
Modeling, Representing, and Configuring
Restricted Part-Whole Relations

Lothar Hotz 1

Abstract. Part-whole relations are the backbone of configuration
systems. In this paper, part-whole relations are combined with other
relations and restrictions leading to here-called restricted aggregates.
Depending on what is given, aggregates, parts, or/and relations be-
tween parts, different tasks have to be solved. General aggregation
reasoning chunks are developed and represented with a configura-
tion language. The approach is applied to the domain of constructing
scene interpretations.

1 Introduction

Configuration is the task of composing parameterisable objects
(parts) to wholes (aggregates) such that a given goal is fulfilled by
the resulting construction. For this task, descriptions of aggregates
and parts of a domain (domain objects) are given in a configuration
model and a configuration tool is used to create a certain construc-
tion. An aggregate is typically described by its potential parts and
further restrictions that have to be fulfilled between the parts. Thus,
those restricted aggregates require that certain relations and predi-
cates are true for their parts. Domain objects have parameters (i.e.
relations to primitive data types) and n-ary relations to other domain
objects, which can be given by a task specification or can be com-
puted by the configuration tool (parameters are set and relations are
established).

Configuration technologies are applied in technical areas like au-
tomotive, telecommunication, but also in software, services and con-
struction of scene interpretations.

In the following, we develop general aggregation reasoning
chunks that allow to construct aggregates from given parts and in-
tegrate parts in given aggregates. Furthermore, restricted aggregates,
as they are considered here, require certain relations and predicates
to be true for their parts. Also, when given such relations between
parts, appropriate aggregates should be created that can contain those
restricted parts. Thus, for diverse, here called, key situations (parts
given with or without relations, aggregates given with or without
parts) the general aggregation reasoning chunks will construct com-
plete aggregates that guarantee the validity of the restriction.

As an example, we map the general aggregation reasoning chunks
to a structure-based configuration language, such that the aggregate
can be computed by an appropriate configuration tool [10]. Other
representations e.g. with rule languages or usual programming lan-
guages are conceivable [11].

The general aggregation reasoning chunks are applied in the do-
main of Scene Interpretation, which has already been shown to be
a configuration task [9]. In this domain, aggregates like entrance or

1 HITeC e.V., University of Hamburg, Germany, email: hotz@informatik.uni-
hamburg.de

balcony consist of certain parts like door, railing, stairs, sign, win-
dow. Parts have to fulfill restrictions like spatial relations of the kind
stairs below door, sign left-neighbor door etc. An aggregate may ad-
ditionally occur as part of a comprising aggregate like facade. The
task is to construct a description with parts and aggregates of a scene
given an image.2

In other approaches, compositional relations between parts and
aggregates are considered from the epistemological point of view
[19, 21, 15]. Beside technical aspects of how to represent parts and
wholes with a given configuration language, the relationship between
the compositional relation and further restrictions are less considered
in those contributions. In this paper, the interplay between those re-
lations are analyzed.

In principle, configuration technologies as described in [2, 4, 13,
17, 7, 12] provide a basic framework for constructing restricted ag-
gregates. While this includes means for modeling, representing, and
processing part-whole relations, it is seldom clarified how these fa-
cilities are applied or used for creating part-whole relations, or espe-
cially restricted part-whole relations.

This paper tries to further close this gap. Thus, we provide an anal-
ysis of possible aggregation situations and their representations by
means of concepts and constraints. For this task, we first prescribe
the structure-oriented configuration approach, which is applied here
(Section 2), than consider the problem in more detail (Section 3).
Section 4 describes the general solution of our approach for creating
restricted part-whole relations and an implementation with a config-
uration language. Sections 5 and 6 describe some experiments and
give a summary of the approach, respectively.

