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Vogt-Kölln-Strasse 30, D-22527 Hamburg, Germany
isli@informatik.uni-hamburg.de

Abstract

We propose a calculus, cCOA, combining, thus more expressive than each
of, two orientation calculi well-known in QSR: Frank’s projection-based cardi-
nal direction calculus, CDA, and a coarser version, ROA, of Freksa’s relative
orientation calculus. An original constraint propagation procedure, PcS4c+(),
for cCOA-CSPs is presented, which aims at (1) achieving path consistency
(Pc) for the CDA projection; (2) achieving strong 4-consistency (S4c) for the
ROA projection; and (3) more (+) —the “+” consists of the implementa-
tion of the interaction between the two combined calculi. Dealing with the
first two points is not new, and involves mainly the CDA composition table
and the ROA composition table, which can be found in, or derived from,
the literature. The originality of the propagation algorithm comes from the
last point. Two tables, one for each of the two directions CDA-to-ROA and
ROA-to-CDA, capturing the interaction between the two kinds of knowledge,
are defined, and used by the algorithm. The importance of taking into ac-
count the interaction is shown with a real example providing an inconsistent
knowledge base, whose inconsistency (a) cannot be detected by reasoning
separately about each of the two components of the knowledge, just because,
taken separately, each is consistent, but (b) is detected by the proposed algo-
rithm, thanks to the interaction knowledge propagated from each of the two
compnents to the other.
Key words: Qualitative spatial reasoning, Cardinal directions, Relative ori-
entation, Constraint satisfaction, Path consistency, Strong 4-consistency.
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Figure 1: A model for the ROA component (left), and a model for the CDA com-
ponent (right), of the knowledge in Example 1.

1 Introduction

Two important, and widely known calculi for the representation and processing of
qualitative orientation are the calculus of cardinal directions, CDA, developed by
Frank [5], and the relative orientation calculus developed by Freksa [6]. The former
uses a global, south-north/west-east reference frame, and represents knowledge as
binary relations on (pairs of) 2D points. The latter allows for the representation
of relative knowledge as ternary relations on (triples of) 2D points. Both kinds of
knowledge are of particular importance, especially in GIS (Geographic Information
Systems) and in robot navigation.

The aim of this work is to look at the importance of combining the two orienta-
tion calculi mentioned above. Considered separately, Frank’s calculus [5] represents
knowledge such as “Hamburg is north-west of Berlin”, whereas Freksa’s relative ori-
entation calculus [6] represents knowledge such as “You see the main train station
on your left when you walk down to the cinema from the university”. We pro-
pose a calculus, cCOA, combining CDA and a coarser version, ROA, of Freksa’s
calculus. cCOA allows for more expressiveness than each of the combined calculi,
and represents, within the same base, knowledge such as the one in the following
example.

Example 1 Consider the following knowledge on four cities, Berlin, Hamburg, Lon-
don and Paris: (1) viewed from Hamburg, Berlin is to the left of Paris, Paris is to
the left of London, and Berlin is to the left of London; (2) viewed from London,
Berlin is to the left of Paris; (3) Hamburg is to the north of Paris, and north-west
of Berlin; and (4) Paris is to the south of London. The first two sentences express
the ROA component of the knowledge (relative orientation relations on triples of
the four cities), whereas the other two express the CDA component of the knowledge
(cardinal direction relations on pairs of the four cities).1 Considered separately, each
of the two components is consistent, in the sense that one can find an assignment

1Two cardinal direction calculi, to be explained later, are known from Frank’s work [5]; we
assume in this example the one in Figure 2(right).
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of physical locations to the cities that satisfies all the constraints of the component
—see the illustration in Figure 1. However, considered globally, the knowledge is
clearly inconsistent (the physical locations assigned to Hamburg, London and Paris
form a triangle in any model of the ROA component, whereas they are collinear in
any model of the CDA component).

