THOUGHTS ABOUT STRUCTURALIZATION, SPECIALIZATION,
INSTANTIATION, AND METAIZATION

Lothar Hotz! and Stephanie von Riegen!

' Hamburger Informatik Technology Center, Department Informatik, University of Hamburg, Germany
{hotz, svriegen} @informatik.uni-hamburg.de

Keywords: Metamodeling, knowledge representation

Abstract:

In knowledge engineering, ontology creation, and especially in knowledge-based configuration often used

relations are: aggregate relations (has-parts, here called structural relations), specialization relation (is-a),
and instantiation (instance-of). A combination of the later is called metaization, which denotes the use
of multiple instantiation layers. Structural and specialization relations are mainly used for organizing the
knowledge represented on one layer. Instantiation layers model different kind of knowledge, i.e. knowledge
about sets, individuals, and knowledge about knowledge (metaknowledge). By applying reasoning techniques
on each layer, reasoning on metaknowledge is enabled.

1 INTRODUCTION

For configuration-based inference tasks, like con-
structing a description of a specific car periphery sys-
tem (Hotz et al., 2006) or drive systems (Ranze et al.,
2002), the knowledge of a certain domain is repre-
sented with a knowledge-modeling language which
again is interpreted, because of a defined semantic,
through a knowledge-based system or configurator.
Examples for knowledge-modeling languages are the
Web-Ontology Language (OWL) or the Component
Description Language (CDL) (Hotz, 2009). Further
languages are e.g. described in (van Harmelen et al.,
2007). Such languages typically provide concepts or
classes that gather all properties, a certain set of do-
main objects has, under a unique name. With con-
cepts and instances a strict separation into two layers
is made: a domain model (or ontology) which cov-
ers the knowledge of a certain domain (abbr. layerD)
and a system model (or configuration) which covers
the knowledge of a concrete system or product of the
domain (abbr. layer’).

Properties of a concept that map to primitive data
types, like intervals, values sets (enumerations), or
constant values, are called parameters or attributes.
Properties that map to other concepts or to instances
are called relations. Knowledge-modeling languages
provide structural, specialization, and instantiation as
typical relations. A specialization relation relates a
superconcept to a subconcept, where the later inherits
the properties of the first. This relation (also called

is-a relation) forms a specialization hierarchy or lat-
tice, if a concept has more than one superconcept.
The structural relation is given between a concept ¢
and several other concepts r, which are called rela-
tive concepts. With structural relations a composi-
tional hierarchy based on the has-parts relation can
be modeled as well as other structural relationships.
Instances are instantiations of concepts and represent
concrete domain objects (instance-of).

Additionally to concepts, instances, and their re-
lations, constraints provide model facilities to express
n-ary relationships between properties of concepts.
Constraints can represent restrictions between prop-
erties like arithmetic relations or restrictions on struc-
tural relations (e.g. ensuring existence of certain in-
stances).

In this paper, the use of structuralization, special-
ization, and instantiation is discussed. Even those re-
lations are quite well-known they are sometimes con-
founded. Furthermore, when used with more than
the two mentioned domain and system layers (see
(Asikainen and Ménnisto, 2009; Hotz, 2009)) the in-
stantiation relation is multiply applied, which leads to
new modeling layers and thus probably to modeling
difficulties. The creation of such multiple layers is
called metaization (Strahringer, 1998).

In the following, we first consider all relations in
more depth and give example of their use (Section 2
and Section 3). Afterwards, we discuss metaization
and its use for configuration (Section 4). We end with
a short discussion on related work and a conclusion.

Sis

has-Context

Context L’- ‘ Product

has-Feature

Feature has-Hardware

Artefact

has-Realization

<— has

- instance-of Hardware
N has-Software
* 8 Software [

Figure 1: Extract from an upper-model for modeling
software-intensive systems.

