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Abstract

We apply Shannon’s sampling theorem to gradient based
image segmentation and show that the gradient magnitude
requires twice the sampling rate of the original image. Tak-
ing this simple, but apparently overlooked phenomenon into
account, we demonstrate experimentally that correct sam-
pling of the gradient image indeed improves the quality of
the resulting segmentation.

1. Introduction
The gradient is one of the most important tools in low-level
image analysis. For example, gradient calculations are at the
heart of Canny’s edge detector [1] and the corner response
function [3]. Therefore, a better understanding of the prop-
erties of gradient operators would be of great benefit for the
improvement of gradient-based algorithms and for the ac-
curate prediction of algorithm performance in a particular
application.

One area where gradient operators are poorly under-
stood is their interaction with the process of sampling. Most
gradient-based algorithms are derived in the analog domain,
and discrete algorithm implementations on a computer are
simply considered as approximations of the analog theory.
But in most cases little is known about how accurate the
approximation really is. Most theoretical investigationsof
approximation quality only yield asymptotic results which
tell how fast the accuracy improves as the sampling rate
is increased. However, in image analysis the sampling rate
cannot in general be made arbitrarily high – it is more or
less fixed once the imaging conditions (the properties of the
camera and the geometric relationships between the camera
and the scene) have been defined. Therefore, in image anal-
ysis we need absolute bounds for the question of whether
something will be visible at a given resolution.

One instance of such an absolute measure of accuracy
is Shannon’s sampling theorem, see e.g. [2]. The sampling
theorem states that any band-limited signal can be exactly
resonstructed from a countable number of samples. That is,
when the signal’s frequency spectrum is zero above a cer-

tain limit frequency, no information is lost by sampling, pro-
vided the sample distance does not exceed the Nyquist dis-
tance calculated from the limit frequency. Since any real
data channel, and in particular any real camera, is band-
limited, the sampling theorem certainly applies to image
analysis problems. Now it is interesting to ask whether ac-
tual image analysis algorithms actually adhere to the con-
straints set by the theorem. In case of gradient-based seg-
mentation, there is some anecdotal evidence to the contrary:
several people we spoke to have observed the phenomenon
that segmentation results on some images improved when
these images were interpolated to a higher resolution before
analysis. This suggests that the original sampling density
was too low. It should be stressed that the improvements
were achieved by interpolation of the given images, not by
taking new images at higher resolution. Unfortunately, such
results are rarely published. Overington’s book [5] is the
only definitive exception we are aware of – it shows con-
vincing examples of improved edge detection in interpo-
lated images.

In this paper, we put forward a simple signal-theoretic
argument that this phenomenon has indeed a theoretical ex-
planation. The analysis suggests that a doubling of the res-
olution is actually necessary to obtain correct gradient mea-
surements (unless the original image doesn’t contain high
frequencies in the first place). We show that the oversam-
pling is best realized directly by the gradient filter, without a
dedicated interpolation step. Experiments demonstrate that
this modification indeed leads to improved segmentation re-
sults.

2. Sampling Limits for the Gradient
Magnitude

Consider a band-limited imagef that we want to analyse.
To be band-limited means that the Fourier spectrum of the
image is zero above some spatial frequencyΩ0:

F [f(~x)] = F (~ω) = 0, if |~ω| ≥ Ω0 (1)

whereF denotes the Fourier transform. The sampling the-
orem now states that a band-limit signal must be sampled
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with a sampling frequency of at least2Ω0. This minimum
sampling frequency is known as theNyquist frequency. By
means of the derivative theorem of Fourier theory we can
express the image’s first derivative in horizontal direction
fx1

in the Fourier domain as follows (the vertical derivative
is treated analogously):

fx1
(~x) =

d

d x1

f(~x)

⇒ F [fx1
](~ω) = −jω1F (~ω)

(2)

wherex1, ω1 denote the horizontal components of the co-
ordinates in the spatial and Fourier domains respectively.It
can thus be seen that taking the derivative does not change
the support region of the Fourier transform – the derivative
image remains band-limited with band-limitΩ0. In image
processing, the horizontal derivative is usually calculated
by means of a suitable derivative filterkx1

. Spatial convolu-
tion of the image with the derivative filter amounts to mul-
tiplication of the image spectrum with the kernel’s Fourier
transform:

fx1
(~x) = (kx1

⋆ f)(~x)