Example 1 clearly shows that reasoning about combined knowledge consisting of
an ROA component and a CDA component, e.g., checking its consistency, does
not reduce to a matter of reasoning about each component separately —reasoning
separately about each component in the case of Example 1 shows two components
that are both consistent, whereas the conjunction of the knowledge in the two com-
ponents is inconsistent. As a consequence, the interaction between the two kinds
of knowledge has to be handled. With this in mind, a constraint propagation pro-
cedure, PcS4c+(), for cCOA-CSPs is proposed, which aims at: (1) achieving path
consistency (Pc) for the CDA projection; (2) achieving strong 4-consistency (S4c)
for the ROA projection; and (3) more (+). The procedure does more than just
achieving path consistency for the CDA projection, and strong 4-consistency for the
ROA projection. It implements as well the interaction between the two combined
calculi. The procedure is, to the best of our knowledge, original.

In the remainder of the paper, we first give a brief description of the propagation
algorithm we propose, including its part dealing with the interaction knowledge,
consisting of ROA knowledge inferred from CDA knowledge, and, conversely, of
CDA knowledge inferred from ROA knowledge. We then reconsider our illustrating
example to show that, thanks to the interaction knowledge, more inconsistencies
are detected than one would get from just applying path consistency to the CDA
component and four-consistency to the ROA component. We finish with a discus-
sion relating the work to current research on spatio-temporalising the well-known
ALC(D) family of description logics (DLs) with a concrete domain [2]: the discussion
shows that if two (spatial) ontologies operate on the same universe of objects (in this
work, the universe of 2D points), while using different languages for their knowledge
representation, then integrating the two ontologies needs an inference mechanism
for the interaction of the two languages, so that, given knowledge expressed in the
integrating ontology, consisting of two components (one for each of the integrated
ontologies), each of the two components can infer knowledge from the other.

2 Frank’s and Freksa’s orientation calculi and their

integration

2.1 Frank’s calculus.

Frank’s models of cardinal directions in 2D [5] are illustrated in Figure 2. They
use a partition of the plane into regions determined by lines passing through a
reference object, say S. Depending on the region a point P belongs to, we have
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Figure 2: Frank’s cone-shaped (left) and projection-based (right) models of cardinal
directions.
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Figure 3: The partition of the universe of 2D positions on which is based Freksa’s
relative orientation calculus.

No(P, S), NE(P, S), Ea(P, S), SE(P, S), So(P, S), SW(P, S), We(P, S), NW(P, S),
or Eq(P, S), corresponding, respectively, to the position of P relative to S being
north, north-east, east, south-east, south, south-west, west, north-west, or equal. Each
of the two models can thus be seen as a binary Relation Algebra (RA), with nine
atoms. Both use a global, west-east/south-north, reference frame. We focus our
attention on the projection-based model (Figure 2(right)), which has been assessed
as being cognitively more adequate [5] (cognitive adequacy of spatial orientation
models is discussed in [6]).

2.2 Freksa’s calculus.

A well-known model of relative orientation of 2D points is the calculus defined by
Freksa [6]. The calculus corresponds to a specific partition, into 15 regions, of the
plane, determined by a parent object, say A, and a reference object, say B (Figure
3(d)). The partition is based on the following: (1) the left/straight/right partition
of the plane determined by an observer placed at the parent object and looking
in the direction of the reference object (Figure 3(a)); (2) the front/neutral/back
partition of the plane determined by the same observer (Figure 3(b)); and (3) the
similar front/neutral/back partition of the plane obtained when we swap the roles
of the parent object and the reference object (Figure 3(c)). Combining the three
partitions (a), (b) and (c) of Figure 3 leads to the partition of the universe of 2D
positions on which is based the calculus in [6] (Figure 3(d)).
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Figure 4: The partition of the universe of 2D positions on which is based the ROA
calculus.