2 STRUCTURALIZATION

As already elaborated in (Hotz, 2009) configu-
ration can be considered as model construction, be-
cause a description of a certain system (a configura-
tion) is constructed by a configurator. Furthermore,
(Hotz, 2009) emphasizes to consider the has-parts
relation as a has relation that may be used for di-
verse aspects like has-Realizations Or has-Features
in software-intensive systems. For the typical use, a
structural relation represents a compositional relation.
In this case, between ¢ and its relatives r, ¢ denotes
the aggregates and r denotes the parts. The underly-
ing structural relation is used by configurators to con-
struct the description and thus are the motor of con-
figuration. Depending on what instances (of ¢ or r)
exist first, instances of the related concepts are cre-
ated; e.g. this enables reasoning from the aggregate to
the parts or contrariwise, from the parts to the aggre-
gate. This semantic holds for every structural relation.
Thus, introducing several structural relations enables
the use of adequate domain names like has-Features
or has-Realizations, and thus to facilitate mainte-
nance.

Figure 1 pictures an upper-model for software-
intensive systems (UMSIiS, (Hotz et al., 2006)). It
defines four asset types (features, context, hardware
and software artefacts) which are common to most
application domains of software-intensive systems. A
product, i.e. the result of the product derivation, con-
tains software and hardware artefacts as parts, these
together realize particular features. Several struc-
tural relations are depicted, like has-Realizations
and has-Feature. When using the upper-model for a
specific domain, the UMSIS is extended with domain-
specific knowledge about hardware and software arte-
facts, the existing features, relevant context aspects,
etc. In the example above, the concepts are orga-
nized in different spaces. Each space represents a spe-
cific aspect of the domain and thus each configured
product should have those aspects. Figure 1 provides
the example of the feature and artefact aspects in the

domain of software-intensive systems. Thus, spaces
separate concepts of one layer. Through this group-
ing of concepts of one layer the configuration model
is easier to manage for a knowledge engineer. Fur-
thermore, concepts of different spaces are connected
by a structural relation. This ensures that a config-
ured product finally contains all modeled aspects. In
contrast to this, in Section 3 we will see, how the in-
stantiation relation separates concepts and instances
on different layers.

3 SPECIALIZATION VS.
INSTANTIATION

A concept describes a set of instances. The spe-
cialization relation (or subsumption or is-a relation)
between two concepts ¢ and s describes a subset rela-
tion, i.e. the set of instances of concept c is a subset
of the set of instances of its superconcept s (see also
(Brachman, 1983)). Or, as defined in ontogenesis.
knowledgeblog.org/699: “c is-a s if and only if:
given any i that instantiates c, i instantiates s”. An
instance of a class c is always an instance of each su-
perclass s of ¢. We consider this aspect as the hint-
ing characteristic for knowledge engineers: During
knowledge modeling one can try to make a special-
ization between two domain aspects and test this char-
acteristic. Thus, it is tested if an instance of c is also
reasonably an instance of s. If it is false the knowl-
edge engineer must not use a specialization but e.g.
instantiation, because ¢ and s are probably on differ-
ent layers.

sis®

Artefact

‘ Motion

Detection
Software

Artefact

Compilable

Detection
Software.exe

A Motion
.

Concept

Bad

Motion
Detection
Software

<—— has
PE— ‘

A Motion
(R Detection
Software.exe

«—isa

Figure 2: Good and bad use of specialization and instantia-
tion in software-intensive systems.

An example for this situation is shown in Fig-
ure 2; it presents the confounded usage of specializa-
tion and instantiation relations in the aforesaid model-
ing of software-intensive systems domain (SiS). The

system model layer (SiS%) is covering specific in-
dividuals, here for instance the A Motion Detection
Software.exe. This object is an instance of the
Motion Detection Software (SiSP)but no instance of
Compilable Concept. Compilable Concept denotes a
specific kind of concept. A concept typically spec-
ifies the description of the property structure of its
instances. A Compilable Concept additionally can
take this description and compile it to an executable
file. Thus, in the “bad” use, A Motion Detection
Software.exe is incorrectly considered as a concept,
i.e. as a description of instances that can be com-
piled. Instead it is an instance of Motion Detection
Software, thus a specific domain object not a concept
and, of course, it is already compiled.

