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Abstract— The accuracy of image-guided neurosurgery
generally suffers from brain deformations due to intra-
operative changes. These deformations cause significant
changes of the anatomical geometry (organ shape and spatial
inter-organ relations) thus making intraoperative navigation
based on preoperative images error-prone. In order to im-
prove the navigation accuracy, we developed a biomechan-
ical model of the human head based on the finite element
method, which can be employed for the correction of pre-
operative images to cope with the deformations occurring
during surgical interventions. At the current stage of devel-
opment, the two-dimensional (2D) implementation of the
model comprises two different materials, though the theory
holds for the three-dimensional (3D) case and is capable of
dealing with an arbitrary number of different materials. For
the correction of a preoperative image, a set of homologous
landmarks has to be specified which determine correspon-
dences. These correspondences can be easily integrated into
the model and are maintained throughout the computation
of the deformation of the preoperative image. The necessary
material parameter values have been determined through
a comprehensive literature study. Our approach has been
tested for the case of synthetic images and yields physically
plausible deformation results. Additionally, we carried out
registration experiments with a preoperative MR image of
the human head and a corresponding postoperative image
simulating an intraoperative image. We found, that our ap-
proach yields good prediction results, even in the case when
correspondences are given in a relatively small area of the
image only.

Keywords— Elasticity theory, biomechanical model, inho-
mogeneous materials, finite element method, intraoperative
image correction

I. INTRODUCTION

HE accuracy of image-guided neurosurgery generally

suffers from intraoperative brain deformations caused
by brain shift or tumor resection, which may result in
rather large changes in the geometrical and spatial orga-
nization of the brain, see, e.g., Hill et al. [1] or Maurer et
al. [2]. To improve upon navigation accuracy, we developed
a biomechanical model of the human head which allows to
predict intraoperative brain deformations and thus to cor-
rect a preoperative image with respect to surgery-induced
effects.

Recent work in the field of intraoperative image correc-
tion comprises different models of the human head, each
of which allows to incorporate anatomical structures with
spatially variable material properties. Some of these head
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models are based on physical motivations only, e.g., mass-
spring systems [3] or combined energy terms [4]. However,
these types of models do not incorporate real physical ma-
terial parameters and hence are only weakly related to the
physical behaviour of biological soft tissue. In contrast to
these physically motivated models, other approaches are
based on a direct physical description of the material be-
haviour.

One approach is the model of Davatzikos [5], where lin-
ear elasticity theory is used as a physical basis. Addi-
tional terms for modelling material inhomogeneities were
introduced into the equilibrium description of the under-
lying linear elastic body. The resulting equations were
then solved by successive overrelaxation. Despite the gen-
eral difficulty to accurately determine the required exter-
nal forces from images, Davatzikos applied image-derived
forces to drive the deformation of the linear elastic body.
As material parameter values, the author used heuristic
values. More recently, another approach has been devel-
oped by Kyriacou and Davatzikos [6]. For the simulation of
incompressible materials, a variation of the Mooney-Rivlin
strain energy function [7], [8] has been applied, leading to
a so called neo-Hookean material [9]. However, the used
strain energy function equals the Mooney-Rivlin strain en-
ergy function only if the second Mooney-Rivlin parame-
ter is set to zero which is in contrast to the value deter-
mined, and compared against reported measurements [10]
by Mendis et al. [8]. The resulting equations are solved by
the finite element method. Instead of explicitly modelling
different anatomical structures, the authors introduced ap-
propriate boundary conditions resulting from the assump-
tions that, e.g., the dura mater is non-moving (known as
homogeneous Dirichlet boundary condition) and that no
movement occurs between the dura mater and the brain at
the contact surface (the so called no-slip boundary condi-
tion). The model of Lester et al. [11] is based on an inhomo-
geneous viscous fluid model described by modified Navier-
Stokes equations, with locally varying viscosity parameters
for the simulation of different anatomical structures. As
above, forces were used to drive the deformation and the
resulting equations are solved by successive overrelaxation.
An apparent problem with this model is the assumption
that all brain structures behave like a viscous fluid which
is evidently not the case. Skrinjar et al. [12] used a set
of mass nodes connected by Kelvin models to simulate the
deformation behaviour of brain tissue. A Kelvin model is
a simplified mechanical model of viscosity [13], [14] and
consists of a parallel connection of a linear spring and a



