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Abstract. In this paper, we consider knowledge needed for inter-
action tasks of an artificial cognitive system, embodied by a service
robot. First, we describe ideas about the use of experiences of a robot
for improving its interactivity. Our approach is based on an multi-
level ontological representation of knowledge. Thus, ontology-based
reasoning techniques can be used for exploiting experiences. A robot
interacting as a waiter in a restaurant scenario guides our considera-
tions.

1 Introduction
For effective interactions of an artificial cognitive system in a non-
industrial environment, not every piece of knowledge can be manu-
ally acquired and modeled in advance. Learning from experiences is
one way to tackle these issues. Experiences can be defined as “an
episodic description of occurrences and own active behavior in a
coherent space-time segment”. Experiences can be used for future
situations by generalization. Generalizations (or conceptualizations)
build the basis for further interactions and possible implications.
Such interactions then constitute the current source for experiences
which again can be integrated and combined with existing conceptu-
alizations.

For approaching this task of experience-based learning, we con-
sider a service robot acting in a restaurant environment, see the sim-
ulated environment in Figure 1.

Figure 1: Simulation example: A robot serves a cup to a guest.

In such an environment, domain-specific objects, concepts, and
rooms have to be represented. Objects can e.g. be used for a certain
purpose and can have impacts on the environment. Different types of
relationships between objects have to be considered: taxonomical on
the one hand and spatial or temporal relationships on the other hand.
Terminological knowledge about dishes, drinks, meals as well as ac-
tions and possible occurrences is needed. Areas which may contain
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served orders (at a table) may be distinguished from seating areas. To
perform complex tasks, we consider the interaction that is needed to
serve a guest. Moreover, to learn a model for such a process, we ex-
amine experiences that result from performing such operations, and
investigate how to generalize them.

Our approach is based on ontological knowledge, which com-
prises models, presented in Section 2 and experiences, introduced
in Section 3. Section 4 presents possible generalizations that lead to
new conceptualizations in form of new ontological models. A short
overview of the architecture of our approach will be given in Section
5 and a discussion of our approach finalizes the paper in Section 6.
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Figure 2: Taxonomical relations of actions and physical objects

2 Ontology-Based Approach
Due to the service domain as well as the inherent interaction with
the environment and thereby with agents within, a continuous need
of knowledge adjustment to such a dynamic application area is es-
sential. In our approach, an ontology represents the knowledge an
agent needs for interacting. This knowledge covers concepts about
objects, actions, and occurrences in a TBox (like cup, plate, grasp,
serve_cup etc.) as well as concrete instances of such concepts in an
ABox [1]. Taxonomical relations (depicted in Figure 2) and compo-
sitional relations, presented in 3 are essential means for modeling.

A complex activity like serve_cup is decomposed into finer activi-
ties until we get a sequence of elementary actions, that the robot can
execute directly. Not only these taxonomical and compositional rela-
tions, but temporal constraints represent the possible order of actions,
like e.g. for the action serve_cup: “Take coffee mug from counter and
place it on tray. Go to table, look for guest and place coffee mug in
front of guest.” Technically, we model binary relations with OWL22

2 www.w3.org/TR/owl2-overview
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Figure 3: Compositional relations of actions

and n-ary relations, like temporal constraints for complex actions,
with SWRL3, see [2].

3 Experiences
Experiences must be gained by the robot, while the robot is accom-
plishing a task and will be processed afterwards. In our ontological
approach, experiences are also represented as ABox instances (see
Figure 4). Thereby, experiences can be represented at all abstraction
levels: the complete compositional structure of robot activities, in-
cluding motions, observations, problem solving and planning, and
inter-agent communication. Furthermore, relevant context informa-
tion, like description of static restaurant parts and initial states of
dynamic parts, as well as an indicator of the TBox version are used
during experience gaining.

Parallel to robot’s interactions, raw data is gathered in subsequent
time slices (frames) for a certain time point. From these slices, time
segments (ranges) of object occurrences and activities are computed
(e.g. grasp in Figure 5). Such an experience is passed on to a gener-
alization module which integrates the new experience with existing
ones.

The initial experience is based on an action of the handcrafted on-
tology. The outcome of the generalization module will be integrated
in the ontology. In general, experiences are gained continuously, thus
during every operation, but are dedicated to a goal. We reckon with
a manageable number of experiences, because of the successive exe-
cution of goals.

Since the experiences are relevant to specific goals, we do not dis-
tinguish between experiences that are more important than others at
present. But according to "background noise" in the scenery (like a
dog walking past during a serve action) some parts of experience
might be more significant than others. The accomplishment of this
circumstance is presented in the following Section 4.

4 Generalization
We consider an incremental generalization approach, where an ini-
tial ontology is extended based on experiences using suitably cho-
sen generalization steps. New experiences are integrated into existing
conceptualizations in a cyclic manner. Table 1 shows typical general-
ization steps based on Description Logic (DL) syntax. Those can be
standard DL services (like subsumption of concepts or realization of
instances) and non-standard services (like least common subsumers
(LCS) [1]). As an example, consider two experiences gained serving
coffee to guests, depicted in Figure 4. In principle, all instance to-
kens are candidates for generalization, e.g. table1 to table. Depending
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on the commonalities and differences between distinct experiences,
however, promising generalizations can be selected, e.g. coffee1, cof-
fee2 → coffee → drink. In order to deal with new situations the robot
extends its competence.

