Robotics in Medicine and Med-
ical Robotics and Computer-Assisted Surgery (CVRMed-MRCAS’97),
volume 1205 of Lecture Notes in Computer Science, pages 369-378,
Grenoble, France, 1997. Springer Verlag.

E. Gladilin, W. Peckar, K. Rohr, and H. S. Stiehl. Vergleich der
Randelemente- mit der Finite-Elemente-Methode zur elastischen Reg-
istrierung medizinischer Bilder. Technical Report FBI-HH-M-287/99,
Universitat Hamburg, Fachbereich Informatik, June 1999. Vogt-Kolln-
Strafle 30, 22527 Hamburg, Germany.

W. Goldsmith. The Physical Processes Producing Head Injury. In
W. F. Caveness and A. E. Walker, editors, Head Injury Conference
Proceedings, pages 350-383, 1966.

D. F. Griffiths. The construction of approximately divergence-free finite
elements. In J. R. Whiteman, editor, The mathematics of finite ele-
ments and applications III (MAFELAP’78), pages 237-245. Academic
Press, April 1978.

D. F. Griffiths. Finite Elements for Incompressible Flow. Mathematical
Methods in Applied Science, 1:16-31, 1979.

D. F. Griffiths. An approximately divergence-free 9-node velocity ele-
ment (with variations) for incompressible flows. International Journal
for Numerical Methods in Fluids, 1:323-346, 1981.

W. Hackbusch. Theorie und Numerik elliptischer Differentialgleichun-
gen. Teubner Verlag, 1996.

A. Hagemann, K. Rohr, and H. S. Stiehl. Biomechanically based sim-
ulation of brain deformations for intraoperative image correction: cou-
pling of elastic and fluid models. In K. M. Hanson, editor, Medical
Imaging 2000 — Image Processing (MI°00), Proceedings of SPIE Vol-
ume 3979, pages 658-667, San Diego, CA, USA, February 2000.



BIBLIOGRAPHY 153

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gilsbach.
A Biomechanical Model of the Human Head for Elastic Registration
of MR-Images. In H. Evers, G. Glombitza, T. Lehmann, and H.-P.
Meinzer, editors, Bildverarbeitung fir die Medizin 1999 (BVM’99),
Informatik aktuell, pages 44-48, Heidelberg, Germany, March 1999.
Springer Verlag.

A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gils-
bach. Biomechanical Modeling of the Human Head for Physically
Based, Nonrigid Image Registration. IEEE Transactions on Medical
Imaging, 18(10):875-884, October 1999.

A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gilsbach.
Elastic Registration of MR-Images Based on a Biomechanical Model
of the Human Head. In U. Spetzger, H. S. Stiehl, and J. M. Gilsbach,
editors, Navigated Brain Surgery, pages 203—209. Wissenschaftsverlag
Mainz, 1999.

A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gils-
bach. Intraoperative Image Correction Using a Biomechanical Model
of the Human Head with Different Material Properties. In W. Forst-
ner, J. M. Buhmann, A. Faber, and P. Faber, editors, Mustererkennung
1999 (DAGM’99), Informatik aktuell, pages 223-231, Bonn, Germany,
September 1999. Springer Verlag.

A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gilsbach.
Nonrigid matching of tomographic images based on a biomechanical
model of the human head. In K. M. Hanson, editor, Medical Imaging
1999 - Image Processing (MI’99), Proceedings of SPIE Volume 3661,
pages 583-592, San Diego, CA, USA, February 1999.

U. Hartmann. FEin mechanisches Finite-Elemente-Modell des men-
schlichen Kopfes. PhD thesis, Fakultat fiir Mathematik und Infor-
matik, Universitat Leipzig, 1999.

U. Hartmann and F. Kruggel. Ein mechanisches dreidimensionales
Finite-Elemente-Modell des menschlichen Gehirns. In B. Arnolds,
H. Miiller, D. Saupe, and T. Tolxdorff, editors, Digitale Bildverar-
beitung in der Medizin, Tagungsband zum 5. Freiburger Workshop,
pages 219-224, Freiburg, Germany, Marz 1997. Universitat Freiburg.

U. Hartmann and F. Kruggel. Erste klinische Untersuchungen mit
einem mechanischen Finite-Elemente-Modell des menschlichen Kopfes.



154

BIBLIOGRAPHY

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

In T. Lehmann, V. Metzler, K. Spitzer, and T. Tolxdorff, editors, Bild-
verarbeitung fir die Medizin 1998 (BVM’98), Informatik aktuell, pages
59-63, Aachen, Germany, March 1998. Springer Verlag.