dashpot. The deformation is driven by applied forces and
different anatomical structures are modeled by appropri-
ate boundary conditions only. Paulsen et al. [15] mod-
ified a previously proposed approach of Tada et al. [16]
such as to deal with subsurface brain deformation. The
approach is based on consolidation theory and the finite
element method is used to solve the underlying differential
equations. In consolidation theory, the brain is regarded
as a biphasic system represented by an elastic matrix and
an interstitial fluid. Different material properties are in-
troduced by spatially varying material parameter values as
well as by applying appropriate boundary conditions. The
deformation is driven by inhomogeneous Dirichlet bound-
ary conditions only, i.e., in this case the deformation is
prescribed at the brain surface.

Our approach is based on the well-established physical
theory of continuum mechanics to handle inhomogeneous
materials (see [17] for an earlier version). We apply the con-
forming finite element method for discretization, resulting
in a large linear matrix system. Instead of using forces,
which are generally difficult to be accurately determined
from images, we use a set of given correspondences to drive
the deformation of the preoperative image. According to
the respective underlying anatomical structure, different
materials are incorporated through physically connecting
homogeneous subregions by appropriate boundary condi-
tions. The necessary material parameter values were de-
termined through a comprehensive literature study. Prior
to our registration experiments with clinical pre- and post-
operative MR images, we carried out experiments with syn-
thetic images in order to assess the physical plausibility of
the deformations predicted by our model.

II. APPROACH

Our biomechanical model is based on the equilibrium
equations, which describe the deformation of a body  un-
der externally applied forces,

—dive =f inQ,
{ _ (1)
on=g onl,

where o denotes the Eulerian stress tensor, f the applied
body forces, n the unit vector normal to the surface I', and
g the forces acting on I'. To incorporate material properties
of Q, the appropriate constitutive equation, which describes
the stress/strain relationship of the body, has to be substi-
tuted into the equilibrium equations. Despite the known
specialized constitutive equations for biological tissues like,
e.g., brain tissue [13], [8], [18], Hooke’s law

o = A(tre(u))I + 2pe(u) (2)

is used in our model so far. This choice is motivated by
the fact, that most biological tissues behave as a linear
elastic material in the case of small strains [19], [14] which
are implicitly assumed by using the Eulerian stress tensor
o. After the substitution of Hooke’s law, the equilibrium

equations read
—div[A\(tre(u))I + 2pe(u)]=f inQ 3)
(A(tre(u))I + 2ue(u))n=g onl.

Here, A and p denote the common Lamé constants, u the
unknown displacement vector field, e(-) Cauchy’s infinites-
imal strain tensor, I the identity matrix, and (tr-) the trace
operator.

In order to solve the equations of motion for the unknown
function u assumed to lie within a sufficiently smooth func-
tion space, we use the method of weighted residuals [20],
[21]. With this method, we demand that the projection
of the residual onto arbitrary weighting functions w of the
function space vanishes over the body 2:

/Q<—div [A(tre(u))I + 2pe(u)] — f,w) dQ2 =0, (4)

with (-, -) denoting the common inner product. After some
calculus, this can be transformed into

| Mt et e(w) + 2ute(u). e(w)) a9 =
/g}(f,w) dQ+/F<g,w) dar. (5)

Through application of the Galerkin method, i.e. using only
a finite dimensional subspace spanned by a finite number
of basis functions ¢;, we can approximate the function u by
a finite sum of basis functions ¢; multiplied with unknown
coefficients u;,

u= Z ui@;.- (6)

Substitution of this approximation into (5) and choosing
a weighting function w represented by Z]. ¢;, leads to the
expression

Zuz'/gf\(tre(fﬁi))(tre(fﬁj)) +2p(e(9;), e(8;)) d2 =

[espans [esyar, @

Q r

which can be written in compact matrix notation as
Au=f+g, (8)

where the matrix A is commonly known as stiffness matriz.

