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Abstract. In this paper, we introduce a method to examine and in-
terpret spatio-temporal radio emission datasets. The goal is to find
communication patterns in the data in respect to spatial, temporal,
and frequency based attributes. The chosen approach is a combina-
tion of two different Al-methods. First a clustering algorithm groups
spatially close data points to potential emitters. In a second step a
model-based constraint solving technique is applied to find relation-
ships between the identified emitters. The used models describe rules
of the communications that are to be found. This guarantees a flexible
search for different kinds of communication.

1 Introduction

The approach to be introduced arose from the need to find commu-
nications in radio emission data. The used data is recorded via three
or more antennas with distances of several hundred kilometers. The
receiver systems match frequency and timing of the received data
snippets of all included antennas and attach location information ac-
quired from run time differences of the matching received snippets.
Several thousands of matching snippets are collected every second
and stored in large databases. This data is the basis of the proposed
technique. The interpretation of this data, like finding communica-
tion patterns, has mostly been done manually by domain experts with
the help of frequency catalogs and database-based approaches. In this
paper, we introduce a communication recognition method where less
user interaction and expert knowledge is needed *.

The radio emission data consists of single data atoms that are
called emissions in this context. An emission is the smallest unit
of received data where the location could be determined. An emis-
sion represents a direct or modulated electro-magnetic transmission,
which can be a connection to a single partner or a broadcast for mul-
tiple receivers. Emissions can be radio station broadcasts (lasting the
whole day, always the same frequency), two way transceiver com-
munication, or automated data communication. Each emission has at
least following attributes: A start-time, a duration, a frequency range,
and a location (latitude and longitude). As only the sender and not
the receiver of an emission is directly known, a communication can
only be detected when two stations subsequently “talk” to each other
with two or more subsequent emissions (simplex communication),
or when they use a ongoing connection on different frequencies (du-
plex communication). A communication in this context is, therefore,
the combination of two or more emissions from two or more differ-
ent emitters. The simplest communication consists of two emissions.
One emission is the initial message and the other is the response.
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One way to find out if two emissions are part of a communication
is their temporal behavior, as the sequences for natural speech and
radio communication protocols follow specific rules.

Another hint of a communication is the location of the emissions.
If subsequent emissions come from the same two locations, it can be
assumed that two sending units (in the following called emitters) are
communicating with each other. An emitter is in this context a sta-
tionary unit capable of sending and receiving emissions. A problem
of the spatial information (longitude, latitude) is the varying preci-
sion (see Section 3).

A third important indicator of some types of communication is fre-
quency equality. Most emitters use the same frequencies for a com-
munication. However, it would be too restrictive to limit the system to
that, because some emitters change their frequency with each emis-
sion of a communication or after defined time periods.

A large challenge in the given application is that there are many
forms of radio communication like simplex, duplex, shallow and
deep emitter hierarchies with specific timings, different modulation
types, and different data transmission types. Examples of communi-
cations are mobile telephone transmissions, radio stations, airplane
communication and all kinds of wireless communication. The search
for patterns is, therefore, very difficult and a general search for all
communications with one set of criteria is not possible. This led to
the idea of a model-based approach, where specific communication
types can be formulated: Sometimes almost nothing is known about
the communications to be found. This would require a general model.
However, in most cases some more restricting parameters like the
approximate duration, the gaps between emissions of a communica-
tion, one or more frequencies, the number of involved emitters, or
the location of some emitters are known. These tasks are different
use cases which have to be addressed with our prototype.

A problem are arbitrarily fitting emissions which result from the
large amount of simultaneous emissions. The system finds only pos-
sible communications, which have to be reviewed by experts. But
the expert time compared to analysis with raw data can be reduced
significantly with this method.

2 General Approach

We identified two subproblems for finding communications with
time and location based emission data: Emitter identification which
allows to determine an emitter for each emission and communica-
tion identification between emissions of multiple emitters. In a first
step we investigated in different data-mining approaches and exam-
ined their suitability to our problem. Clustering was found suitable
for emitter identification and sequence analysis for combining emis-
sions to communications. Clustering has the capability to find similar



data objects with the help of a distance measure. Clustering is appli-
cable, if spatial, temporal or other 1 to n dimensional data groups
have to be identified. Taking into account the spatial relationship of
the emission data, clustering is helpful to find emitters, frequency
groups, and temporal accordance. Sequence analysis allows to find
temporally connected relationships and with that the recognition of
compound events. Sequence analysis can be used in the given sce-
nario for finding communications and communication sequences. As
there are several different types of communication and the parame-
ters should be easily changeable a model-based approach has been
chosen. Therefore, following general process of analysis and inter-
pretation is proposed:

1. Data preparation: exclusion of non relevant attributes, plausibility
checks, data reduction, dimension reduction, and data partitioning.