2 Structure-oriented Configuration Approach
As background, we follow the structure-oriented configuration ap-
proach as it is described by [1, 2, 3, 4, 5, 8, 16, 17, 18, 22]. While
this approach has several variants we focus in the following on four
separate knowledge types which can be used for modeling a certain
domain:

Concept Hierarchy Domain objects are described using a highly
expressive description language providing concepts, a taxonom-
ical hierarchy (based on the is-a relation), and structural rela-
tions like the compositional hierarchy based on the has-parts

relation. Parameters specify domain-object attributes with value
intervals, sets of values (enumerations), or constant values. In-
stances selected for a concrete construction are instantiations of
the concepts and represent concrete domain objects. Parameters

2 Our task differs to [20] in the fact that we construct descriptions of scenes
(including aggregates and parts), while [20] computes spatial arrangements
of non-aggregated scene objects.



and structural relations of a concept are also referred to as prop-
erties of the concept. When instantiated, the properties of an in-
stance are initialized by the values or value ranges specified in the
concepts.

Constraints Constraints pertaining to properties of more than one
object are administered by a constraint net. Conceptual con-
straints are formulated as part of the configuration model. Con-
ceptual constraints consists of a condition and an action part.
The condition specifies a structural situation of instantiated con-
cepts. If this structural situation is fulfilled by some instances,
constraint actions that are formulated in the action part are in-
stantiated to constraints. Constraint actions can represent restric-
tions between properties (i.e. constraint relations) or operations
like create-instance (i.e. constraint operations). Constraints
can be multi-directional, i.e. propagated regardless of the order
in which constraint variables are instantiated or changed. At any
given time, the remaining possible values of a constraint variable
are given as intervals, value sets, or constant values.

Task Description A configuration task is specified in terms of an
aggregate which must be configured (the goal) and possibly addi-
tional restrictions such as choices of parts, prescribed properties,
etc. Typically, the goal is represented by the root node of the com-
positional hierarchy.

Procedural Knowledge The configuration process provides a step-
wise composition of a construction. Each step is one of the follow-
ing kinds of construction steps: aggregate instantiation (or top-
down structuring), part integration (or bottom-up structuring),
instance specialization, and parameterization. A step reduces a
property value of an instance to a subset (reduced value) or finally
to a constant (fixed value).
After each step the constraint net is optionally propagated. Config-
uration strategies are used to organize this configuration process
in a declarative manner. For example, it is possible to prescribe
phases of bottom-up or top-down processing conditioned on cer-
tain features of the evolving construction.

For every of the above mentioned knowledge types, a specific lan-
guage is given which allows to express domain objects with their
attributes and restrictions as well as the configuration process (see
e.g. the Configuration Knowledge Modeling Language CKML de-
scribed in [10]). In Figure 1, we sketch some constraint actions of
the constraint language part of CKML that are needed for the fol-
lowing examples. The constraint operation create-instance and
ensure-relation are the main mechanism for creating instances
and relations between them. create-instance instantiates a con-
cept after selecting one of given concept types.3 Before establish-
ing a relation between given instances, ensure-relation checks
whether the relation already exists. Numeric constraint relations are
used for comparing and computing parameter values given by con-
stants, intervals, or enumerations in the typical mathematical form
(which includes interval arithmetic).

For representing aggregates with their parts, spatial relations and
restrictions, i.e. for representing restricted aggregates, concepts with
their taxonomical and compositional relations as well as constraints
can be applied, leading to restricted aggregate models. However, us-
ing this configuration technology for scene interpretation, the ques-
tion arises, how these facilities can effectively be used both for mod-
elling a domain (i.e. the analysis and in-depth understanding of the

3 Concept types can be selected e.g. by considering probabilities. In our cur-
rent application domain, statistics can be computed from annotated images.
However, this aspect is not further discussed in this paper.

domain) and operationalizing this knowledge for the scene interpre-
tation process.

Configuration systems considered here typically do not reason
about concepts, but only about instances (for other approaches see
e.g. [14]). Thus, the language facilities provided by such systems use
instances for reasoning, e.g. conceptual constraints are fulfilled if an
instance relation structure matches the structural situations. Thus, in-
stead of description logics, which may also reason about concepts, in
configuration systems, appropriate instances have to be created and
for the created instances knowledge entities have to be inserted in the
configuration model.4 The question now is, what knowledge entities
have to be inserted for reasoning about restricted aggregates?

create-instance Creates a new instance
for one of given
concept types.

ensure-relation Establishes a relation of
of a given name
between two instances.

less, greater, equal . . . Numeric constraint
relations.

Figure 1. Predefined operations and relations (i.e. constraint actions) that
are used in the following.