E. Hering, R. Martin, and M. Stohrer. Physik fur Ingenieure. VDI
Verlag, 1988.

R. Hickling and M. L. Wenner. Mathematical Model of a Head Sub-
jected to an Axisymmetric Impact. Journal of Biomechanics, 6:115—
132, 1973.

D. L. G. Hill, C. R. Maurer, R. J. Maciunas, J. A. Barwise, J. M.
Fitzpatrick, and M. Y. Wang. Measurement of Intraoperative Brain
Surface Deformation under a Craniotomy. Neurosurgery, 43(3):514—
526, September 1998.

R. R. Hosey and Y. K. Liu. A Homeomorphic Finite Element Model
of the Human Head and Neck. In R. H. Gallagher, B. R. Simon, P. C.
Johnson, and J. F. Gross, editors, Finite Elements in Biomechanics,
pages 379-401. John Wiley & Sons, 1982.

K. H. Huebner, E. A. Thornton, and T. G. Byrom. The Finite Element
Method for Engineers. John Wiley & Sons, 1995.

T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian-
eulerian finite element formulation for incompressible viscous flows.
Computer methods in applied mechanics and engineering, 29:329-349,
1981.

M. K. Jain, A. Chernomorsky, F. H. Silver, and R. A. Berg. Mate-
rial properties of living soft tissue composites. Journal of Biomedical
Material Research, 22(3):311-326, 1988.

D. Kallieris, A. Rizzetti, and R. Mattern. Verhalten der Kopf-Hals-
Einheit bei der dynamischen Belastung — Vergleich zwischen Dummy
und Leiche. Zentralblatt Rechtsmedizin, 42(6), 1994.

H. Kanaya, H. Yukawa, Z. Itoh, T. Kanno, T. Kuwabara, M. Kagawa,
and M. Mizukami. A neurological grading for patients with hyperten-
sive intracerebral hemorrhage and a classification for hematoma loca-
tion on computed tomography. In Proceedings of 7th Japanese Confer-
ence on Surgery of Cerebral Stroke, pages 265—-270, 1978.



BIBLIOGRAPHY 155

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

H. Kardestuncer and D. H. Norrie. Finite Element Handbook. McGraw-
Hill Company, 1987.

Z. Karni, L. P. Ivan, and J. Bear. An Outline of Continuum Modeling
of Brain Tissue Mechanics. Journal of Child Neurology, 1(2):119-125,
April 1986.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour
models. International Journal of Computer Vision, 1(4):321-331, 1988.

E. Keeve, S. Girod, and B. Girod. Craniofacial Surgery Simulation. In
K. H. Hohne and R. Kikinis, editors, Visualization in Biomedical Com-
puting (VBC’96), volume 1131 of Lecture Notes in Computer Science,
pages 541-546, Hamburg, Germany, September 1996. Springer Verlag.

E. Keeve, S. Girod, P. Pfeifle, and B. Girod. Anatomy-Based Facial
Tissue Modeling Using the Finite Element Method. In Proceedings of
IEEE Visualization '96, pages 21-28, San Francisco, CA, USA, October
1996.

T. B. Khalil and D. C. Viano. Critical Issues in Finite Element Mod-
eling of Head Impact. In Proceedings of the 26st Stapp Car Crash
Conference, pages 87-102. Society of Automotive Engineers, 1982.

A. I. King, J. S. Ruan, C. Zhou, W. N. Hardy, and T. B. Khalil.
Recent Advances in Biomechanics of Brain Injury Research: A Review.
Journal of Neurotrauma, 12(4):651-658, 1995.

R.M. Koch, M.H. Gross, F.R. Carls, D.F. von Biiren, G. Fankhauser,
and Y.I.LH. Parish. Simulating Facial Surgery Using Finite Element
Models. In Computer Graphics Proceedings. Annual Conference Se-
ries. (SIGGRAPH’96), pages 421-428 New Orleans, LA, USA, August
1996.

G. Krabbel and R. Miiller. Development of a Finite Element
Model of the Head Using the Visible Human Data. http://www.tu-
berlin.de/fb10/ISS/FG7/broschuere/projekte/kopfschutz/vhp_tu.html,
October 1996.

G. Krabbel, S. Nitsche, and H. Appel. Development of an Anatomic
3-D Finite Element Model of the Human Head for Occupant Simula-
tion. In Bewing Automobile in Harmony with Human Society, Techni-
cal Papers, pages 82-87, Beijing, China, October 1994. International
Academic Publishers.