2. Emitter identification: Group emissions into potential emitters us-
ing clustering techniques.

3. Application of the main interpretation method: model-based
recognition of temporally repeating structures between emitters.

Data reduction is very important with large data sets to reduce the
computation time of the whole system. In the following emitter iden-
tification (Section 3), and finding communication patterns between
emitters (Section 4) are explained in more detail. The complete ap-
proach has been implemented in a prototypical system (Section 5)
and has been validated with several experiments (Section 6).

3 Emitter identification

In this phase emissions which originate from the same emitter are to
be grouped together. One advantage of this approach is to reduce the
complexity for the later model-based steps. For finding a start of a
communication with one emission of an emitter e, for instance, all
other emissions except in e are candidates for a communication. To
detect ongoing communications only the participating emitters have
to be taken into account. Clustering algorithms have been identified
as most important method to emission emitter estimation. Each emis-
sion has longitude and latitude as spatial information. Longitude and
latitude have different uncertainties depending on the used receivers
and the distance from the emitter. If for example 3 receivers in a
1000km equilateral triangle are used, the best emission location re-
sults are in and near this triangle As the distance increases, different
ellipses with increasing areas have to be considered as locations in-
stead of points. As most of the clustering algorithms work only for
point data, the geometrical centers of the uncertainty areas are used
for clustering. Latitude and longitude are transformed to two dimen-
sional points on the earth surface. As a distance measure for clus-
tering, euclidian distance is sufficient, as only spatially very close
emissions are grouped together. A better solution would be to use
the arc distance on the sphere surface, but several clustering methods
do not easily support custom distance functions and we wanted to
compare different algorithms first.

Most clustering methods are directly applicable to the large
dataset. The time complexity for relocation and hierarchical algo-
rithms can be controlled by appropriate termination criteria. Most
clustering algorithms are apart from the initialization and the defini-
tion of the distance measure free from interaction.

In the following different clustering methods are compared for the
suitability for the targeted application:

e Exclusive and overlapping relocational clustering algorithms can
use random generated and evenly distributed locations as start cen-

troids. The number of centroids and clusters has to be known be-
forehand. The ordinality of emitters can be roughly approximated
from the number of emissions.

e Density-based methods are due to the circular or elliptic forms
of emitter clusters not relevant. Density-based clustering is espe-
cially interesting for concave cluster forms.

e Probabilistic methods assume a few defined probability distribu-
tions in the dataset. Whether this applies to the emission data,
would have to be examined first.

e For hierarchical clustering only the link method and the terminate
criterion have to be predefined. Complete hierarchical clustering
has a complexity of O(n?) which is too time consuming for large
datasets. In our application the number of expected data objects
per cluster is small compared to the total number of objects. Be-
cause of that the algorithms can be terminated after several itera-
tions, as soon as a maximal distance criterion is met.

Modern heterogeneous clustering algorithms unite the advantages
of several cluster methods. Because of the large datasets it was im-
portant that the algorithm was not only main memory-based. The
targeted complexity should be O(n log(n)) or better O(n) to be appli-
cable.

Several clustering methods have been tested: Different algorithms
from the CLUTOclustering toolkit and the CURE clustering algo-
rithm. The CLUTO clustering toolkit is a freely accessible easy to
use library for several clustering methods described in [4]. CLUTO
allows to parameterize and adapt partitioning and hierarchical clus-
tering algorithms. The algorithms in CLUTO are optimized for large
datasets and a high dimensionality. This is especially true for the al-
gorithms based on partitioning. Drawbacks of CLUTO are that all
algorithms in CLUTO need a previously defined number of clusters.
Another problem is that no user defined distance functions can be in-
troduced for more complex clustering tasks. The solution for avoid-
ing the predefined cluster number problem, is to examine the density
and distribution of the data to estimate the cluster number. It has been
found that 1 to 10 clusters per 1000 emissions give the best results.