So far, the derived linear equation system (8) contains
the description of a homogeneous, linear elastic body only.
By dividing an inhomogeneous body (2 into a set of homo-
geneous subregions (2; according to the underlying anatom-
ical structures, we are able to simulate inhomogeneous ma-
terial behaviour with our model. Therefore, all subregions
Q; are physically linked by the compatibility and equilib-
rium boundary conditions [14], [21]. The former condi-
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tion states, that the displacements u;/ along the common



boundary I';; between two subregions €}; and €; must be
equal, while the latter one states that in the equilibrium,
the sum of all stress vectors acting on the boundary I';;
must be zero. These boundary conditions, while assuming
homogeneous body forces f over {; U(};, allow us to couple
both linear systems, yielding one linear equation system for
the composite body Q:

31 . i ] 0 u‘i, f+g
F1 Apr AR AL uf | = £ ] 09
0 AL Af, w f+g?

X u b

With Al etc., we denoted the submatrices of the corre-
sponding stiffness matrices A? and A7 for the subregions ;
and €, respectively. An index I, as in Al etc., indicates
those submatrices which comprise finite elements belong-
ing to the common boundary I';; between both subregions.
This scheme holds for an arbitrary number of subregions
(1;, provided that all matrix systems A; are properly re-
ordered with regard to the displacements uy? at the various
common boundaries I';;. As a result, the submatrices A%,
etc. of each matrix A; can be found in the global stiffness
matrix A at entries corresponding to the global numbering
scheme used for the unknown coefficients of u.

To calculate the deformation of an anatomical struc-
ture given a set of spatial correspondences between images,
these correspondences must be integrated into the linear
equation system. To this end, we use the procedure de-
scribed in Huebner et al. [22] and Peckar et al. [23]: Since
a value for the unknown u; is given through the estab-
lished correspondences, u; can be incorporated into the lin-
ear equation system by a subtraction of the product u;A ;,
where A ; denotes the j-th column of the stiffness matrix A,
from the righthand side vector b, followed by a substitution
of the given value into the j-th row of b. Thereafter, the
j-th row and column of A are set to zero and, respectively,
the diagonal element Aj; to one. By repeating this proce-
dure for a set of correspondences, e.g., to be defined at the
surface of an anatomical structure, a direct mapping from
the undeformed to the deformed state of the anatomical
structure results. It follows from the construction scheme,
that the given spatial correspondences are always exactly
fulfilled, independent of the Lamé constant values used, or,
in other words, the model automatically adjusts the neces-
sary forces f and g [24], [25]. In principle, a correspondence
can be given for each unknown. However, it is required that
these correspondences should define a smooth vector field.
Otherwise, violations of the underlying finite element mesh
topology may arise and, as a consequence, locally incorrect
deformations result.

Note, that the approach presented above is valid for 2D
as well as 3D images. However, only 2D images will be
considered below which is mainly due to a) huge storage
requirements as well as high computing time in 3D and
b) the lack of 3D implementations of the algorithms used
for subregion segmentation and determination of the corre-
spondences. In accordance with the underlying pixel grid of

2D images, we use four node quadrilateral finite elements,
i.e. bilinear interpolation functions ¢; to approximate u
and w. In 3D, trilinear finite elements with eight nodes
could be used, resulting in linear interpolation functions.
At the image border, homogeneous Dirichlet boundary con-
ditions are assumed to force a preservation of the rectan-
gular image border shape. All body forces like the gravity
force were ignored due to the assumption of unknown, but
static body forces. The resulting linear matrix system (9)
is solved for the unknown displacements u by using the
numerical method of conjugate gradients, e.g., [26].