3 Requirements and Application Example

In the following, we consider aggregates locally described by their
parts and restrictions. With a local representation of aggregates,
all information about their parts are kept at one place, i.e. are not
distributed over the configuration model. Especially restrictions be-
tween parts of different aggregates are not allowed. However, a
part may be part of different alternative aggregates, e.g. a door
might be part of an entrance or a balcony. Examples of locally
defined aggregates are illustrated in Figure 2. It shows a general
Scene-Aggregate and a specific Entrance aggregate with parts
and several spatial relations between them. For the aggregate and
parts, concept types (e.g. Stairs, Door), parameters (e.g. size-x),
and relations between the parts (e.g. belowNeighbor, overlap) can
be described. In the example, we consider spatial relations of parts,
however, arbitrary n-ary restrictions between properties of the aggre-
gate’s parts can be specified with aggregate restrictions.

Beside the typical signature for concept types, parameters and re-
lations, discriminators are given which describe a sufficient condi-
tion for the aggregate - if the discriminator holds, then the aggregate
should exist. A conjunctive combination of parts and relations can
be given as a discriminator. Thus, a discriminator can be only one
part or several parts, as well as one or more relation between parts.
In the example in Figure 2, six discriminators are given each con-
sisting of one relation (e.g. ?b-s-c representing ?stairs0 below

?canopy4).
Each discriminator is a “unique selling point” of an aggregate in

the sense that it distinguishes this aggregate from other aggregates.
However, once an aggregate has been created, also other restrictions
are examined, e.g. further required parts. These restrictions are nec-
essary conditions. With this mechanism, complete descriptions of ag-
gregates are created. Note that this may lead to hypotheses of parts

4 However, reasoning about concepts is restricted (e.g. n-ary roles are not
provided in description logic systems) and thus, less used for configuration
tasks.



which may exist or have to exist, if the aggregate exists. For exam-
ple in the facade domain, a door of an entrance is hypothesized, if
the above mentioned condition ?stairs0 below ?canopy4 is ful-
filled through observed stairs and canopy.5

This reasoning is embedded in a backtracking environment as typ-
ically provided by configuration systems. Backtracking occurs when
inferred decisions lead to a conflict, e.g. signified by the constraint
net. In this case, conflict resolution mechanisms should be applied
[10].

In the following, we assume that such aggregate models are manu-
ally created or learned from a set of given cases e.g. by Version Space
Learning, see [6]. Especially discriminators (i.e. sufficient condi-
tions) have to be identified by those methods.

Requirements for the general aggregation reasoning chunks.
The aggregation chunks which we target should cover diverse key sit-
uations, which are given through the task specification or may come
up through reasoning during the configuration process. The key sit-
uations are described in terms of given instances and properties. A
property is given, if its value is fixed or reduced (see Section 2), oth-
erwise it is original as it was specified in the concept (e.g. a parame-
ter pos-x-1 is [0 inf]). The chunks should:

• allow the construction of a new aggregate when one or more parts
with relations or parameters are given (bottom-up structuring),

• allow the construction of new parts when an aggregate is given
(top-down structuring),

• integrate given parts in given aggregates (bottom-up integration),
• use given parts for decomposing given aggregates (top-down de-

composition),
• check given restrictions when all or some parts and aggregates are

present (aggregate consistency),
• establish the described restrictions when parts and aggregates do

not yet fulfill the restrictions (restriction establishment),
• determine appropriate types of aggregates and parts when certain

relations but no specific type information are given (object spe-
cialization),

• select one aggregate types and parts when several alternatives are
possible (type selection).

Modeling of restrictions. For modeling restrictions, we consider
a two step approach: First, physical parameters are obtained through
external systems, e.g. image processing systems, that supply geo-
metric parameters like position and size of objects. These parameters
cover implicit relations between objects, in particular spatial predi-
cates as defined by predicates such as above-p. Those relations can
be made explicit by establishing appropriate explicit relations be-
tween objects, such as above, left, right etc. Explicit relations
are mainly used for describing restrictions on a high level as illus-
trated in Figure 2. They abstract from concrete numbers representing
physical parameters.