156

BIBLIOGRAPHY

[87]

88

[89]

[90]

[91]

[92]

[93]

[94]

G. Krabbel, S. Nitsche, and H. Appel. Methode zur Entwicklung
biomechanischer Finite-Elemente-Modelle des Menschen. In Berech-
nung tm Automobilbau, volume 1153, pages 503-516, Wiirzburg, Ger-
many, September 1994. VDI-Gesellschaft Fahrzeug- und Verkehrstech-
nik, VDI Verlag.

C. Kuhn. Modellbildung und Echtzeitsimulation deformierbarer Ob-
jekte zur Entwicklung einer interaktiven Trainingsumgebung fir die
Mainimal-Invasive Chirurgie. PhD thesis, Fakultat fir Informatik, Uni-
versitat Karlsruhe, 1997.

C. Kuhn, U. Kiithnapfel, and O. Deussen. Echtzeitsimulation deformier-
barer Objekte zur Ausbildungsunterstiitzung in der Minimal-Invasiven
Chirurgie. In Proceedings of the International GI Workshop: Mod-
elling, Virtual Worlds, Distributed Graphics (MVD’95), Bad Honnef,
Germany, November 1995. Infix Verlag.

A. H. W. M. Kuijpers, M. H. A. Claessens, and A. A. H. J. Sauren.
The Influence of Different Boundary Conditions on the Response of the
Head to Impact: A Two-Dimensional Finite Element Study. Journal
of Neurotrauma, 12(4):715-724, 1995.

S. Kumaresan and S. Radhakrishnan. Importance of partitioning mem-
branes of the brain and the influence of the neck in head injury mod-
elling. Medical and Biological Engineering and Computing, 34:27-34,
January 1996.

S. Kumaresan, S. Radhakrishnan, and N. Ganesan. Generation of ge-
ometry of closed human head and discretisation for finite element anal-
ysis. Medical and Biological Engineering and Computing, 33:349-353,
May 1995.

S. K. Kyriacou and C. Davatzikos. A Biomechanical Model of Soft
Tissue Deformation, with Applications to Non-rigid Registration of
Brain Images with Tumor Pathology. In W. M. Wells, A. Colchester,
and S. Delp, editors, Medical Image Computing and Computer-Assisted
Intervention (MICCAI’98), number 1496 in Lecture Notes in Computer
Science, pages 531-538, Cambridge, MA, USA, October 1998. Springer
Verlag.

S. K. Kyriacou, C. Davatzikos, S. J. Zinreich, and R. N. Bryan. Non-
linear Elastic Registration of Brain Images with Tumor Pathology Us-
ing a Biomechanical Model. IEEE Transactions on Medical Imaging,
18(7):580-592, July 1999.



BIBLIOGRAPHY 157

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

103]

[104]

H. P. Langtangen. Computational Partial Differential Equations: Nu-
merical Methods and Diffpack Programming. Number 2 in Lecture
Notes in Computational Science and Engineering. Springer Verlag,
1999.

H. Lester and S. R. Arridge. A survey of hierarchical non-linear medical
image registration. Pattern Recognition, 32(1):129-149, January 1999.

H. Lester, S. R. Arridge, and K. M. Jansons. Local deformation metrics
and nonlinear registration using a fluid model with variable viscosity. In
E. Berry, D. C. Hogg, K. V. Mardia, and M. A. Smith, editors, Proceed-
ings of the Medical Image Understanding and Analysis 98 (MIUA’98),
pages 44-48, Leeds, UK, July 1998. University of Leeds.

H. Lester, S. R. Arridge, K. M. Jansons, L. Lemieux, J. V. Hajnal, and
A. Oatridge. Non-linear Registration with the Variable Viscosity Fluid
Algorithm. In A. Kuba, M. Sdmal, and A. Todd-Pokropek, editors,
Information Processing in Medical Imaging (IPMI’99), number 1613 in
Lecture Notes in Computer Science, pages 238-251, Visegrad, Hungary,
June 1999. Springer Verlag.

A. 1. Lurie. Nonlinear theory of elasticity. North-Holland series in
Applied mathematics and mechanics. North-Holland, 1990.

L. E. Malvern. Introduction to the Mechanics of a Continuous Medium.
Prentice-Hall, 1969.

W. Maurel, Y. Wu, N. Magnenat Thalmann, and D. Thalmann. Biome-
chanical Models for Soft Tissue Stmulation. Basic Research Series.
Springer Verlag, 1998.