III. MATERIAL PARAMETERS

By now, our implemented biomechanical model distin-
guishes two different materials, namely brain tissue and
skull bone, which can be incorporated by assigning differ-
ent values of the Lamé constants A and u to the correspond-
ing subregions. In order to use appropriate values for both
materials, we carried out a comprehensive literature study
summarized in Table I. Most of the values given there
[16], [33], [34], [36] were taken from other reported values,
mainly based on the works of Sauren and Classens [37] as
well as Nagashima et al. [38]. Other authors [27], [28], [29],
[30], [31], [35] incorporated real measured data, as reported
by, e.g., McElhaney et al. [39] or Nahum et al. [40]. In our
approach, where the deformations are driven by given cor-
respondences which automatically adjust the forces, only
the ratios between the values of A\ and p are important.
In Table II, the calculated ratios for the Lamé constant
values given in Table I are summarized. Table II reveals
the interesting fact that only a small number of different
Lamé constant ratios for brain tissue and skull bone exists.
Note, that the highly different ratios for brain tissue result
from a small variation of the assumed Poisson’s ratio v (be-
tween v = 0.48,...,0.499), which defines the ratio between
transverse contraction and longitudinal dilation.

To analyze the influence of varying the Lamé constant
ratios on the deformation result, we performed several ex-
periments using a 30x30 grid. In Figure 1, four parallel and
equal correspondences were given while assuming here the
calculated ratios for brain tissue, A\/u = 24.0, \/u = 49.0,
and \/pu = 498.999, respectively. The applied correspon-
dences in all cases point in the direction of the lower right
corner of the grid. As indicated by Figure 1, only slight dif-
ferences in the deformations result. Using the ratios of skull
bone instead, the same observation concerning the differ-
ences in the predicted deformations holds. Thus, we con-
cluded from our experiments that the mean values of the
ratios, namely Ay, /pp- = 135.111 and Ay /psr = 0.718666,
may serve as valid estimates for the corresponding Lamé
constant ratios.

For the simulation of different anatomical structures, we
have to determine appropriate ratios for the Lamé con-
stants between those structures. Following our previous
practice for homogeneous materials, we calculated the ra-
tios for the A-values of skull bone and brain tissue and
listed them in the last column of Table II. Here, a larger
variability of the calculated ratios can be observed. How-



TABLE 1
REPORTED VALUES OF THE LAME CONSTANTS A AND g FOR BRAIN TISSUE AND SKULL BONE. TADA et al., TAKIZAWA et al., AS WELL AS

HARTMANN AND KRUGGEL DISTINGUISHED ORIGINALLY BETWEEN GREY MATTER AND WHITE MATTER, BUT HERE, ONLY THE VALUES FOR GREY

MATTER ARE GIVEN. A BAR INDICATES THAT NO VALUES WERE GIVEN BY THE AUTHORS.

material parameter values brain skull

article b [k Pal | Uor [EPa] | Ask [kPal | wsk, [kPal
Hosey and Liu 1982 [27] 11101.8 22.2 1334570 | 1842980
Ward 1982 [28] 5270.3 219.6 1334570 | 1842980
Ruan et al. 1991 [29] 540.8 22.5 2093090 | 2663930
Willinger et al. 1992 [30] 5473.0 228.0 1388890 | 2083330
Chu et al. 1994 [31] 4110.7 83.9 1805560 | 2708330
Tada et al. 1994 [16] 8060.3 164.5 1466820 | 2025600

Takizawa et al. 1994 [32] 41.8 2.7 - -
Kuijpers et al. 1995 [33] 8108.1 337.8 1805560 | 2708330
Kumaresan and Radhakrisnan 1996 [34] 540.8 22.5 1945000 | 2685950
Whitman et al. 1996 [35] - - 180556 270833
Hartmann and Kruggel 1998 [36] 12483.3 25.0 2093090 | 2663930

TABLE II

CALCULATED RATIOS FOR THE LAME CONSTANTS FOR BRAIN AND SKULL TISSUE. ONLY THOSE PAPERS HAVE BEEN TAKEN INTO CONSIDERATION

WHERE MATERIAL PARAMETER VALUES HAVE BEEN REPORTED FOR BOTH, BRAIN TISSUE AND SKULL BONE.

ratios of the material parameter values

article

Hosey and Liu 1982 [27]
Ward 1982 [28]
Ruan et al. 1991 [29]
Willinger et al. 1992 [30]
Chu et al. 1994 [31]
Tada et al. 1994 [16]
Kuijpers et al. 1995 [33]