When a concept s is specialized to ¢ all proper-
ties of s are inherited by c. By the time a concept is
instantiated, properties of the created instance are ini-
tialized by values or value ranges specified in the con-
cept. Thus, the concept determines the structure of the
instance (i.e. the properties). In this sense, a concept
says something about its instances, i.e. a concept is
on a different layer than its instances. By reducing the
value ranges according to user decisions or constraint
computations the configurator subsequently creates a
specific description consisting of instances, i.e. the
configuration.

4 METAIZATION

For structuralization and specialization, the in-
volved concepts are on one layer. However, for in-
stantiation and metaization they are on different lay-
ers. By instantiating a concept one instance is cre-
ated, i.e. a step from a set of instances to an individ-
ual element of this set is performed. If this step is
cascadized, a concept ¢ can be considered as an in-
stance of another concept ¢,,, i.e. a step from a set of
concepts to one specific concept is performed. The
concept ¢, is on a further layer. Figure 3 demon-
strates this situation. The concept Feature is an in-
stance of Abstract Concept which is a specializa-
tion of concept-m. The concepts on the metalayer
CDIM represent the modeling facilities of CDL, de-
scribing the concepts and relations of CDL. Concept
Artefact is a typical CDL concept (it is an instance
of concept-m). Beside concepts, also relations have a
concept on CDLM for representing them (not depicted
in the Figure, see (Hotz, 2009)). Thus, CDIM repre-
sents all what is known about CDLP, i.e. concepts
and relations.

Figure 3 presents the enhancement of Figure
1 by the additional layer SiS™. SiSM describes

the SiSP layer concepts Feature, Software, and
Hardware as Abstract Concept, Compilable Concept,
and Manufacturable Concept, respectively. Thus, it
is a domain dependent extensions of CDLM

By doing so, constraints on concepts of SiS” can
be expressed. For example, a constraint represents
that each feature should be realizable by an artefact.
Such a constraint can check that each feature (a sub-
concept of Feature) should have a structural relation
has-Realization to a subconcept of Artefact. These
kinds of constraints may be hard to define, because
typically they are not related to one specific concept
but to several. Still, such constraints are usually part
of some knowledge modeling guidelines.

Realizable |1”
Concept

Abstract [51"
Concept

asemyos
ey

PreCrash || APreCrash
Detection Detection

| AShort Range
Radar Sensor

Short Range [z
Radar Sensor

Software

Manufacturable g1~
Concept

Motion
Detection
Software

Compilable [F==
Concept

. T AMotion Detection
Software.exe

Figure 3: Modeling software-intensive systems.

In (Hotz and von Riegen, 2010), we introduce
the Reasoning Driven Architecture (RDA) that al-
lows the implementation of metalayers by using a
configuration system on each layer. By doing so,
each layer can be seen as a knowledge-based sys-
tem that says something about the layer below. In
the case of RDA, SiS” contains the knowledge of do-
main objects, which again are represented on SiSS.
By introducing the metalayer SiS™, knowledge about
knowledge is made explicit, i.e. knowledge about the
knowledge of domain objects. This enables the use
of reasoning techniques for each layer, not only for
the domain and system layers as it is typically the
case in knowledge-based systems. The central point
of such an implementation is a mapping between in-
stances on one layer to concepts on the next lower
layer (see (Hotz and von Riegen, 2010) for a map-
ping for CDL and (Tran et al., 2008) for a mapping
for OWL or (Bateman et al., 2009)). Metalayers al-
low for handling (meta) tasks and services. For ex-
ample, (Tran et al., 2008) proposes to provide statis-
tics about the model (e.g. retrieve all knowledge ele-
ments about Pre Crash Detection). With a metalayer
like provided in Figure 3, during configuration of a
software-intensive system one can call different ex-

ternal mechanisms for each specific metaconcept. For
example, if an instance of an instance of Compilable
Concept (e.g. an instance of Software) is config-
ured, an external compiler mechanism can be called
to realize the software. If an instance of an instance
of Manufacturable Concept is configured, the ware-
house can be contacted to check if the needed parts
for the manufacturing are present. Thus, through the
metalayer the actual configuration of a product can be
monitored and reasoning on the configuration process
can be processed.