C. R. Maurer, D. L. G. Hill, A. J. Martin, H. Liu, M. McCue, D. Rueck-
ert, D. Lloret, W. A. Hall, R. E. Maxwell, D. J. Hawkes, and C. L.
Truwit. Investigation of Intraoperative Brain Deformation Using a 1.5-
T Interventional MR System: Preliminary Results. IEEE Transactions
on Medical Imaging, 17(5):817-825, October 1998.

J. H. McElhaney, R. L. Stalnaker, and V. L. Roberts. Biomechanical
Aspects of Head Injury. In Human Impact Response, pages 85-112,
New York, NY, USA., 1973. Plenum Press.

T. McInerney and D. Terzopoulos. Deformable Models in Medical Im-
age Analysis: A Survey. Medical Image Analysis, 1(2):91-108, 1996.



158

BIBLIOGRAPHY

[105]

[106]

[107]

[108]

[109)]

[110]

[111]

[112]

[113]

[114]

K. K. Mendis, R. L. Stalnaker, and S. H Advani. A Constitutive Re-
lationship for Large Deformation Finite Element Modeling of Brain
Tissue. Journal of Biomechanical Engineering, 117:279-285, August
1995.

H. Metz, J. H. McElhaney, and A. K. Ommaya. A comparsion of the
elasticity of live, dead, and fixed brain tissue. Journal of Biomechanics,
3:453-458, 1970.

M. I. Miga, K. D. Paulsen, J. M. Lemery, S. D. Eisner, A. Hartov, F. E.
Kennedy, and D. W. Roberts. Model-Updated Image Guidance: Initial
Clinical Experiences with Gravity-Induced Brain Deformation. IEEE
Transactions on Medical Imaging, 18(10):866-874, October 1999.

T. H. Milhorat and M. K Hammock. Cerebrospinal Fluid as Reflec-
tion of Internal Milieu of Brain. In J. Wood, editor, Neurobiology of
cerebrospinal fluids, pages 1-23. Harold-New York, 1983.

J. W. Millen and D. H. M. Woollam. The anatomy of the cerebrospinal
fluid. Oxford University Press, 1962.

K. Miller and K. Chinzei. Constitutive modelling of brain tissue: Ex-
periment and theory. Journal of Biomechanics, 30:1115-1121, 1997.

C. Monserrat, V. Hernandez, M. Alcaniz, M. C. Juan, and V. Grau.
Evaluation and study of a new deformable model based on bound-
ary element methods. In H. U. Lemke, M. W. Vannier, K. Inamura,
and A. G. Farman, editors, Computer Assisted Radiology and Surgery
(CARS’99), number 1191 in International Congress Series, pages 860—
864, Paris, France, June 1999. Elsevier.

C. Monserrat, U. Meier, F. Chinesta, M. Alcaniz, and V. Grau. A fast
real time tissue deformation algorithm for surgery simulation. In H. U.
Lemke, M. W. Vannier, and K. Inamura, editors, Computer Assisted
Radiology and Surgery (CAR’97), number 1134 in Excerpta Medica
International Congress Series, pages 812-817, Berlin, Germany, June
1997. Elsevier.

M. Mooney. A Theory of Large Elastic Deformation. Journal of Applied
Physics, 11:582-592, September 1940.

T. Nagashima, T. Shirakuni, and S. I. Rapoport. A two-dimensional
finite element analysis of vasogenic brain edema. Neurologica Medico-
Chirurgica., 30:1-9, 1990.



BIBLIOGRAPHY 159

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

A. M. Nahum, R. Smith, and C. C. Ward. Intracranial Pressure Dy-
namics During Head Impact. In Proceedings of the 21st Stapp Car
Crash Conference, pages 339-366. Society of Automotive Engineers,
October 1977.

M. R. Pamidi and S. H. Advani. Nonlinear Constitutive Relations for
Human Brain Tissue. Journal of Biomechanical Engineering, 100:44—
48, 1978.

K. D. Paulsen, M. I. Miga, F. E. Kennedy, P. J. Hoopes, A. Hartov, and
D. W. Roberts. A Computational Model for Tracking Subsurface Tissue

Deformation During Stereotactic Neurosurgery. I[EEE Transactions on
Biomedical Engineering, 46(2):213-225, February 1999.