Depending on the key situation, the relations are computed, e.g.:

• If an explicit relation between objects is given, the physical param-
eters should be changed, so that the geometry holds between the
parameters. For example, in a two dimensional x/y coordination

5 Discriminators should not be confused with mandatory or optional parts
of an aggregate. In the example, all parts (door, stairs, and canopy) are
mandatory for an entrance. For the existence of an entrance not all of them
have to be observed, but only those mentioned in the discriminators. How-
ever, all mandatory parts will be created as hypotheses once the aggregate
is instantiated.

system, if an object o1 is identified to be below o2, the position
parameter y of o1 should be higher than y of o2 (expecting the
origin to be at the top left corner).

• If an implicit relation between physical parameters is given, the
explicit relation between objects should be established. For exam-
ple, in a two dimensional x/y coordination system, if the position
parameters of o1 (i.e. y) is higher than y of o2, the relation o1 is
below o2 should be established.

• If the physical parameters are changed, the explicit spatial rela-
tions should be checked, if they hold.

(define-aggregate :name Scene-Aggregate
:parameters
((size-x [0 inf])
(size-Y [0 inf])
(pos-x-1 [0 inf]) (pos-y-1 [0 inf])
(pos-x-2 [0 inf]) (pos-y-1 [0 inf])
(parts-top-left-x-variability [0 inf])
(parts-top-left-y-variability [0 inf])
(parts-bottom-right-x-variability [0 inf])
(parts-bottom-right-y-variability [0 inf]))

:parts
((:name ?parts :type Scene-Aggregate

:number-restriction [0 inf]))
:restrictions
((:name ?variability

:constraint
(check-variability ?a ?parts))

(:name ?bounding-box
:constraint
(check-bounding-box ?a ?parts))))

(define-aggregate :name Entrance
:super Scene-Aggregate
:parameters
((size-x [184 295])
(size-Y [299 420])
(parts-top-left-x-variability [7 131])
(parts-top-left-y-variability [1 284])
(parts-bottom-right-x-variability [7 131])
(parts-bottom-right-y-variability [1 284]))

:parts
((:name ?stairs0 :type Stairs)
(:name ?door1 :type Door)
(:name ?sign2 :type Sign)
(:name ?railing3 :type Railing)
(:name ?canopy4 :type Canopy))

:restrictions
((:name ?bn-s-d :relation belowNeighbor

:subject ?stairs0 :object ?door1)
(:name ?b-s-c :relation below
:subject ?stairs0 :object ?canopy4)

(:name ?o-s-r :relation overlap
:subject ?stairs0 :object ?railing3)

(:name ?bn-s-s :relation belowNeighbor
:subject ?stairs0 :object ?sign2)

(:name ?an-d-s :relation aboveNeighbor
:subject ?door1 :object ?stairs0)

(:name ?bn-d-c :relation belowNeighbor
:subject ?door1 :object ?canopy4)

:discriminators
((?bn-s-d) (?b-s-c) (?o-s-r)
(?bn-s-s) (?an-d-s) (?bn-d-c))))

Figure 2. Local aggregate description. A general Scene-Aggregate,
which specifies restrictions that hold for all aggregates and a specific

Entrance aggregate that inherits the general restrictions and properties.
Question marked symbols (e.g. ?an-d-s) indicate variables, which can

bind objects or relations.

In Figure 3 the physical parameters and relations are listed, which
are used in the following domain of Scene Interpretation.

4 Analysis of Aggregation Processing and
Representation with a Configuration Language

In this section, we identify all key situations that may occur during
the processing of restricted aggregates. This is done by permuting
possible variabilities given by restricted aggregate models. Further-
more, for each key situation we provide representations based on fa-
cilities given by a configuration language.

As described above, depending on the given information about ag-
gregates and parts, certain activities should be performed by the con-
figuration process. For an aggregation, a key situation can be charac-
terized by the presence or absence of an aggregate A instance (e.g. a



Spatial relations reflect the appropriate geometric relation:
overlap, inside, left-of, right-of, above, below,
top-left, right-left, bottom-left, right-left,
left-neighbor, right-neighbor, above-neighbor,
below-neighbor, check-variability.
Geometric parameters for describing bounding box and
size of an object: pos-x-1, pos-y-1, pos-x-2, pos-y-2,
size-x, size-y.
Spatial predicates check the geometric parameters, whether
the spatial relations hold: overlap-p, inside-p, etc.