Kumaresan and Radhakrisnan 1996 [34]
Hartmann and Kruggel 1998 [36]

| )\br/ll'br | Ask /Nsk | )\sk/)\br
498.998 0.724 120.212
24.0 0.724 253.226
24.0 0.786 3870.28
23.999 0.667 253.773
49.0 0.667 439.23
49.0 0.724 181.981
24.0 0.667 222.686
24.0 0.724 3596.45
498.999 0.786 167.671

ever, it seems reasonable to choose again the mean value
as ratio between the A-values, namely Ag/Ap- = 1011.72,
while keeping the internal Lamé constant ratios of each
material constant. To demonstrate the influence of our de-
termined Lamé constant values on the deformation result,
four parallel and equal correspondences were again applied
while assuming the various calculated ratios. As indicated
by the resulting grid deformations and calculated displace-
ment vector fields in Figure 2, the material parameter val-
ues for homogeneous skull bone result in a significant stiffer
behaviour as compared to homogeneous brain tissue. By
dividing the grid into two subregions Q; and {25, we obtain
the result shown in Figure 2(c). In this case, the applied
correspondences lead to a pure translation of the simulated
bony rectangle which is surrounded by soft brain material.
The corresponding displacement vector field in Figure 2(f)
reveals, that the behaviour of the surrounding soft mate-
rial is physically plausible: Along the path of translation,
a stretching of the soft material occurs, while two vortices
can be observed due to the lateral inflow of soft material.

IV. EXPERIMENTS

As already mentioned above, our approach has been
tested on 2D synthetic and tomographic datasets only, but
the approach is also valid in 3D. However, for 3D images
the subregion segmentation as well as the finding of corre-
spondences is generally more difficult than for 2D images.
Our approach has been implemented within the finite ele-
ment programming environment DIFFPACK [41]. In the
case of 2D images we applied a snake algorithm [42] for cor-
respondence finding, whereas in 3D it seems promising to
use deformable models for the purpose of determining the
correspondences [43]. The synthetic experiments carried
out comprised different types of movements (translation,
rotation) and affine transformations (scaling, shearing) of
a rigid object, embedded into elastic material. Figure 3
depicts the deformation results for different types of trans-
lations. In both cases, the star-shaped object remains per-
fectly rigid while the surrounding soft material is deformed.
Note that the visual impression of the broadening of the
grid lines can be traced back to our resampling process.
Some problems arise for the case of objects rotated by an
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To investigate the influence of different Lamé constant ratios, we compared the deformations of homogeneous brain tissue. Four

parallel and equal correspondences, given in the upper left part of a 30 x 30 grid, were applied. The calculated grid deformations (top
row) and displacement vector fields (bottom row) for brain tissue parameter values of A\/pu = 24.0, \/p = 49.0, and \/p = 498.999 (from

left to right) show only small differences.

angle larger than 45°, see Figure 4. A possible explana-
tion might be that the linear elasticity assumption of small
deformations is violated for large rotation angles.

For the experiments with real data, we used pre- and
postoperative MR images which were routinely acquired in
conjunction with the planning and radiological control of
a tumor resection. The 2D images are corresponding slices
of 3D datasets which were aligned by a rigid registration
using 34 manually determined landmarks prior to our ex-
periments. Due to the lack of appropriate intraoperative
image data, a postoperative image was used to simulate
an intraoperative one. First, the corresponding tumor and
resection area outlines in both images were manually de-
termined by a medical expert as indicated in Figures 5(a)
and (b) by the white outlines. Thereafter, a snake algo-
rithm [42] was applied to determine 618 correspondences
for these outlines, which then were used as input to our
model for the purpose of matching the pre- with the post-
operative image. In a real clinical application, other input
data like the insertion depth of surgical instruments could
be used instead as correspondences. Figure 6(a) shows a
locally erroneous registration result since homogeneous soft

material for the whole image was only assumed. Note that
local errors are clearly visible, especially in the vicinity of
the ventricular system (see also the enlarged part of the
ventricular system depicted in Figure 8(a)).