W. Peckar. Application of Variational Methods to Elastic Registration
of Medical Images. PhD thesis, Universitat Hamburg, Fachbereich In-
formatik, AB KOGS, 1998.

W. Peckar, C. Schnorr, K. Rohr, and H. S. Stiehl. Two-Step Parameter-
Free Elastic Image Registration with Prescribed Point Displacements.
In A. Del Bimbo, editor, 9th Int. Conf. on Image Analysis and Process-
ing (ICIAP’97), volume 1310 of Lecture Notes in Computer Science,
pages 527-534, Florence, Italy, September 1997. Springer Verlag.

W. Peckar, C. Schnorr, K. Rohr, and H. S. Stiehl. Parameter-Free
Elastic Deformation Approach for 2-D and 3-D Registration Using Pre-

scribed Displacements. Journal of Mathematical Imaging and Vision,
10:143-162, 1999.

W. Peckar, C. Schnorr, K. Rohr, H. S. Stiehl, and U. Spetzger. Lin-
ear and Incremental Estimation of Elastic Deformations in Medical
Registration Using Prescribed Displacements. Machine GRAPHICS &
VISION, 7(4):807-829, 1998.

M. H. T. Reinges, H.-H. Nguyen, U. Spetzger, W. Kiiker, and J. M.
Gilsbach. Beurteilung des praoperativen Brain shift mit Hilfe des Neu-
ronavigationssystems EasyGuide Neuro. In T. Lehmann, V. Metzler,
K. Spitzer, and T. Tolxdorft, editors, Bildverarbeitung fur die Medizin
1998 (BVM’98), Informatik aktuell, pages 124-128, Aachen, Germany,
March 1998. Springer Verlag.

K. Rohr. Elastic Registration of Multimodal Medical Images: A Sur-
vey. KI — Kinstliche Intelligenz, 3:11-17, July 2000.



160

BIBLIOGRAPHY

[124]

[125]

[126]

[127]

[128]

[129]

[130]

K. Rohr, M. Fornefett, and H. S. Stiehl. Approximating Thin-Plate
Splines for Elastic Registration: Integration of Landmark Errors and
Orientation Attributes. In A. Kuba, M. Sdmal, and A. Todd-Pokropek,
editors, Information Processing in Medical Imaging (IPMI’99), number
1613 in Lecture Notes in Computer Science, pages 252—-265, Visegrad,
Hungary, June 1999. Springer Verlag.

K. Rohr, R. Sprengel, and H.S. Stiehl. Incorporation of Landmark
Error Ellipsoids for Image Registration Based on Approximating Thin-
Plate Splines. In H.U. Lemke, M.W. Vannier, and K. Inamura, editors,
Computer Assisted Radiology and Surgery (CAR’97), number 1134 in
Excerpta Medica International Congress Series, pages 234-239, Berlin,
Germany, 1997. Elsevier.

K. Rohr and H. S. Stiehl. On the Definition and Characterization of 3D
Brain Landmarks. Technical Report FBI-HH-M-268/96, Universitat
Hamburg, Fachbereich Informatik, December 1996. Vogt-Kolln-Strafie
30, 22527 Hamburg, Germany.

K. Rohr and H. S. Stiehl. Characterization and Localization of Anatom-
ical Landmarks in Medical Images. In B. O. Hutter and J. M. Gilsbach,
editors, Proceedings of the 1st Aachen Conference on Neuropsychology
wn Neurosurgery, Psychiatry, and Neurology, pages 9-12, Aachen, Ger-
many, December 1997. Verlag der Augustinus Buchhandlung.

K. Rohr, H. S. Stiehl, M. Fornefett, S. Frantz, and A. Hagemann.
Landmark-Based Elastic Registration of Human Brain Images. In
U. Spetzger, H. S. Stiehl, and J. M. Gilsbach, editors, Navigated Brain
Surgery, pages 137-148. Wissenschaftsverlag Mainz, 1999.

K. Rohr, H. S. Stiehl, M. Fornefett, S. Frantz, and A. Hagemann.
Project IMAGINE: Landmark-Based Elastic Registration and Biome-
chanical Brain Modelling. KI - Kunstliche Intelligenz, 3:37-39, July
2000.

K. Rohr, H. S. Stiehl, R. Sprengel, W. Beil, T. M. Buzug, J. Weese,
and M. H. Kuhn. Point-Based Elastic Registration of Medical Image
Data Using Approximating Thin-Plate Splines. In K. H. H6hne and
R. Kikinis, editors, Visualization in Biomedical Computing (VBC’96),
volume 1131 of Lecture Notes in Computer Science, pages 297-306,
Hamburg, Germany, September 1996. Springer Verlag.