Over-generalization, e.g. generalizing coffee not to drink but to thing
can be avoided by applying the LCS, by the use of the LCS drink is
selected. However, when the integration of new concepts is impossi-
ble over-generalization can not be prevented.

Generalization Path: from → to Reasoning Service
instance → set of instances realization

instance → closest named concept realization
instance → concept expression realization

set of instances → concept expression realization
concept → superconcept subsumption

set of concepts → concept expression LCS
role cardinality range → larger role cardinality range range union

role filler concept restriction → generalized role filler concept restriction LCS
numerical ranges → larger numerical ranges range union

Table 1: Ontology-based generalizations and their computation
through reasoning services

In Section 3 we raised the issue of experience parts that might be
more significant than others, on the example of a dog walking past
during a serve activity. We cover this circumstance by integrating
cardinalities to mark that a dog may appear but it is not mandatory.

In addition to ontological generalization, temporal and spatial con-
straints can be generalized. Figure 5 presents an example for a tempo-
ral generalization. Quantitative temporal orderings by concrete time
points are generalized to qualitative temporal relations.

Experience 1: Guest1 is ordering coffee1.
…
(at guest1 table1)
(on counter1 coffee1)
(grasp counter1 coffee1)
…

Experience 2: Guest2 is ordering coffee2.
...
(at guest2 table1)
(on counter1 coffee2)
(grasp counter1 coffee2)
…

Conceptualization 1: Guest1 is ordering a coffee.

…
(at guest table1)
(on counter1 coffee)
(grasp counter1 coffee)
…

Coffee1 is‐not‐a coffee2 and have been generalized to 
coffee. 

Experience 1 is considered as the initial conceptual.

guest2 is instance of guest 

Experience 3: Guest2 is ordering beer1.

...
(at guest2 table1)
(on counter1 beer1)
(grasp counter1 beer1)
…

Conceptualization 2 Guest is ordering a drink.

…
(at guest table1)
(on counter1 drink)
(grasp counter1 drink)
…

Beer1 is not a coffee; thus entries have 
been generalized to drink. Constraint: 
Drink of ‘on counter’ (and all other 
entries) is instance of beverage of 
‘grasp’.
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Figure 4: Example for creating conceptualizations from two experi-
ences, or one experience and a conceptualization

5 Architecture
Experiences do not contain only observed data, like perceived ac-
tions, objects and relational information but also occurrences and
robot’s states. These experience contents are gathered by the com-
ponents presented in Figure 6. Information on object detections (like
the identification of counter1) and spatial relations (e.g. (on counter1
coffee1)) are released by the object publisher. The action publisher



Experience 1: Guest1 is ordering 
a coffee at time t1.

Experience 2: Guest2 is ordering 
a coffee at time t15.

…
(at guest1 table1 t2 t9)
(on counter1 coffee1 t4 t6)
(grasp counter1 coffee1 t5 t6)
…

…
(at guest2 table1 t15 t25)
(on counter1 coffee2 t17 t20)
(grasp counter1 coffee2 t18 t20)
…

Conceptualization 1: Guest is ordering a coffee.

(grasp counter1 coffee) during (at guest table1)
(on coffee counter1) during (at guest table1)
(on coffee counter1) before (grasp counter1 coffee)
(grasp counter1 coffee) finishes (at coffee counter1) 
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Figure 5: Temporal generalizations preserving temporal order

exports performed action informations, like (grasp counter1 coffee1).
Extremity informations of the robot, like the position of the torso
or of an arm are published by the actuator monitor. These outputs
are gathered by the integration manager. This manager provides the
experience manager with this content. The reasoner offers reason-
ing services and the learning component generalizes current experi-
ences (in the homonymous module) or complex scene examples to
new models. All kinds of knowledge about objects, actions, occur-
rences and the environment are described in the ontology, which will
be extended based on experiences made by the robot during it’s pro-
cessing. The experience database is a storage location, hold available
already gained experiences in a specific format.
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Figure 6: Architecture overview

6 Discussion
In this paper, we presented an ontology-based method for dealing
with robot interaction tasks in a dynamic application area. The ontol-
ogy model provides a central framework for all task relevant knowl-
edge. By successively extending a hand-coded ontology through
generalizing from experiences, a learning scheme is realized. [3]
presents a similar approach for rudimentary actions like grasping or
door opening, we consider aggregated actions like serving a cup to
a guest. However, in both cases, experiences provide the basis for
refinement of actions.

Representing a robot’s knowledge in a coherent way by an ontol-
ogy, we are able to use existing ontology-based reasoning techniques
like DL services. Ontology alignment can also be applied to inte-
grate experiences obtained with different TBoxes (e.g. differing be-
cause of new conceptualizations). Similar methods must be applied

for generalizing temporal and spatial experiences. Although we pro-
pose continuous gathering of experiences, one might as well consider
scenarios building the source for an experience that have explicit start
and end points (similar to [3]).

Some parts of an experience may be more significant than others,
it may be useful to focus on experiences which were made in respect
to a specific goal. Furthermore, not every detail should be the subject
of generalization, the temporal order or equality of instances in a
complex action have to be preserved (more concrete: the cup that
is served should be the same cup that was taken from the counter
before).

With the aggregation of occurrences, states and elementary actions
(covering also agent interactions) to composites and the expansion
of knowledge via experience gaining an extension of the interaction
ability with the environment and people within is achieved.
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