2.3 A new relative orientation calculus.

It is known that, computationally, Freksa’s relative orientation calculus, even when
restricted to its 15 atoms, behaves badly [15]. We therefore consider a coarser version
of it, obtained from the original one by ignoring, in the construction of the partition
of the plane determined by a parent object and a reference object (Figure 3(d)),
the two front/neutral/back partitions (Figure 3(b-c)). In other words, we consider
only the left/straight/right partition (Figure 3(a)) —we also keep the 5-element
partitioning of the line joining the parent object to the reference object. The final
situation is depicted in Figure 4, where A and B are the parent object and the
reference object, respectively. Figure 4(b-c) depicts the general case, corresponding
to A and B being distinct from each other: this general-case partition leads to 7
regions (Figure 4(c)), numbered from 2 to 8, corresponding to 7 of the nine atoms of
the calculus, which we refer to as lr (to the left of the reference object), bp (behind
the parent object), cp (coincides with the parent object), bw (between A and B),
cr (coincides with the reference object), br (behind the reference object), and rr
(to the right of the reference object). Figure 4(a) illustrates the degenerate case,
corresponding to equality of A and B. The two regions, corresponding, respectively,
to the primary object coinciding with A and B, and to the primary object distinct
from A and B, are numbered 0 and 1. The corresponding atoms of the calculus will
be referred to as de (degenerate equal) and dd (degenerate distinct).

From now on, we refer to the cardinal directions calculus as CDA (Cardinal Di-
rections Algebra), and to the coarser version of Freksa’s relative orientation calculus
as ROA (Relative Orientation Algebra). A CDA (resp. ROA) relation is any sub-
set of the set of all CDA (resp. ROA) atoms. A CDA (resp. ROA) relation is
said to be atomic if it contains one single atom (a singleton set); it is said to be
the CDA (resp. ROA) universal relation if it contains all the CDA (resp. ROA)
atoms. When no confusion raises, we may omit the brackets in the representation
of an atomic relation.
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3 CSPs of cardinal direction relations and relative

orientation relations on 2D points

We define a cCOA-CSP as a CSP of which the constraints consist of a conjunction
of CDA relations on pairs of the variables, and ROA relations on triples of the
variables. The universe of a cCOA-CSP, i.e., the domain of instantiation of its
variables, is the continuous set IR2 of 2D points.

3.1 Matrix representation of a cCOA-CSP.

A cCOA-CSP P can, in an obvious way, be represented as two constraint matrices: a
binary constraint matrix, BP , representing the CDA part of P , i.e., the subconjunc-
tion consisting of CDA relations on pairs of the variables; and a ternary constraint
matrix, T P , representing the ROA part of P , i.e., the rest of the conjunction, con-
sisting of ROA relations on triples of the variables. We refer to the representation
as 〈BP , T P 〉. The BP entry (BP )ijconsists of the CDA relation on the pair (Xi, Xj)
of variables. Similarly, the T P entry (T P )ijk consists of the ROA relation on the
triple (Xi, Xj, Xk) of variables.

3.2 Reasoning within CDA and the CDA-to-ROA interac-

tion: the tables.

We present the CDA-to-ROA interaction in a knowledge base consisting of a cCOA-
CSP. The other direction, i.e., the ROA-to-CDA interaction, can be found in the
full paper [9]. The table in Figure 5 presents the augmented CDA composition table;
for each pair (r1, r2) of CDA atoms, the table provides: the standard composition,
r1◦r2, of r1 and r2 [5, 12]; and the most specificROA relation r1⊗r2 such that, for all
2D points x, y, z, the conjunction r1(x, y)∧r2(y, z) logically implies (r1⊗r2)(x, y, z).