⇒ F [fx1
](~ω) = Kx1

(~ω)F (~ω)
(3)

with Kx1
= F [kx1

]. The band limit of the convolution
equals the minimum of the band limits of the two factors.
Since all practical relevant derivative filters (finite differ-
ences, derivatives of Gaussian filters and, generally, all fi-
nite impulse response filters) are not band-limited, the thus
obtained derivative image has again band-limitΩ0. Now,
most algorithms using first derivatives need to calculate the
gradient squared magnitudef2

x1
+ f2

x2
. The multiplication

of a signal with itself in the spatial domain corresponds to
a convolution of the spectrum with itself in the Fourier do-
main:

F [f2

x1
] = F [fx1

] ⋆ F [fx1
] (4)

If χ[f ] denotes the support region of a function, then the
support region of a convolution result can be calculated as
the morphological dilation:

χ[f ⋆ g] = χ[f ] ⊕ χ[g] (5)

(⊕ is the dilation operator). Applying this to our problem,
we see that taking the square offx1

doubles the limit fre-
quency:

F [f2

x1
](~ω) = 0, if |~ω| ≥ Ω1 = 2Ω0 (6)

Consequently, the Nyquist frequency must also double. In
order to correctly represent the gradient squared magnitude,
we must halve the sample distance. Taking the square root
(i.e. calculating the gradient magnitude) does not change
this in any essential way. The following 1-dimensional

Figure 1: Top: sine-wavesin(ωx + τ0) + c0, sampled at the rate
λ0 = π

ω+ǫ
(black balls); center: analytical first derivative of the

sine-wave; bottom: squared first derivative, sampled at integer lo-
cations (balls) and half-integer locations (squares).

example demonstrates that this analysis is indeed correct
(compare fig. 1). Let the original signal be given by

f(x) = sin(ωx + τ0) + c0 (7)

whereτ0 is the phase angle andc0 the DC component. This
signal is band-limited withΩ0 = ω + ǫ for arbitrary small
positiveǫ. It can be correctly sampled at the Nyquist rate
λ0 = π

Ω0

(black balls in fig. 1 top). The squared first deriva-
tive of the signal is

(

d

d x
f(x)

)2

=
ω2

2
(1 + cos(2ωx + 2τ0)) (8)

Its frequency is twice the original frequency. When this
function is just sampled at the original sampling positions,
its character is completely lost (balls in fig. 1 bottom). To
represent the signal correctly, we must additionally sample
at half-integer position (squares in fig. 1 bottom) – only then
do we see an oscillation of the right frequency.

For an arbitrary band-limited image, the necessity of
oversampling could only be avoided if the derivative filter’s
band-limit wereΩ0/2 or below. While no practically impor-
tant filter is band-limited in theory, a rapidly decaying filter
like the Gaussian

gσ(~x) =
1

2πσ2
e−

~x
T

~x

2σ2 (9)

can be considered as band-limited for all practical purposes.
If we require the spectrum to be damped to1% of its orig-
inal amplitude atω′ = Ω0/2, the scaleσ of the Gaussian
derivative must be at least about2λ0, whereλ0 = π

Ω0

is the
pixel distance of the original image. For many applications
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(whenever any fine detail has to be detected) this scale is
too coarse – typically, edge detection is done withσ ≤ λ0.
Then, oversampling is required.

3. Oversampling of the Gradient:
Algorithm and Examples

We have seen that the correct representation of the gradi-
ent magnitude requires to double the sample density. When
the gradient is calculated by means of derivative filters, as
is common in image analysis, this oversampling is best re-
alized during gradient calculation itself. A separate interpo-
lation step can thus be avoided. Consider the definition of
the convolution sum for a digital signal:

(f ⋆ k)(x) =

∞
∑

m=−∞

k(x − m)f(m) (10)

Since the original functionf is discrete, it is only accessed
at the integer coordinatesm. Usually, a discrete result image
(f ⋆k) with the same sample positions is obtained by letting
x also run over the integers. However, as long as the kernel
k is defined at all locationsx−m, the sum can be evaluated
for arbitrary x. Thus, to achieve twofold oversampling, we
can simply calculate(f ⋆ k) for the half-integers as well.
This means that the kernel has to be defined at integers and
half-integers. When continously defined kernels such as the
first derivatives of Gaussians are used, this is no problem.
To define a finite difference filter, we can combine the for-
ward and the symmetric differences into one kernel. The
oversampling finite difference kernel then is

Dx1
=

(

1

2
, 1 , 0 , −1 , −

1

2

)

(11)

where the entries’ coordinates are given by
(−1,− 1

2
, 0, 1

2
, 1), and the kernel is zero everywhere

else.
In the following we demonstrate with a number of exam-

ple images that gradient oversampling really yields visible
improvements to the segmentation quality. We have chosen
to use Canny’s algorithm [1] for all examples. Of course,
in any particular case a different algorithm might be more
appropriate. But by sticking to a single algorithm we ensure
that the examples remain somewhat comparable.