The CURE (Clustering Using Representatives) algorithm [2] is
an agglomerative, hierarchical cluster algorithm. The algorithm usu-
ally stops at a predefined number of clusters c. It was changed to
terminate when a maximal distance between two clusters has been
reached.

The algorithms have been applied to different emission datasets
and examined for performance, memory usage, and quality of the
results (see Section 5).

4 Model-based communication recognition

The clustered emissions from the emitter identification build the in-
put for model-based recognition of communication structures. Man-
ually edited communication models are a further input. Figure 1 il-
lustrates such a model of a communication structure (here a simplex
communication between two partners). The communication model
consists of several emission models, which have a start-time and
end-time and which have to fulfill certain conditions. Each emission
model represents a generic description of real emissions. Instead of
absolute time relative relations between time points are specified.
Communication models may also be composed. The communica-
tion model in Figure 1 consists for example of two sub-models: One
that describes a start of a communication (start-connection) and one
that describes the follow-up communications (alternating-communi-
cations).



For automatic computation of models a textual, LISP-based model
definition language has been defined. This language and its use is
discussed in Section 4.1. In the further steps a communication model
is seen as a specification of a constraint problem. Thus, such models
are an abstraction of typically hard to formulate constraint problems.
For processing, the models are automatically mapped to a constraint
problem (see Section 4.2).
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Figure 1. Graphical notation of a simplex communication model.

4.1 Representing Communication Models

For representing communication models we developed the new
declarative language ModoCom (Modeling of Communications).
This language provides following modeling facilities:

Primitive communication models specify a combination of emis-
sions. Each emission belongs to a communication partner (i.e. an
emitter). Combinations of emissions can be restricted by conditions.

Each emission of a partner can be described by parameters, like
start, end, delay, longitude, latitude etc.

Restrictions specify conditions on the emissions of the commu-
nication partners. Conditions can be time related (e.g. partner a be-
fore partner b with delay d), related to the frequency of the emission
(e.g. equal frequency for simplex communications) or spatially re-
lated (e.g. different positions in space).

Compositional communication models combine primitive com-
munication models or other compositional communication models.
Thus, a hierarchical structure of models is established.

Primitive communication models can be seen as templates that
are used to identify communication structures in the emitter clus-
ters. The result of evaluating primitive communication models are
combinations of emissions that fulfill the restrictions of the primi-
tive communication model. In Figure 2 an example for a primitive
communication model is given. Two partners (emitters) are being
specified - a main station (?m) and a sub station (?s). The emis-
sions of these emitters are referenced by variables (?m1, ?m2, 2s1).
Those are restricted by the specified constraint relations to have max-
imally 20 seconds delay. These restrictions relate parameters like
emission-endtime O emission-cluster by the shown constraint
relations (1ess, adder).

Primitive communication models can be combined to com-
positional communication models. The computation of such
models consists of two steps: First communications that ful-
fill the sub-models are generated (:generate). This step leads
to combinations of emissions. In the second step these com-
binations are again composed according to further restric-
tions. In Figure 3 a communication model is composed from
two sub-models simplex-2-partners-start-connection and
simplex-2-partners-alternating. Their combination results
are again referenced by variables (?mir, ?mar). The domains of
these variables are combinations of emissions (a-cmb). These are
generated and further restricted by combining them with the specific
constraint relation combine-models.

(define-communication-model
:name simplex-2-partners-start-connection
:parameters ((delay 20.0))
:partners
(;; main station
(?m :type cluster
revents ((?ml :type emission)
(?m2 :type emission)))
;; sub station
(?s :type cluster
revents ((?sl :type emission))))
:restrictions
((related-to (?ml ?m2 ?sl
(;; similar frequency different clusters
(frequency-overlap-for-three ?ml ?m2 ?sl)
(unequal (emission-cluster ?m2)
(emission—-cluster ?sl)
;; different emissions
(unequal ?m2 ?sl) (unequal ?ml ?sl)
(unequal ?ml ?m2)))
(related-to (?m2 ?sl delay)
(;; ml.end + 20 < sl.start
(less (emission-endtime ?ml)
(emission-starttime ?sl)
(adder (emission-endtime ?ml) tmp
(emission—-starttime ?sl)
(less tmp delay)))
(related-to (?m2 7?sl delay)
(;; sl.end + 20 < m2.start
(less (emission-endtime ?sl)
(emission-starttime ?m2))
(adder (emission-endtime ?s2) tmp
(emission—-starttime ?m2))
(less tmp delay)))))