BIBLIOGRAPHY 161

[131]

[132]

[133]

134]

[135]

[136]

[137]

[138]

[139]

J. S. Ruan, T. B. Khalil, and A. I. King. Human Head Dynamic Re-
sponse to Side Impact by Finite Element Modeling. Journal of Biome-
chanical Engineering, 113:276-283, August 1991.

J. S. Ruan, T. B. Khalil, and A. I. King. Finite element analysis
of the human head to impact. In Winter Annual Meeting of ASME,
Bioengineering Division BED, volume 22, pages 249-252, November
1992.

J. S. Ruan, T. B. Khalil, and A. I. King. Brain injury in direct im-
pact. In Proceedings of the 4th Injury Prevention Through Biomechan-
ics Symposium, volume 28, pages 313-314. ASME, 1994.

J. S. Ruan, T. B. Khalil, and A. I. King. Dynamic Response of the Hu-
man Head to Impact by Three-Dimensional Finite Element Analysis.
Journal of Biomechanical Engineering, 116:44-50, February 1994.

K. B. Sahay, R. Mehrotra, U. Sachdeva, and A. K. Banerji. Elastome-
chanical characterization of brain tissues. Journal of Biomechanics,
25(3):319-326, March 1992.

A. A H. J. Sauren and M. H. A. Claessens. Finite element modeling of
head impact: The second decade. In Proceedings of the International
Conference on the Biomechanics of Impact (IRCOBI), pages 241-254,
1993.

A. Schettini and E. K. Walsh. Brain tissue elastic behavior and
experimental brain compression. American Journal of Physiology,
255(5):799-805, November 1988.

T. Schiemann and K. H. Hohne. Definition of Volume Transformations
for Volume Interaction. In J. Duncan and G. Gindi, editors, Informa-
tion Processing in Medical Imaging (IPMI’97), volume 1230 of Lecture
Notes in Computer Science, pages 245-258, Poultney, VT, USA, June
1997. Springer Verlag.

M. Schill, C. Reinhart, T. Giinther, C. Paliwoda, J. Hesser,
M. Schinkmann, H.-J. Bender, and R. Méanner. Simulation of Brain
Tissue and Realtime Volume Visualization: Integrating Biomechanical
Simulations into the VIRIM System. In H. U. Lemke, M. W. Van-
nier, and K. Inamura, editors, Proceedings of the Computer Assisted
Radiology and Surgery (CAR’97), number 1134 in Excerpta Medica
International Congress Series, pages 283-288, Berlin, Germany, June
1997. Elsevier.



162

BIBLIOGRAPHY

[140]

141]

[142]

[143]

144]

[145]

[146]

[147]

[148]

[149]

[150]

M. A. Schill, C. Wagner, R. Manner, and H.-J. Bender. Biomechan-
ical Modeling Techniques and their Application to the Simulation of
Brain Tissue. In U. Spetzger, H. S. Stiehl, and J. M. Gilsbach, editors,
Navigated Brain Surgery, pages 193—-202. Wissenschaftsverlag Mainz,
1999.

H. R. Schwarz. Methode der Finiten Elemente. Teubner Verlag, 1984.

T. H. Smit. The Mechanical Significance of the Trabecular Bone Ar-
chitecture in a Human Vertebra. PhD thesis, Technische Universitat
Hamburg Harburg, 1996.

U. Spetzger, H. S. Stiehl, K. Rohr, and J. M. Gilsbach. Navigated
Brain Surgery: An Interdisciplinary Introduction. In U. Spetzger, H. S.
Stiehl, and J. M. Gilsbach, editors, Navigated Brain Surgery, pages 5-9.
Wissenschaftsverlag Mainz, 1999.

J. Stoer. Numerische Mathematik. Springer Verlag, 1989.

R. Sube and G. Eisenreich. Dictionary of Physics. Verlag Harry
Deutsch, 1987.

Y. Tada, T. Nagashima, and M. Takada. Biomechanics of Brain Tissue
(Simulation of Cerebrospinal Fluid Flow). JSME International Jour-
nal, Series A (Mechanics and Material Engineering), 37(2):188-194,
April 1994.

H. Takizawa, K. Sugiura, M. Baba, and J. D. Miller. Analysis of Intrac-
erebral Hematoma Shapes by Numerical Computer Simulation Using
the Finite Element Method. Neurologica Medico-Chirurgica, 34(2):65—
69, February 1994.

