
Accurate and Efficient Approximation of the

Continuous Gaussian Scale-Space

Ullrich Köthe
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Abstract. The Gaussian scale-space is a standard tool in image analy-
sis. While continuous in theory, it is generally realized with fixed regular
grids in practice. This prevents the use of algorithms which require con-
tinuous and differentiable data and adaptive step size control, such as
numerical path following. We propose an efficient continuous approxima-
tion of the Gaussian scale-space that removes this restriction and opens
up new ways to subpixel feature detection and scale adaptation.

1 Introduction

Smoothing with Gaussian functions and the Gaussian scale-space have become
standard tools in low-level image analysis. They are routinely used for prepro-
cessing, estimation of derivatives, and feature extraction. With few exceptions,
theories about scale-space and scale-based feature detection are derived for con-
tinuous, differentiable functions, but are then realized on discrete grids, e.g.
by sampling the Gaussian kernel or replacing it with a discrete approximation
(e.g. binomial filters, Lindeberg’s discrete analog [7], or recursive filters [4]). To
save memory and time, images are often subsampled after a certain amount of
smoothing as in a Gaussian pyramid [2] or hybrid pyramid [8]. These approaches
always use grids whose sampling density is at most that of the original image.
However, in [6] it was shown that a higher sampling density can be necessary in
order to prevent information loss during image processing. Empirical evidence
for improved feature detection on oversampled data was also reported by [10,9].

In this paper, we approach the sampling issue in a radical way: instead of
working on a discrete representation, we propose an abstract data type that rep-
resents the Gaussian scale-space as a function over the reals, i.e. as a continuous,
differentiable mapping from R

2×R
+ → R, with given precision ε. Algorithms can

access this data structure at arbitrary coordinates, and the requested function
values or derivatives are computed on demand. Even for very irregular access
patterns efficiency remains reasonable, as all calculations are based on splines
and thus require only simple operations in relatively small neighborhoods.

By using a continuous approach, many difficult problems may find natu-
ral solutions. Consider, for example, edge following and linking: powerful path
following algorithms exist in the field of numerical analysis, but they require
continuously differentiable functions. Convergence statements come in the form
of assymptotic theorems (f − f̂)2 = O(hn), where f̂ is the approximation of f
and h the sampling step. Thus, to guarantee a given accuracy, one must be able



Fig. 1. Line junctions drawn on a grid usu-
ally occupy more than a single pixel and
have rather unpredictable shapes. This can
only be prevented with a real-valued (vec-
tor) representation.

to adapt the sampling step locally. We have found indications that this may also
be true in image analysis: in continuous image reconstructions single pixels are
often intersected by more than one edge and may contain more than one critical
point. In fact, some configurations, in particular junctions, are not in general
correctly representable by any grid (fig. 1). The same applies to bifurcations of
critical point trajectories encountered in scale selection [7] or edge focusing [1].

Up to now, attempts to access images in real-valued coordinate systems have
been based on simple interpolation schemes such as linear interpolation, low
order polynomial fits, or the facet model [5,8,3]. However, these methods lead
to discontinuities of the function values or the first derivatives at pixel borders,
and algorithms requiring differentiability are not applicable. In contrast, we are
defining a reconstruction that is everywhere differentiable (up to some order) in
both the spatial and the scale directions.

2 Continuity in the Spatial Coordinates

For an observed discrete 1D signal f̂i, the continuous Gaussian scale-space is
defined as a family of continuous functions fσ(x) obtained by convolution:

fσ(x) = gσ ~ f̂ =

∞
∑

i=−∞

gσ(x − i)f̂i with gσ(x) =
1√

2πσ2
e−

x
2

2σ2 (1)