Figure 2. Declarative specification of a primitive communication model.
The delay between ?m1 and ?s1 as well as between ?s1 and ?m2 has to be
less than the delay. adder is a constraint relation that ensures: a + b = c.
Thus, the second argument (here 2tmp) is the distance between the first and
the third argument.

4.2 Using constraints for recognizing
communications

Each communication model is mapped to a constraint problem. A
constraint problem is specified by constraint variables having a do-
main and n-ary constraints. A constraint restricts the domains of the
variables (also called pins) that are connected to it. Because one vari-
able may be connected to several constraints, a constraint network is
formed. A solution of a constraint network given by constraints and
variables is a tuple of values for each variable that satisfies the con-
straints. Given a constraint network the constraint satisfaction prob-
lem is the problem of computing one, several or all solutions of the
network (see e.g. [5]). Several constraint systems exist which imple-
ment this kind of computation.

A solution of a constraint network is given by restricting the given
variable domains. In principle, every combination of values for the
variables has to be checked, whether it is consistent with the con-
straints. Therefore, a constraint system solves the combinatorical
challenge of identifying combinations of values that are consistent
with the constraints.

This facility is used for computing communications consisting of
emissions (e.g. modeled by variables). Restrictions given by commu-
nications, like duration, structure, and spatial location, are mapped to
constraints. In principle, every emission can be combined to form a
communication, however, only those combinations that are consis-
tent with the restrictions of the communication are of interest. Be-
cause of that, the challenge of communication identification can be
mapped to a constraint problem.

The mapping of non-aggregated, primitive models like the simplex
model is as follows: each partner (or emitter cluster) of the com-
munication model are modeled as a constraint variable. The set of
emissions that are gathered in one cluster is the domain of a con-
straint variable. The restrictions on the emissions that are given in the
model are mapped to constraints. Each expression is one constraint,
the variables of the expression are the pins of the constraint.

By solving the constraint problem for a primitive communication
model a combination of emissions is computed that fulfills the re-



(define-communication-model
:name simplex-2-partners-aggregate
:sub-models
((?ma :type simplex-2-partners-start-connection
:solutions (?mar :type a-cmb))
(?mi :type simplex-2-partners-alternating
:solutions (?mir :type a-cmb)))
:clusters ((?a :type spatialcluster)
(?b :type spatialcluster))
:generate
((related-to (?ma ?a ?b)
((unequal ?a ?b)
(compute-submodel ?ma ?a ?b)))
(related-to (?mi ?a ?b)
((unequal ?a ?b)
(compute-submodel ?mi ?b ?2a))))
:restrictions
((related-to (?mir ?mar ?a ?b)
((unequal ?a ?b)
(combine-models ?mir ?mar)))))

Figure 3. Declarative specification of a compositional communication
model. Two sub-models are referenced and emissions that fit to this
sub-models are generated. The result of this generation are combinations of
emissions. Those are combined with the constraint relation
combine-models.

strictions specified in the communication model. This is achieved by
computing all solutions of the constraint network by global propaga-
tion.

Compositional communication models are mapped as follows:
Results of sub-models are combinations of emissions. These com-
binations are taken as domains for the variables of the composi-
tional communication model (e.g. of ?mir). Thus, while constraints
of primitive communication models handle primitive parameter val-
ues like time points or spatial values, constraints of compositional
communication models handle emissions belonging to combina-
tions of emissions. Such constraints are newly defined as functions
(here also called constraint relations) for the constraint system (e.g.
compute-submodel). These functions implement specific algorithms
which take the time-line of emissions or equivalence classes built by
frequencies into account. This approach of using results of a con-
straint problem as variable domains of a further constraint prob-
lem is new (at least to our knowledge) and here called cascading
constraints. Through the compositional structure of the communi-
cation models cascading constraints are implicitly modeled, i.e. the
results of one communication model (yielded by solving a constraint
problem) are automatically transferred to the next higher aggregation
level and there used as input for the next constraint problem. In typi-
cal applications of constraints only one level of variables are used.