Figure 3. Predefined spatial relations, geometric parameters, and spatial
predicates on geometric parameters for the Scene Interpretation domain. The

x-neighbor relations indicate direct neighbors in the mentioned x
direction.

No. compositional spatial geometric
rel. for A and pi rel. for pi para. for pi

1 original given original
2 original original given
3 given original original
4 given given original
5 given original given
6 original given given
7 given given given

Figure 4. Possible situations for instances of one aggregate A and for
potential parts pi. If not given as constant or reduced, the value is an

unchanged interval or not yet computed relations of the concept (indicated
by original).

balcony) and its parts pi (e.g. a door, a window). Hence, the vari-
ability of a key situation can be described as follows:

Instances A and pi might be or might not be given. If neither A
nor pi are given, A may be constructed from the always given
goal object g. This means, that an instance of a certain concept
is created where all properties are original. If only A is given,
appropriate pi have to be constructed analogously and vice versa.

Concept type of A may be of a taxonomical leaf concept type or a
specializable concept type. A leaf concept cannot be specialized
further, and thus, only the aggregate parts and restrictions have
to be computed. If a specializable concept type is given (e.g. as
a general type like Facade-Object), a more specific type has
to be computed by considering given or possible parts of the ag-
gregate including their restrictions. For example, an instance of
Facade-Object may be specialized to Balcony, if it has an in-
stance of Door as a part.

Concept type of pi is analogous to the above considerations.
Compositional relation between A and pi might be or might not

be given. If such relations are given, the restrictions given by A
have to be checked for pi. If the compositional relations are not
given, they have to be established, if the pi fulfill the restrictions
given in the model of A. If A has further potential parts than pi,
those have to be created (i.e. part hypotheses are created, see [10])
and have to fit the given pi.

Spatial relations between pi might be or might not be given. If they
are given, the geometric parameters have to have values according
to the spatial relations, an appropriate aggregate has to be created
(i.e. an aggregate hypothesis), and the compositional relations of
that aggregate to the pi have to be established. If spatial relations

are not given, they must be computed from the spatial predicates
and geometric parameters.

Geometric parameters of pi and A might be or might not be given.
If given, the appropriate spatial relations can be computed. If they
are not given, geometric parameters can be computed from spatial
relations.

Expecting that the instances with appropriate concept types are
given, Figure 4 shows all other situations. Those are discussed in the
following.

(define-conceptual-constraint
:name Spatial-relation-from-predicate
:structural-situation
((:name ?o1 :type Scene-Object)
(:name ?o2 :type Scene-Object

:relations
((self

#’(aboveNeighbor-p *it* ?o1)))))
:action-part
((ensure-relation

(above-neighbor ?o2 ?o1)
(below-neighbor ?o1 ?o2))))

Figure 5. Generic conceptual constraint for Case 2 and Case 5
(Case-Gen-1). By checking spatial predicates the explicit spatial relations

are established. *it* refers to the value of the relation, in the case of self
to the object bound to ?o2.

Each case has distinct impacts on the configuration process, i.e.
distinct activities have to be performed. In general, in each case the
missing information (in Figure 4 indicated by original) has to be
computed from the fixed or reduced ones (indicated by given). Be-
sides these activities, also the mappings to the representation facil-
ities of the configuration language have to be specified. In the fol-
lowing, for each key situation representations are given as reasoning
chunks.

(define-conceptual-constraint
:name Spatial-relation-from-relation
:structural-situation
((:name ?o1 :type Scene-Object)
(:name ?o2 :type Scene-Object

:relations
((above-neighbor *it* ?o1))))

:action-part
((less (y-pos-2 ?o1) (y-pos-1 ?o2))
(less (x-pos-1 ?o2) (x-pos-1 ?o1))
(greater (x-pos-2 ?o2) (x-pos-2 ?o1))))

Figure 6. Generic conceptual constraint for Case 1 and Case 4
Case-Gen-2. By checking spatial relations the geometric parameters are

computed by numeric constraints.