Unfortunately, this expression cannot directly be used on computers because
Gaussian kernels have infinite support and must be clipped to a finite window.
No matter how large a window is chosen, a discontinuity is introduced at the
window borders, and this causes severe errors in the derivatives [12]. [12] rec-
ommends to remove the discontinuity of the windowed sampled Gaussian by
interpolation with a spline. This is a special case of a more general strategy:
first compute an intermediate discrete scale-space representation by means of
some discrete prefilter, and then reconstruct a continuous scale-space from it by
means of a spline. Splines are a natural choice for this task because they are easy
to compute, achieve the highest order of differentiability for a given polynomial
order, and have small support. The prefilter will be defined so that the net-result
of the prefilter/spline combination approximates the true Gaussian as closely as
possible. Ideally, we might require preservation of image structure (e.g. num-
ber and location of extrema), but this is very difficult to formalize. Instead we
minimize the squared error between the approximation and the desired function:

E[f̃σ ] =

∫ ∞

−∞

(fσ − f̃σ)2dx =

∫ ∞

−∞

(gσ ~ f̂ − sn ~ (p̂σ ∗ f̂))2dx (2)



where f̃σ is the approximation for scale σ, p̂σ the prefilter, sn an nth-order B-
spline, and ∗ vs. ~ distinguish discrete from continuous convolution. This mini-
mization problem is still intractable in the spatial domain, but due to Parseval’s
theorem it can also be formulated and solved (with minor simplifications) in the
Fourier domain:

E[f̃σ] =

∫ ∞

−∞

(Gσ − SnP̂σ)2F̂ 2du (3)

where Gσ = e−u2σ2/2, Sn =
(

sin(u/2)
u/2

)n+1

and P̂σ are the Fourier transforms

of the Gaussian, the spline, and the prefilter. The spectrum F̂ of the original
image is of course unknown. We use the common choice F̂ = 1, i.e. a white noise
spectrum, where no frequency is preferred. While other possibilities exist (e.g.
natural image statistics), this doesn’t significantly alter the optimal filter choice.

We have compared many different prefilters and report some of them below.
To realize the suggestion of [12] the prefilter P̂σ must be the combination of a
sampled windowed Gaussian and the direct spline transform [11] which ensures
that the subsequent continuous convolution with the B-spline Sn (indirect spline
transform) indeed interpolates the Gaussian’s sample values:

P̂ (1)
σ =

Ĝσ

Ŝn

with Ŝ3 =
4 + 2 cos(u)

6
, Ŝ5 =

66 + 52 cos(u) + 2 cos(2u)

120
(4)

Ĝσ (the transfer function of a sampled and windowed Gaussian) can be derived
by using well-known properties of the Fourier transform: Windowing with a
box function of radius w in the spatial domain corresponds to convolution with
a scaled sinc-function in the Fourier domain. Spatial sampling with step size
h = 1 then leads to spectrum repetition at all multiples of 2π. Unfortunately, the
resulting infinite sum is intractable. However, in the product SnP̂σ the B-spline
transfer function effectively supresses the spectrum of the prefilter for u > 2π,
so that only the first spectrum repetition at ±2π needs to be considered, and
the effect of windowing can be neglected if w ≥ 3σ. Thus,

Ĝσ ' e−(u+2π)2σ2/2 + e−u2σ2/2 + e−(u−2π)2σ2/2 (5)

A simpler prefilter P̂
(2)
σ is obtained by noticing that 1/Ŝn acts as a sharpening

filter that exactly counters the smoothing effect of the indirect spline transform
Sn at the sampling points. When we apply the sampled Gaussian Ĝσ at a smaller

scale σ′ < σ, we can drop this sharpening, i.e. P̂
(2)
σ = Ĝσ′ . Further we replaced

Ĝσ with approximate Gaussians: binomial filters, Deriche’s recursive filters [4],
Lindeberg’s discrete analogue of the Gaussian [7], and the smoothing spline filter
from [11]. Space doesn’t allow to give all transfer functions here. An even simpler
idea is to drop the prefilter altogether, and stretch the B-spline instead so that its

variance matches that of the desired Gaussian: Sn,σ′(u) = Sn(σ′u), P̂
(3)
σ = 1. All

possibilities mentioned so far perform poorly at small scales (σ < 1), so we also
tested oversampled Gaussians as prefilters, i.e. sampled Gaussians with sampling
step h = 1/2 whose transfer functions are (the up-arrow denotes oversampling):
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Fig. 2. Scale normalized RMS residuals for Gaussian scale-space approximation with
3rd-order (left) and 5th-order (right) splines for various prefilters and scales.