4.3 Discussion of the Model-Based Approach

Through the clustering of emissions the search for communications
is facilitated. For searching a communication between two partners,
for example, only emissions of the two participating emitters have to
be considered. By using such clusters it is not necessary to compare
emissions of one cluster with each other, but only emissions of differ-
ent clusters. Furthermore, if a start of a communication is identified
between a set of clusters, only emissions of those clusters have to be
considered for continuing the communication.

Due to the prescribed modeling language for representing commu-
nications, generic descriptions of typical communication structures
can be specified which represent a set of communications. The com-
munication models enable the modeling and identification of com-
monly known and frequently used communication structures (like
simplex communication of two partners). Models can be composed
to more complex ones. Such compositional models are solved by cas-
cading constraints.

With communication models an enumeration of some finite com-
munications is avoided. This leads, for example, to better mainte-

nance properties of the resulting system. Furthermore, the models
can be easily communicated to domain experts (here communication
experts), because they concentrate on domain aspects (like delay be-
tween emissions).

By using a declarative language, a strict separation of the mod-
els (i.e. the knowledge about the domain) from the algorithms (i.e.
constraints solving algorithms) is achieved. Thus, the constraint al-
gorithms can be improved without changing the models as long as
the language stays the same (e.g. improving variable ordering). The
separation of models and algorithms also enables the concentration
on the formulation of the model instead of algorithm development.
Furthermore, an evolutionary modeling approach is supported by fre-
quently testing specified models with the constraint solver.

By using a constraint solver the algorithms are clearly defined and
have known properties (e.g. termination as long as variable domains
are reduced). A specific algorithm developed for recognizing com-
munications would be a black box for others than the developers,
e.g. properties of such an algorithm would have to be newly iden-
tified. However, parts of specific algorithms can be incorporated by
implementing new constraint relations.

5 Prototype implementation

For evaluating the approach described in this paper, we realized a
prototype with a distributed architecture. The emissions and the re-
sults are stored in an Oracle database. The previously described clus-
tering methods are implemented or integrated in a extendable C++
clustering module. The data is read from the database, passed to
the clustering algorithm, and the resulting clusters are stored in the
database.

The developed model-based constraint system (communication
identification) is based on SCREAMER [3] and Common Lisp.This
constraint system provides finite domains of numbers, symbols and
objects as well as intervals of numbers (i.e. it is a heterogenous
constraint system). Additionally, n-ary constraints and the definition
of domain-specific constraint relations (like compute-submodel) are
supported (see also constraint operators defined in [1]). Such con-
straint relations enable the implementation of cascading constraints
which use solutions of a constraint problem as input for a further
constraint problem (i.e. as domains of structured variables). Fur-
thermore, we enhance SCREAMER by introducing series as vari-
able domains. Because constraint variables have typically sets as do-
mains, no support for series of values are given in constraint systems.
We enhanced SCREAMER for using ordered sets of variable values,
which reduces the computation time in our experiments from several
hours to several minutes, because of pruning values within a variable
domain.

The communication identification module reads the clusters and
emissions from the database, performs the search with the selected
communication model, and stores found communications in the
database. For user-interaction a Java based Graphic User Interface
(GUI) has been implemented. The GUI can select data stores, map
regions etc. Each module may run on a separate computers and pro-
videsservices(ﬁke compute-clusters, compute-interpretations
call-visualization), which are implemented with the remote-
procedure protocol XML-RPC 3. The framework has well defined in-
terfaces and allows the integration of other modules and algorithms.

3 www.xmlrpc.com



6 Experiment Results

We have performed several experiments with the prototype. For the
first experiment we reduced the emission database to those emis-
sions, containing spatial information and which belong to a six hours
time period. This reduction results in a set of about 50000 emissions
(dataset DS1). Three of the examined use cases have been finding
radio stations, simplex-, and duplex communications in this data.

[ Algorithms | No.Clust. | No.Emiss. | Qual. [ Time |
CLUTO Graph 1000 50000 ok 273s
CLUTO Graph 50 500 ok 0.6s
CLUTO Agglo 50 500 ok 0.9s

Table 1. Comparing clustering algorithms.