In order to improve this registration result, different ma-
terials were incorporated by assigning spatially different
Lamé constants A and p in accordance with the underlying
anatomical structures. To this end, the preoperative image
was segmented with a 2D interactive watershed algorithm
[44] into four different regions, shown in Figure 5(c): com-
bined skin/skull region (white), brain (dark grey), CSF
(light grey), and surrounding air, i.e. image background
(black). The air in the frontal sinus of the skull bone was
assigned to the skull bone region since Hooke’s law does not
describe the physical behavior of air. Intracranial air and
subarachnoidal CSF spaces between skull and brain were
assigned to the brain tissue region, resulting in a rather
simplified border between brain tissue and skull bone. But
due to the viscosity of fluids like CSF, the applied com-
patibility boundary condition seems to be valid [45]. For
brain tissue and skull bone, the previously determined ra-
tios were used, while CSF and air were roughly approxi-
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(d)

(e) (f)

Fig. 2. Resulting grid deformation (top row) and displacement vector field (bottom row) while simulating different materials. In (a) and (b),
homogeneous areas resembling brain tissue and skull bone were assumed, respectively. As expected, the skull-like material shows a much
stiffer behaviour. By spatially different Lamé constant ratios, we can combine different materials as shown in (c). Here, a (simulated
bone-like) rectangle embedded in simulated brain tissue results in a pure translation of the rectangle.

(a)

Fig. 3. Predicted translation of a rigid star embedded into soft
correspondence was used, resulting in a translation and rotation

mated as rigid and very soft materials, respectively. The
material properties can be assigned to the finite element
mesh, by a direct mapping of each pixel (or voxel in 3D) to
the center of a finite element. Using four node quadrilateral

(b) (c)

material (a) due to two given correspondences (b). In (c), only one
of the star.

finite elements, this results in 2(N +1)? degrees of freedom
for a 2D image with V x N pixels. In our concrete case of
a 256 x 256 image, this mapping results in a matrix sys-
tem containing 132098 degrees of freedom which is solved



(a)

(b)

(c)

Fig. 4. Predicted clockwise rotation of a rigid block embedded into soft material (a). The rotation angles were 10° and 45° in subfigures (b)
and (c), respectively. In (c), the approach starts to fail as can be seen by the deformation of the overlaid grid lines inside the rigid block.

Fig. 5.
2D watershed algorithm are depicted.

in the current, non-optimized implementation in about 45
minutes on a Sun ultra 2/1300 with 300 MHz. To trans-
form the preoperative image, we use bilinear interpolation
for both, the calculated displacement vector field and the
image intensity function.

The registration result is shown in Figure 6(d). Here,
a global movement of the head, forced by the given corre-
spondences, can be observed which leads to a surprisingly
poor registration result. Nevertheless, the assumption of
inhomogeneous material properties leads to a completely
different deformation behaviour as shown in the section of
the displacement vector field in Figure 6(f). According to
the rigid material assumption, the ventricular system can-
not deform here thus leading to a small rotation of the
whole ventricular system with respect to the postoperative
image, best seen in the enlarged section depicted in Figure
8(b). As indicated by the corresponding grid deformation
in Figure 6(e), there is a global movement of the head. This
movement can be suppressed by preventing a deformation
of the image background, i.e. by using the Lamé constant

(b)

()

Manually determined outlines in the pre- (a) and postoperative (b) image. In (c), the subregions as segmented with an interactive

ratio of a rigid body for the image background, see Figures
7(a)-(c). In this case, an overall good registration result can
be achieved, even in the vicinity of the ventricular system,
as clearly depicted in Figure 8(c). Note, that no corre-
spondences were given at the ventricular system, only the
assumed inhomogeneous material properties suppress the
deformation of the ventricular system.