Case Reduction: From Case 2 to Case 6, and from Case 5 to
Case 7. The mapping of given geometric parameters of pi to
spatial relations can be done with one generic conceptual con-
straint (CC-Gen-1) that holds for all types of parts (see Figure 5).
There, arbitrary Scene-Objects (the super concept of every part
or aggregate) are checked with spatial predicates in the structural
situation and the appropriate spatial relations are established by
ensure-relation in the action part. Because the spatial predi-
cates can handle fixed and reduced values, this mapping is straight
forward. With this conceptual constraint, also Case 2 and Case 5
can be processed as Case 6 and Case 7, respectively.

Case Reduction: From Case 1 to Case 6, and from Case 4 to
Case 7. Similarly Case 1 and Case 4 can be reduced by introduc-
ing one generic conceptual constraint for mapping spatial relations
to geometric parameters (see Figure 6, CC-Gen-2). The condition
matches all pi that are in the modeled spatial relation. The action
part uses numeric constraints to compute the geometric parame-
ters. However, in this case, because the geometric parameters are
original, the mapping only reduces their intervals according to the
spatial relations. This is done internally by constraint actions be-
cause of the underlying mathematics (see Section 2).



Case Reduction: From Case 6 to Case 7. The compositional rela-
tion of the parts to an aggregate instance have to be established.
Each aggregate concept has to be checked that might be able to
have parts with the given spatial relations. This can be achieved
by using a conceptual constraint as shown in Figure 7. The struc-
tural situation of such a conceptual constraint describes the spatial
relation which holds between the parts. The action part uses the
create-instance constraint operation, which selects an aggre-
gate concept out of a set of concepts. This set represents all aggre-
gates that may have parts with the given spatial relations. Accord-
ing to the given concepts, one aggregate type As is selected (i.e.
by considering probabilities). A new instance of As is created and
the compositional relations between this new instance and the pi

are established. For every discriminator of an aggregate (in Figure
2 every spatial relation), one conceptual constraint of this kind is
modeled (Case-6-ccs). Thus, this conceptual constraint can handle
all situations where some parts are given which are not yet part of
an aggregate.

(define-conceptual-constraint
:name Entrance-creation
:structural-situation
((:name ?stairs0 :type Stairs

:relations
((part-of #’(free-p *it*))))

(:name ?door1 :type Door
:relations

((part-of #’(free-p *it*))
(above-neighbor ?stairs0))))

:action-part
((create-instance (Entrance Terrace)

(part-of ?stairs0)
(part-of ?door1))))

Figure 7. Conceptual constraints for creating a compositional relation with
a new aggregate (i.e. an example for a Case-6-ccs). The conceptual

constraint matches all stairs and doors that are appropriately related and are
not yet part of an aggregate (indicated by free− p). create-instance
selects one appropriate aggregate (e.g. the most probable one), creates one

instance of that aggregate (e.g. Entrance), and establishes the
compositional relations.

Case 3: Only compositional relations between A and pi are
given. The spatial relations between pi have to be computed from
the given compositional relations. Here the conceptual constraints
(Case-3-ccs) have the following form: The structural situation
checks the compositional relation between the A and pi. The ac-
tion part establishes the spatial relations between the pi. For each
spatial relation of an aggregate one conceptual constraint of the
form illustrated in Figure 8 is created.

Case 7: Compositional relations between A and pi, spatial rela-
tions pj and geometric parameters of pj are given. All concep-
tual constraints match and check the given relations. If the com-
positional relations are fixed for the same parts as the spatial rela-
tions (i.e. if pi = pj) the Case-3-ccs can be used for ensuring the
spatial relations - ensure-relation than only checks the spatial
relations between the parts. CC-Gen-1 computes the geometric pa-
rameters for the pj .
If there exists a pj which is not yet part of A (i.e. its free-p), but
holds the spatial relations of A, the compositional relation can be
established with a further type of conceptual constraint (Case-4-
ccs, see Figure 9). Furthermore, there may be combinations where
one part is already part of A and another is not, e.g. in Figure 9
Stairs may be part of Entrance while Door is not, or vice versa.
For this reason, the predicate free-or-in-agg-p is introduced
that checks, whether an object is part of no aggregate or of the
indicated one (e.g. part of Entrance).