The used clustering algorithms for the emitter identification are:
CLUTO normal partitioning (CLUTO RB), CLUTO direct parti-
tioning (CLUTO Direct), CLUTO graph-based partitioning (CLUTO
Graph), CLUTO agglomerative hierarchical (CLUTO Agglo), and
the CURE algorithm.

[Model [ Algorithm [ No. [ Com. [ Time ]
Radio emitter CLUTO Direct 1000 91 direct
Simplex model CLUTO Direct 1000 62 16 h
Simplex model CLUTO Graph 1000 304 3:45 h

Table 2. Results of recognizing communications within DS1 with 50000
emissions. Runtime without cluster computation.

CLUTO RB and CLUTO Direct did produce unacceptable
shapes of clusters. This is due to the inefficiency of these algorithms
to low dimensional clustering. The CURE and the CLUTO Agglo
algorithm lead to memory overflow (swapping), because they are
purely main memory based. In Table 1 the result of the most promis-
ing algorithms is summarized. The agglomerative approach produced
the best cluster shapes, but was not scalable above 1000 emissions
due to memory issues. The graph algorithm performed reasonably
well for cluster shapes and run time.

The used models for the communication identification specify start
connection communications similar to those presented in Section 4.1
for simplex and duplex communications as well as models for iden-
tifying radio emitters (long emissions, one emitter). In Table 2 some
results for recognizing communications in DS1 are shown. The per-
formance and the result of the model processing depends heavily on
the quality of the clusters. This examination supports our approach
with two phases. The identified communications are seen as hints for
real communications and thus, have to be further examined, e.g. by
visualization techniques. In Table 3 one example of a communication
start is shown which fulfills the restrictions of the simplex model.

Domain experts have evaluated the found communications and
have identified them as well-known and as newly accounted frequen-
cies, emitters, and communications. For this evaluation task several
use cases have been developed like change of frequencies, increasing
appearances of communications, command structures, communica-
tions with multiple partners and multiple frequencies. In Figure 4 a
screenshot of the developed prototype is shown, where several iden-
tified communications are visualized.

7 Conclusion

We introduced a two step approach for finding communications in ra-
dio emission data with spatial information. The first step uses spatial
clustering to identify emitters. Several data preparation and cluster-
ing algorithms were applied and graph-based partitioning was the

[Emis. [start End [C1. [Freq. [Lon E [Lat N

19020 [06:00:27 |06:00:34 |0 8766k (28 21 |42 24
19482 [06:00:37 [06:00:44 |299 |8766k |26 38 |43 14
19938 [06:00:46 [06:00:54 |0 8766k (28 21 |42 19
20880 |06:01:06 [06:01:13 |0 8766k (28 21 |42 19
21375 |06:01:15 [06:01:23 |299 8766k |26 38 |43 14
21846 |06:01:17 [06:01:30 |299 8766k |26 38 |43 14

Table 3. Several subsequent emissions of two clusters with the same
frequency. The emissions are given by their id (Emission), starting and
ending time (Start, End), their clusters, the emission’s frequency, and the
longitude and latitude coordinates (E = Eastern, N = Northern).

Figure 4. Visualization of several identified communications.
Communications are visualized by connected points. Clusters are visualized
as transparent shapes. Left: Side-view - vertically the time axis. Right:
Top-view with geographical map.

most promising choice for our application. The second step uses a
model-based interpretation approach which is based on constraint
solving with newly introduced cascading constraints. Thus, the ap-
proach demonstrates the combination of two Al-methods, i.e. cluster-
ing algorithms and model-based interpretation based on constraints.
With defining a relatively simple model the user is able to find spe-
cific or general communications. We presented results with a pro-
totype implementation which proved the basic concept of our ap-
proach.

As a next step the single methods can be refined and optimized. A
customized cluster algorithm has to be implemented which uses an
optimized distance measure, integrates the location inaccuracies, and
uses caching strategies. Emitter identification for moving emitters
(tracking) could be introduced.

Another improvement would be a graphical model editor which
allows to define the models graphically and generates models using
the introduced modeling language as an output. Further models and
use cases for different communication types have to be examined.

Other application areas could be the evaluation of mobile com-
munication networks, bio-physiological analysis, or other large scale
spatio-temporal datasets.
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