The operation ◦ is just the normal composition: it is internal to CDA, in the
sense that it takes as input two CDA atoms, and outputs a CDA relation. The
operation ⊗, however, is not internal to CDA, in the sense that it takes as input
two CDA atoms, but outputs an ROA relation; ⊗ captures the interaction between
CDA knowledge and ROA knowledge, in the direction CDA-to-ROA, by inferring
ROA knowledge from given CDA knowledge. As an example for the new operation
⊗, from SE(Berlin, London) ∧No(London, Paris), saying that Berlin is south-east
of London, and that London is north of Paris, we infer the ROA relation lr on
the triple (Berlin, London, Paris): lr(Berlin, London, Paris), saying that, viewed
from Berlin, Paris is to the left of London.

The reader is referred to [5, 12] for the CDA converse table, providing the con-
verse r� for each CDA atom r.
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◦
⊗

No So Ea We NE NW SE SW

No No [So, No] NE NW NE NW [SE, NE] [SW, NW]
br {bp, cp, bw} rr lr rr lr rr lr

So [So, No] So SE SW [SE, NE] [SW, NW] SE SW

{bp, cp, bw} br lr rr lr rr lr rr

Ea NE SE Ea [We, Ea] NE [NW, NE] SE [SW, SE]
lr rr br {bp, cp, bw} lr lr rr rr

We NW SW [We, Ea] We [NW, NE] NW [SW, SE] SW

rr lr {bp, cp, bw} br rr rr lr lr

NE NE [SE, NE] NE [NW, NE] NE [NW, NE] [SE, NE] ?
lr rr rr lr {lr, br, rr} lr rr {lr, bp, cp,

bw, rr}
NW NW [SW, NW] [NW, NE] NW [NW, NE] NW ? [SW, NW]

rr lr rr lr rr {lr, br, rr} {lr, bp, cp, lr

bw, rr}
SE [SE, NE] SE SE [SW, NE] [SE, NE] ? SE [SW, NE]

lr rr lr rr lr {lr, bp, cp, {lr, br, rr} rr

bw, rr}
SW [SW, NW] SW [SW, SE] SW ? [SW, NW] [SW, SE] SW

rr lr lr rr {lr, bp, cp, rr lr {lr, br, rr}
bw, rr}

Figure 5: The augmented composition table of the cardinal directions calcu-
lus: for each pair (r1, r2) of CDA atoms, the table provides the composition,
r1 ◦ r2, of r1 and n r2, as well as the most specific ROA relation r1 ⊗ r2 such
that, for all 2D points x, y, z, the conjunction r1(x, y) ∧ r2(y, z) logically implies
(r1⊗ r2)(x, y, z); the question mark symbol ? represents the CDA universal relation
{No,NW,We, SW, So, SE,Ea,NE,Eq}.

3.3 A constraint propagation procedure for cCOA-CSPs.

We propose a constraint propagation procedure, PcS4c+(), for cCOA-CSPs, which
aims at:

1. achieving path consistency (Pc) for the CDA projection, using, for instance,
the algorithm in [1];

2. achieving strong 4-consistency (S4c) for the ROA projection, using, for in-
stance, the algorithm in [11]; and

3. more (+).

The procedure does more than just achieving path consistency for the CDA projec-
tion, and strong 4-consistency for the ROA projection. It implements as well the
interaction between the two combined calculi; namely:

1. The path consistency operation, (BP )ik ← (BP )ik ∩ (BP )ij ◦ (BP )jk, which,
under normal circumstances, operates internally, within a same CSP, is now
augmented so that it can send information from the CDA component into the
ROA component.

2. The strong 4-consistency operation, (T P )ijk ← (T P )ijk ∩ (T P )ijl ◦ (T P )ilk,
which also operates internally under normal circumstances, is augmented so
that it can send information from the ROA component into the CDA compo-
nent.
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The reader is referred to the full version of the work for details [9].

Example 2 Consider again the description of Example 1. We can represent the
situation as a cCOA-CSP with variables Xb, Xh, Xl and Xp, standing for the cities
of Berlin, Hamburg, London and Paris, respectively.