Thus, five different types of reasoning chunks are finally identi-
fied:

(define-conceptual-constraint
:name Entrance-Spatial-relation
:structural-situation
((:name ?e :type Entrance)
(:name ?stairs0 :type Stairs

:relations ((part-of ?e)))
(:name ?door1 :type Door

:relations ((part-of ?e))))
:action-part
((ensure-relation

(above-neighbor ?door1 ?stairs0)
(below-neighbor ?stairs0 ?door1))))

Figure 8. Conceptual constraint for Case 3 (Case-3-ccs).

(define-conceptual-constraint
:name Entrance-Spatial-relation
:structural-situation
((:name ?stairs0 :type Stairs)
(:name ?door1 :type Door

:relations
((aboveNeighbor ?stairs0)))

(:name ?e :type Entrance
:relations

((has-parts
#’(free-or-in-agg-p ?stairs ?doors1 *it*)
#’(check-variability *it*

?stairs0 ?door1)
#’(check-bounding-box *it*

?stairs0 ?door1)))))
:action-part
((ensure-relation

(part-of ?stairs0 ?e)
(has-parts ?e ?stairs0))

(ensure-relation
(part-of ?door1 ?e)
(has-parts ?e ?door1))))

Figure 9. Conceptual constraint for Case 4 (Case-4-ccs). The predicate
free-or-in-agg-p checks, whether the objects are parts of no

aggregate or already part of the aggregate. check-variability and
check-bounding-box are further aggregate restrictions that have to

hold.

1. Mapping between numeric parameters and explicit relations
(quantitative/qualitative mapping). This mapping is done by the
conceptual constraint Case-Gen-1.

2. Mapping between explicit relations and numeric parameters (qual-
itative/quantitative mapping). This mapping is done by the con-
ceptual constraint Case-Gen-2.

3. Creating new aggregates from given discriminative explicit rela-
tions (discriminators). This mapping is done by one conceptual
constraint for each discriminator of an aggregate (Case-6-ccs).

4. Checking if restrictions between parts hold for parts that are ele-
ments of an aggregate. This mapping is done by one conceptual
constraint for each discriminator of an aggregate (Case-3-ccs).

5. Integrating appropriate parts in existing aggregates while consid-
ering aggregate restrictions. This mapping is done by one con-
ceptual constraint for each discriminator of an aggregate (Case-4-
ccs).

5 Experiments in the Scene Interpretation Domain

We tested the previously described representation for the construc-
tion of descriptions of facade scenes. In Figure 10, left, primitive
parts like windows, stairs are shown. These parts are aggregated to
balconies and an entrance (see Figure 10, right). The experiments
further showed that the selection of the domain-dependent predicates
like check-variability and appropriate discriminator (see Figure
2) are very important. If several aggregates of the same type have to
be considered (see Figure 11, right), the identification of the corre-
sponding primitive parts are computed by those predicates.

6 Discussion and Summary

The generic aggregation reasoning chunks presented in this paper
have the following properties:



• They distinguish between numeric, quantitative parameters typi-
cally given in databases or sensors, and qualitative relations which
are used in abstract aggregation models.

• They compute all kinds of entities, i.e. aggregates, parts, relations
and parameters depending on the given information.

• They are generic, i.e. they do not depend on the domain used in
the examples, but can be applied to any domain with restricted
aggregates, e.g. also to domains with temporal relations.

Because of the expressive language used in configuration tech-
nologies, domain restrictions with numeric, interval-based con-
straints and n-ary constraints can be used. Also, the configuration
language with concepts and constraints used in our work can be
mapped to similar representation facilities like classes, rules, and
functions of other configuration approaches. Thus, the paper provides
general modeling and representation facilities used for composing re-
stricted aggregates.

Figure 10. Left: Primitive facade objects here provided by annotation.
Right: Constructed aggregates of type entrance and balcony. The

annotated primitives and the automatically created aggregates are
highlighted for presentation reasons.

Figure 11. Further example with primitives and several aggregates of one
type.

ACKNOWLEDGEMENTS
This research has been supported by the European Community under
the grant IST 027113, eTRIMS - eTraining for Interpreting Images
of Man-Made Scenes.