D. Terzopoulos and K. Waters. Techniques for Realistic Facial Mod-
eling and Animation. In N. Magnenat Thalmann and D. Thalmann,
editors, Computer Animation ’91, pages 59—74. Springer Verlag, 1991.

D. Terzopoulos and K. Waters. Analysis and Synthesis of Facial Im-
age Sequences Using Physical and Anatomical Models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 15(6):569-579,
June 1993.

S. Tieck, S. Gerloff, and H. S. Stiehl. Interactive graph-based editing of
watershed-segmented 2D-images. In Workshop on Interactive Segmen-
tation of Medical Images (ISMI1’98), University of Amsterdam, Dept. of



BIBLIOGRAPHY 163

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

Computer Science, Intelligent Sensory Information systems Research
Group, September 1998. http://carol.wins.ura.nl/silvia/workshop.

P. A. Tipler. Physik. Spektrum Akademischer Verlag, 1994.

S. Turek. Multigrid techniques for a divergence-free finite element dis-
cretization. Journal of Numerical Mathematics, 2(3):229-256, 1994.

K. Ueno, J. W. Melvin, L. Li, and J. W. Lighthall. Development of
Tissue Level Brain Injury Criteria by Finite Element Analysis. Journal
of Neurotrauma, 12(4):695-706, August 1995.

D. C. Viano. Biomechanics of Bone and Tissue: A Review of Material
Properties and Failure Characterisics. In Symposium on Biomechanics
and Medical Aspects of Lower Limb Injuries, pages 33—63, San Diego,
CA, USA, October 1986.

L. Voo, S. Kumaresan, F. A. Pintar, N. Yoganandan, and A. Sances Jr.
Finite-element models of the human head. Medical and Biological En-
gineering and Computing, 34(5):375-381, September 1996.

J. Vossoughi and F. A. Bandak. Mechanical Characteristics of Vascular
Tissue and Their Role in Brain Injury Modeling: A Review. Journal
of Neurotrauma, 12(4):755-763, August 1995.

O. M. Skrinjar and J. S. Duncan. Real Time 3D Brain Shift Com-
pensation. In A. Kuba, M. Sdmal, and A. Todd-Pokropek, editors,
Information Processing in Medical Imaging (IPMI°99), number 1613
in Lecture Notes in Computer Science, pages 42-55, Visegrad, Hun-
gary, June 1999. Springer Verlag.

O. M. Skrinjar, D. Spencer, and J. S. Duncan. Brain Shift Modeling
for Use in Neurosurgery. In W. M. Wells, A. Colchester, and S. Delp,
editors, Medical Image Computing and Computer-Assisted Intervention
(MICCAI’98), number 1496 in Lecture Notes in Computer Science,
pages 641-649, Cambridge, MA, USA, October 1998. Springer Verlag.

A. Wall and E. Ramm. Fluid-Structure Interaction Based Upon A
Stabilized (ALE) Finite Element Method. In S. R. Idelsohn, E. Onate,
and E. N. Dvorkin, editors, Computational Mechanics - New Trends
and Applications, Proceedings of the Jth World Congress on Computa-
tional Mechanics, Buenos Aires, Argentina, June 1998.



164

BIBLIOGRAPHY

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

E. K. Walsh and A. Schettini. Calculation of brain elastic parameters
in vivo. American Journal of Physiology, 274:693-700, 1984.

E. K. Walsh and A. Schettini. Brain tissue elasticity and CSF elastance.
Neurological Research, 12:123-127, June 1990.

C. C. Ward. Finite Element Models of the Head and Their Use in
Brain Injury Research. In Proceedings of the 26th Stapp Car Crash
Conference, pages 71-85, Ann Arbor, MI, USA, 1982.

C. C. Ward, P. E. Nikravesh, and R. B. Thompson. Biodynamic Finite
Element Models Used in Brain Injury Research. Awiation, Space, and
Environment Medicine, 49(1):136-142, January 1978.

J. A. Weiss, B. N. Maker, and S. Govindjee. Finite element implementa-
tion of incompressible, transversely isotropic hyperelasticity. Computer
Methods in Applied Mechanics and Engineering, 135:107-128, August
1996.

T. A. Whitman, G. R. Wodicka, M. T. Morgan, and J. D. Bourland.
Measurement and modeling of the vibrational response of the ovine
head as it relates to intracranial pressure. In Bridging Disciplines For
Biomedicine, 18th Annual International Conference of the IEEE En-
gineering in Medicine and Biology Society, Amsterdam, Netherlands,
October 1996.