1. The knowledge ”viewed from Hamburg, Berlin is to the left of Paris” translates
into the ROA constraint lr(Xh, Xp, Xb): (T P )hpb = {lr}.

2. The other ROA knowledge translates as follows: (T P )hlp = {lr}, (T P )hlb =
{lr}, (T P )lpb = {lr}.

3. The CDA part of the knowledge translates as follows: (BP )hp = {No}, (BP )hb =
{NW}, (BP )pl = {So}.

As discussed in Example 1, reasoning separately about the two components of the
knowledge shows two consistent components, whereas the combined knowledge is
clearly inconsistent. Using the procedure PcS4c+(), we can detect the inconsis-
tency in the following way. From the CDA constraints (BP )hp = {No} and (BP )pl =
{So}, the algorithm infers, using the augmented CDA composition table of Fig-
ure 5 —specificaly, the CDA-to-ROA interaction operation ⊗— the ROA rela-
tion {bp, cp, bw} on the triple (Xh, Xp, Xl). The conjunction of the inferred knowl-
edge {bp, cp, bw}(Xh, Xp, Xl) and the already existing knowledge {lr}(Xh, Xl, Xp)
—equivalent to {rr}(Xh, Xp, Xl)— gives the empty relation, indicating the inconsis-
tency of the knowledge.

4 Discussion

Current research shows clearly the importance of developing spatial RAs: special-
ising an ALC(D)-like Description Logic (DL) [2], so that the roles are temporal
immediate-successor (accessibility) relations, and the concrete domain is generated
by a decidable spatial RA in the style of the well-known Region-Connection Calculus
RCC-8 [14], leads to a computationally well-behaving family of languages for spatial
change in general, and for motion of spatial scenes in particular:

1. Deciding satisfiability of an ALC(D) concept w.r.t. to a cyclic TBox is, in
general, undecidable (see, for instance, [13]).

2. In the case of the spatio-temporalisation, however, if we use what is called
weakly cyclic TBoxes in [10], then satisfiability of a concept w.r.t. such a TBox
is decidable. The axioms of a weakly cyclic TBox capture the properties of
modal temporal operators. The reader is referred to [10] for details.

Spatio-temporal theories such as the ones defined in [10] can be seen as single-
ontology spatio-temporal theories, in the sense that the concrete domain represents
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only one type of spatial knowledge (e.g., RCC-8 relations if the concrete domain is
generated by RCC-8). We could extend such theories to handle more than just one
concrete domain: for instance, two concrete domains, one generated by CDA, the
other by ROA. This would lead to what could be called multi-ontolopgy spatio-
temporal theories. The presented work clearly shows that the reasoning issue in such
multi-ontology theories does not reduce to reasoning about the projections onto the
different concrete domains.

5 Summary

We have presented the combination of two calculi of spatial relations well-known in
Qualitative Spatial Reasoning (QSR): Frank’s projection-based cardinal direction
calculus [4, 5] and Freksa’s relative orientation calculus [6, 7]. With an example
illustrating the importance of such a combination to Geographical Information Sys-
tems (GIS), we have shown that reducing the issue of reasoning about knowledge
expressed in the combined language to a simple matter of reasoning separately about
each of the two components was not sufficient. The interaction between the two kinds
of knowledge has thus to be handled: we have provided a constraint propagation
algorithm for such a purpose, which:

1. achieves path consistency for the cardinal direction component;

2. achieves strong 4-consistency for the relative orientation component; and

3. implements the interaction between the two kinds of knowledge.

Combining and integrating different kinds of knowledge is an emerging and chal-
lenging issue in QSR. Related work has been done by Gerevini and Renz [8], which
deals with the combination of topological knowledge and relative size knowledge in
QSR. Similar work might be carried out for other aspects of knowledge in QSR,
such as qualitative distance [3] and relative orientation [6, 7], a combination known
to be highly important for GIS and robot navigation applications, and on which not
much has been achieved so far.
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