The test images were selected so that they contain in-
teresting fine scale structure, and the contrast and signal-
to-noise ratios are so good that low contrast and noise are
effectively ruled out as sufficient explanations for bad seg-
mentation results. In all cases, the gradient was calculated
with Gaussian derivative filters at scaleσ = 0.7λ0, where
λ0 is the pixel distance in theoriginal image. Thresholds
were manually optimized for each example, and the same

Figure 2: Left: original image; top right: segmentation of license
plate at the original resolution; bottom right: the same region seg-
mented at twice the original resolution.

parameters were then used for both resolutions (the normal-
ization of the derivative filters ensures that this is actually
correct).

The improvement is perhaps most pronounced in text
recognition. Fig. 2 shows an example from license plate
reading, fig. 3 one from optical character recognition. In
both cases the characters can barely be recognized in the
edge image with the original resolution, but the text is
clearly readable at the improved resolution. Figures 4 and
5 demonstrate the application of the new method to out-
door photographs. It can be seen that the geometric struc-
ture of the fine details (e.g. window crossbars in fig. 4, the
fine grating in fig. 5) is much better resolved in the over-
sampled image. Perhaps more importantly, the errors in the
representation of these details at the original resolutionhave
bad effects on nearby structure: although some objects are
big enough to be resolved without oversampling, their rep-
resentation is severely disturbed by the errors in the neigh-
borhood. So one should use the higher resolution even when
fine detail is of no interest, just to make sure that errors don’t
propagate into the structures one wants to analyse. Finally,
fig. 6 shows an example where the structure changes its size
across the image. As the size gets smaller, the segmentation
at the original resolution is becoming worse to the point of
being useless, whereas the segmentation at higher resolu-
tion remains correct over the entire size range. This could
be of high value for shape from texture algorithms.

4. Conclusions
In this paper we showed that the gradient magnitude must
in general be sampled at twice the original sampling rate.
Although the theoretical explanation is simple, it seems that
this phenomenon has been overlooked so far. But our exam-
ples clearly demonstrate that higher sampling rates can lead
to visible improvements in the segmentation quality. The
example images were selected so that noise and low con-
trast cannot serve as an explanation for unsatisfactory seg-
mentation results. Given our findings we suppose that many
segmentation problems which were previously attributed to
noise and low contrast are actually caused by insufficient
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Figure 3: Top: original image; center: segmentation at the original
resolution; bottom: segmentation after twofold oversampling.

sampling. Although we demonstrated our results for gradi-
ent based edge detection using Canny’s algorithm, the re-
quirements on sampling apply equally to any other method
that involves products of filter results.

The negligence of the sampling problem might have
a very simple explanation: Until very recently, the high
amount of data to be processed during image analysis re-
quired a reduction of the image size (e.g. by means of an
image pyramid) rather than an increase. Fortunately, hard-
ware capabilities are rapidly improving, so that oversam-
pling becomes a feasible option. The necessary changes to
existing methods are straightforward: Since oversampling
can be done directly by the gradient filter, a system’s gra-
dient calculation module can simply be replaced with an
improved one. There is no need for conceptual changes of
the segmentation methods, at least as far as the findings of
this paper are concerned.

While the improvement in segmentation quality is ob-
vious, it is also clear that the results are still not perfect.
Besides the well-known problems caused by noise and low
contrast, the question arises whether other unexplored phe-
nomena influence the required sampling rate. The property
of being band limited does not directly tell anything about

Figure 4: Top: original image; bottom left: segmentation atthe
original resolution; bottom right: segmentation after twofold over-
sampling. Especially note the differences in the windows.

Figure 5: Left: original image; top right: detail (bottom left panel)
of the segmentation at the original resolution; bottom right: seg-
mentation of the same detail after twofold oversampling.
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Figure 6: Top: original image; center: segmentation at the original
resolution; bottom: segmentation after twofold oversampling.

the geometric content of the image. Even if an image fulfills
Shannon’s theorem, it can still be difficult to actually find
and represent edges in such a way that the topological and
geometrical structure of the resulting segmentation is cor-
rect. Unfortunately, the existing topological sampling theo-
rems, e.g. [4, 6], do only apply to binary images. It would
be interesting to find out wheter a topological sampling the-
orem for gray scale images exists and to check whether the
bounds derived in this paper have to be tightened even more.
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