However, a consideration of the results shown in Figures
6(a), 6(d), and 7(a) reveals a significant shift of the mid-
line in the posterior half of the brain which is in contrast
to the postoperative image 5(b) (see also [2]). This shift
can be suppressed by using additional correspondences at
the posterior midline (in this case, we used 68 manually
determined correspondences) thus giving the result shown
in Figure 7(d). Here, an overall good registration result
is achieved and no shift of the posterior midline occurs,
see the enlarged sections in Figure 9 for a comparison of
the posterior midlines. As indicated by the corresponding
grid deformations in Figures 7(e) and (b), the additionally
applied correspondences significantly suppress the defor-
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Fig. 6. Top row: (a) registration result assuming homogeneous soft material properties for the whole image (with overlaid Canny edges of
the original postoperative image), (b) resulting grid deformation after application of the calculated displacement vector field, and (c)
section of the displacement vector field from the bottom part of the ventricular system. Bottom row: based on the segmentation given
in Figure 5(c), inhomogeneous material properties in conjunction with a soft image background are assumed.

mations in the left hemisphere. Only between the top end
of the posterior midline and the ventricular system defor-
mations occur due to the deformation of the elastic brain
tissue, see Figure 7(f).

So far, the brain shift appearing in the upper left part of
the postoperative image is not predicted by our biomechan-
ical model, because the applied physical material descrip-
tion does not cope with the creation of new phenomena.
But the underlying framework seems flexible enough to to
deal with such situations by either introducing appropriate
physical descriptions or modifying the underlying finite el-
ement mesh.

V. SUMMARY AND CONCLUSION

We proposed a novel biomechanical model of the hu-
man head based on linear elasticity theory to predict brain
deformations due to surgical interventions. The model is
driven by a set of given correspondences, which are always
exactly fulfilled, and allows to incorporates different ma-
terial properties. Appropriate material parameter values

were determined from the literature and have been exper-
imentally validated. By carrying out experiments using
2D synthetic as well as real medical images, it turns out
that the approach yields physically plausible deformation
results. The incorporation of anatomical structures with
different material properties leads to a significant improve-
ment of the registration result for real MR images. In par-
ticular, we have shown that we can successfully suppress
an unrealistic shift of the posterior brain midline by ap-
plication of additional correspondences at this structure.
Nevertheless, problems may arise in situations when other
new phenomena have to be taken into consideration, like
the occurrence of air in the cranium or perifocal edema.
But we believe that the underlying framework seems flexi-
ble enough to cope with such phenomena. For example, to
predict the brain shift at the top of the postoperative im-
age in Figure 5(b), it seems promising to allow a tearing of
the finite element mesh. We furthermore expect that the
incorporation of different constitutive equations, like the
Navier-Poisson law for an appropriate physical simulation
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Fig. 7.
midline in the posterior half of the brain (bottom row).

of CSF or more advanced constitutive equations for brain
tissue [13], [8], [18], lead to further improvements of the
prediction results. Besides the compatibility and equilib-
rium conditions used in our approach, additional boundary
conditions, like the no penetration boundary condition for
fluids [45], will be build into our computational scheme to
take further physical properties into account.

As pointed out above, the processing time on a Sun ultra
2/1300 with 300 MHz are about 45 minutes, but the current
implementation has a large potential for acceleration. For
example, taking advantage of the symmetry of the stiffness
matrix A will cut down the processing times and the mem-
ory space to a half. The use of anisotropic finite element
meshes for the purpose of reducing the number of degrees
of freedom as well as of more sophisticated preconditioners
will further significantly reduce the processing time. A 3D
extension of the implementation is under work.
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Fig. 8. Enlarged parts of the ventricular systems of Figures 6(a), 6(d), 7(a), and 7(d) with overlaid Canny edges of the original postoperative
image. Subfigure (a) shows the result for homogeneous soft material, (b) for the inhomogeneous case, (c) for the inhomogeneous case
with rigid image background, and (d) for the case with additional 68 correspondences.

(a) (b) (c) ()

Fig. 9. Enlarged parts of the posterior midline from a) the preoperative image, b) the postoperative image, c) the image in Figure 7(a) with
inhomogeneous material properties, and d) the image in Figure 7(d) with inhomogeneous materials and additional correspondences given
at the posterior midline. For visualization purposes, we manually marked the posterior line with white squares. A comparison with the
pre- and postoperative images reveals, that in (c) larger deviations are visible while in (d) no shift of the midline occurs.
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