S RELATED WORK

The modeling approach, especially metaization
(Strahringer, 1998), has similarities to the Model-
Driven Architecture (Kiihne, 2006; Atkinson and
Kiihne, 2003; Hotz and von Riegen, 2010), because
of the explicitation of several layers. However, the in-
troduction of reasoning systems for each layer allows
the direct usage of existing reasoners for inferring on
metalayers.

(Asikainen and Minnisto, 2009) and (Haase et al.,
2009) present also approaches that include semantics
on the metalayer, similar to our approach. By do-
ing so, reasoning methods on each layer as well as
the capability to define domain-specific extensions on
the metalayer is in principle enabled. Metaization as
such is less considered in knowledge-based configu-
ration. However, especially when learning methods,
i.e. automated knowledge engineering, has to be used
in changing environments, the automated monitoring
of knowledge bases becomes crucial and is conceiv-
able with the presented techniques.

6 CONCLUSION

In this paper, we state the differences of the main
relations for modeling configuration knowledge, i.e.
specialization, instantiation, and structuralization. By
introducing and clarifying the use of instantiation on
several metalayers, we open up a further modeling fa-
cility and sketch first usage of this metaization tech-
nique for knowledge-based configuration. In upcom-
ing work, we will apply these techniques in learning
environments in the field of robot vision.

REFERENCES

Asikainen, T. and Minnisto, T. (2009). Nivel: a
metamodelling language with a formal seman-
tics. Software and Systems Modeling.

Atkinson, C. and Kiihne, T. (2003). Model-Driven
Development: A Metamodeling Foundation.
IEEE Softw., 20(5):36—41.

Bateman, J., Castro, A., Normann, I., Pera, O., Gar-
cia, L., and Villaveces, J. (2009). OASIS com-
mon hyper-ontological framework (COF), De-
liverable D1.2.1. Technical report, University of
Bremen.

Brachman, R. J. (1983). What is-a is and isn’t:
An analysis of taxonomic links in semantic net-
works. IEEE Computer, 16(10):30-36.

Haase, P., Palma, R., and d’Aquin M. (2009).
Updated Version of the Networked Ontology
Model. Project Deliverable D1.1.5, Neon
Project. www.neon-project.org.

Hotz, L. (2009). Construction of Configuration Mod-
els. In Stumptner, M. and Albert, P., editors,
Configuration Workshop, 2009, Workshop Pro-
ceedings IJCAI, Pasadena.

Hotz, L. and von Riegen, S. (2010). Knowledge-
based Implementation of Metalayers - The
Reasoning-Driven Architecture. In Felfernig,
A. and Wotawa, F., editors, Proceedings of the
ECAI 2010 Workshop on Intelligent Engineering
Techniques for Knowledge Bases (IKBET).

Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema,
M., Nijhuis, J., and MacGregor, J. (2006). Con-
figuration in Industrial Product Families - The
ConlPF Methodology. 10S Press, Berlin.

Kiihne, T. (2006). Matters of (Meta-)Modeling.
Journal on Software and Systems Modeling,
5(4):369-385.

Ranze, K., Scholz, T., Wagner, T., Giinter, A., Her-
zog, O., Hollmann, O., Schlieder, C., and Arlt, V.
(2002). A Structure-Based Configuration Tool:
Drive Solution Designer DSD. [14. Conf. Inno-
vative Applications of Al

Strahringer, S. (1998). Ein sprachbasierter Metamod-
ellbegriff und seine Verallgemeinerung durch
das Konzept des Metaisierungsprinzips. In Pro-
ceedings of the Modellierung 1998. Astronomi-
cal Society of Australia.

Tran, T., Haase, P.,, Motik, B., Grau, B. C., and
Horrocks, I. (2008). Metalevel Information in
Ontology-Based Applications. In Fox, D. and
Gomes, C. P, editors, Proc. of the 23rd AAAI
Conf. on Artificial Intelligence (AAAI 2008),
pages 1237-1242, Chicago, IL, USA. AAAI
Press.

van Harmelen, F., Lifschitz, V., and Porter, B., editors
(2007). Handbook of Knowledge Representation
(Foundations of Artificial Intelligence). Elsevier
Science.