REFERENCES
[1] R. Cunis, A. Günter, I. Syska, H. Peters, and H. Bode, ‘PLAKON -

an Approach to Domain-independent Construction’, in Proc. of Second
Int. Conf. on Industrial and Engineering Applications of AI and Expert
Systems IEA/AIE-89, pp. 866–874, (June 6-9 1989).

[2] A. Günter, Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.
[3] A. Günter and L. Hotz, ‘KONWERK - A Domain Independent Config-

uration Tool’, Configuration Papers from the AAAI Workshop, 10–19,
(July 19 1999).

[4] A. Günter and C. Kühn, ‘Knowledge-based Configuration - Survey and
Future Directions’, in XPS-99: Knowledge Based Systems, Proceed-
ings 5th Biannual German Conference on Knowledge Based Systems,
ed., F. Puppe, Springer Lecture Notes in Artificial Intelligence 1570,
Würzburg, (March 3-5 1999).

[5] A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent
Systems, (July/August 1998).

[6] J. Hartz and B. Neumann, ‘Learning a knowledge base of ontological
concepts for high-level scene interpretation’, in International Confer-
ence on Machine Learning and Applications, Cincinnati (Ohio, USA),
(December 2007).

[7] M. Heinrich and E. Jüngst, ‘A Resource-based Paradigm for the Con-
figuring of Technical Systems from Modular Components’, in Proc. of
7th IEEE Conf. on Artificial Intelligence for Applications (CAIA’91),
pp. 257–264, Miami Beach, Florida, USA, (February 24-28 1991).

[8] L. Hotz, ‘Configuring from Observed Parts’, in Configuration Work-
shop, 2006, eds., C. Sinz and A. Haag, Workshop Proceedings ECAI,
Riva del Garda, (2006).

[9] L. Hotz and B. Neumann, ‘SCENIC Interpretation as a Configuration
Task’, Technical Report B-262-05, Fachbereich Informatik, University
of Hamburg, (March 2005).

[10] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Nijhuis,
and J. MacGregor, Configuration in Industrial Product Families - The
ConIPF Methodology, IOS Press, Berlin, 2006.

[11] M. Jing and H. Boley, ‘Interpreting SWRL Rules in RDF Graphs’, Elec-
tronic Notes in Theoretical Computer Science, 151, 53–69, (2006).

[12] D. Margo and P. Torasso, ‘Interactive Configuration Capability in a
Sale Support System’, in Proc. of Configuration Workshop, 17th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’01), pp.
57–63, Seattle, USA, (August 2001).

[13] J. McDermott, ‘R1: A Rule-based Configurer of Computer Systems’,
Artificial Intelligence Journal, 19, 39–88, (1982).

[14] S. Mittal and F. Frayman, ‘Towards a Generic Model of Configuration
Tasks’, in Proc. of Eleventh Int. Joint Conf. on AI IJCAI-89, pp. 1395–
1401, Detroit, Michigan, USA, (1989).

[15] S. Pribbenow, ‘What’s a Part? - On Formalizing Part-Whole Relations’,
in Foundations of Computer Science, volume 1337 of Springer Lecture
Notes in Computer Science, pp. 399–406, (1997).

[16] K.C. Ranze, T. Scholz, T. Wagner, A. Günter, O. Herzog, O. Holl-
mann, C. Schlieder, and V. Arlt, ‘A Structure-based Configuration Tool:
Drive Solution Designer DSD’, 14. Conf. Innovative Applications of AI,
(2002).

[17] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘Towards a Gen-
eral Ontology of Configuration’, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing (1998), 12, 357–372, (1998).

[18] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 10(2), 111–126, (1997).

[19] A. Varzi, ‘Parts, Wholes, and Part-Whole Relations: The Prospects of
Mereotopology’, Data and Knowledge Engineering, 20(3), 259–286,
(1996).

[20] D.L. Waltz, ‘Understanding Scenes with Shadwos’, in The psychology
of computer vision, pp. 19–91, New York, (1975). McGraw-Hill.

[21] P.H. Winston, R. Chaffin, and D. Herrmann, ‘A Taxonomy of Part-
Whole Relations’, Cognitive Science, 11, 417–444, (1987).

[22] B. Yu and H.J. Skovgaard, ‘A Configuration Tool to Increase Product
Competitiveness’, IEEE Intelligent Systems, 13(4), 34–41, (July 1998).