R. Willinger, C. M. Kopp, and D. Césari. New concept of contrecoup
lesion mechanism: Modal analysis of a finite element model of the head.

Proceedings of the International Conference on the Biomechanics of
Impact (IRCOBI), pages 283-297, September 1992.

R. Willinger, L. Taleb, and C.-M. Kopp. Modal and Temporal Analysis
of Head Mathematical Models. Journal of Neurotrauma, 12(4):743-754,
August 1995.

C. Zhou, T. B. Khalil, and A. I. King. A New Model Comparing
Impact Responses of Homogeneous and Inhomogeneous Human Brain.
In Proceedings of the 39th Stapp Car Crash Conference, pages 121-137,
San Francisco, CA, USA, 1995. Society of Automotive Engineers.



Index

abstract problem, 24, 49, 52, 63

Babuska-Brezzi condition, 53
bilinear form, 24, 49, 52
biomechanical model, 2, 28-33
biomechanics, 2, 7
body forces, 14
boundary condition, 16, 22, 28
compatibility, 70
Dirichlet, 16, 30, 31, 57
equilibrium, 70
essential, 23
Neumann, 16
no-penetration, 71
no-slip, 30, 71
Robbins, 16
boundary element method, 23
brain tissue, 4347

Cauchy’s formula, 15
cerebrospinal fluid, 9, 43
constitutive behavior, 8
constitutive equation, 17-19
constrained minimization problem,
50
continuity equation, 20
continuum mechanics, 9-21
coup-contrecoup phenomenon, 29

deformation, 10
finite, 17
infinitesimal, 17
deformation gradient, 11
density, 20

165

diffuse axonal injury, 28
displacement, 11
displacement gradient, 11
displacement problem, 75
dual space, 25

equation of motion, 15
equilibrium equation, 16
Eulerian configuration, 11, 17

finite element method, 21-26, 47
conforming, 23, 49
non-conforming, 24, 53

finite elements, 55-68, 74
bilinear, 58, 141
biquadratic, 60—61, 142
Crouzeix-Raviart, 61-62
divergence-free, 62—68, 144
solenoidal, 62—68
trilinear, 59

fluid
compressible, 20
incompressible, 20
non-viscous, 18, 71
viscous, 18, 71

Galerkin method, 23-24, 49
generalized coefficients, 56
geometric isotropy, 56
Green’s formula, 48, 51

Hilbert structure, 22
Hooke’s law, 17, 18, 44, 46
hysteresis, 8



166

INDEX

image correction, 29

Lagrangian configuration, 10
Lamé constants, 17, 79
Lax-Migram lemma, 26
linear form, 24, 49, 52

load vector, 24, 73
load-deformation curve, 8

mapping, 141-144

material
elastic, 8
homogeneous, 17
hyperelastic, 45
inhomogeneous, 69-74
isotropic, 17
nonlinear viscoelastic, 45
St. Venant-Kirchhoff, 17
viscoelastic, 8, 43

material derivative, 12

material parameter values, 79-86

mesh generation, 141

method of weighted residuals, 22—

23, 48, 51

Navier equation, 19-20, 47-50, 71
Navier-Poisson law, 19
Navier-Stokes equation, 20

Piola transform, 15
preconditioned tissue, 8
prescribed displacements, 75-77
pressure, 19, 52

pressure load, 52

rate-of-deformation, 14
rate-of-deformation tensor, 14
reference configuration, 10
reference element, 57

residual error, 23

response function, 17, 69

saddlepoint problem, 53

Simpson’s rule, 64
skull bone, 43
Sobolev space, 22
spin tensor, 14
stiffness matrix, 24, 73
Stokes equation, 20-21, 50-55, 71
strain, 12-13
natural, 46
strain tensor
Almansi, 13
Cauchy’s infinitesimal, 18, 43
Green-St. Venant, 13
left Cauchy-Green, 13
right Cauchy-Green, 13
stream function, 63, 76
stress, 14-15
stress relaxation, 8
stress tensor
Cauchy, 15
Eulerian, 18
first Piola-Kirchhoff, 15
second Piola-Kirchhoff, 15
surface forces, 14

tensorial relaxation function, 43
traction problem, 75

V-ellipticity, 26, 49, 53
velocity, 12, 71
viscosity parameters, 19, 84

weighting function, 23
well-posed problem, 25, 53