P̂
(1)
σ′↑(u) = P̂ (1)

σ (u/2) P̂
(2)
σ′↑(u) = P̂ (2)

σ (u/2) (6)

and the B-spline transfer function must be accordingly stretched to Sn(u/2).
Figure 2 presents the scale normalized root mean square residuals σ

√
E of

the minimization problem for our prefilter variants at variuous scales. The RMS
directly corresponds to the expected error in the spatial domain, and scale nor-
malization is applied in order to make residuals comparable over scales. It can
be seen that oversampled Gaussians give the best results, and interpolation (use

of P̂
(1)
σ instead of P̂

(2)
σ′ ) only improves 5th-order spline results. At scales σ >

√
2,

non-oversampling Gaussians also achieve errors below ' 10−3, which can be con-
sidered as good enough for practical applications (it roughly equals the quan-
tization noise for 256 gray levels). We also repeated this analysis with the first
and second derivatives of the Gaussian, with essentially the same results.

3 Continuity in Space with Subsampling

So far the resolution of the intermediate images was fixed. Considering that
neighboring sampling points become more and more redundant as scale increases,
this is rather inefficient, especially for higher dimensional data. We now replace
the intermediate representation with a pyramid and analyse the residuals as
a function of the scale where subsampling is performed. Usually, subsampling
in a pyramid scheme is done by simply dropping every other sampling point.
However, in the context of splines we can do better: Since the function space of
possible splines with a given sample distance is a strict superset of the function
space at half that distance, one can define an orthogonal projection from one
space to the other. This projection can be realized by applying a projection filter
before dropping samples [11]. The projection filter can be derived analytically,
and its transfer function for 3rd-order splines is

Π3(u) = (7)

12132 + 18482 cos(u) + 7904 cos(2u) + 1677 cos(3u) + 124 cos(4u) + cos(5u)

16(1208 + 1191 cos(2u) + 120 cos(4u) + cos(6u))

i.e. a combination of a 5th-order FIR and a 3rd-order IIR filter. It is important
to note that this filter preserves the average gray value (Π3(0) = 1), and ful-
fills the equal contribution condition, i.e. the even and odd samples have equal
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total weights (Π3(π) = 0). If used alone, the projection approximates the ideal
lowpass filter (the Fourier transform of the sinc interpolator) but this causes se-
vere ringing artifacts in the reduced images. This is avoided when the projection
filter is combined with one of the smoothing prefilters P̂σ . To derive their com-
bined transfer functions, recall that 2−fold subsampling in space corresponds to
a spectrum repetition at π in the Fourier domain. The projection filter is op-
tionally applied before subsampling. The subsampled prefilter transfer function
is multiplied with the transfer function of a scaled B-spline Sn(2u) (below, ↓ k
means that the approximation resulted from 2k-fold subsampling):

P̂
(i)
σ′↓1(u) = P̂

(i)
σ′↓0(u) + P̂

(i)
σ′↓0(u − π) (without projection) (8)

P̂
(i)+
σ′↓1 (u) = Πn(u)P̂

(i)
σ′↓0(u) + Πn(u − π)P̂

(i)
σ′↓0(u − π) (with proj.) (9)

G̃σ↓1(u) = Sn(2u)P̂
(i)
σ′↓1(u) or G̃σ↓1(u) = Sn(2u)P̂

(i)+
σ′↓1 (u) (10)

For higher levels k of the pyramid, this process is repeated recursively, with
spectrum repetitions at π/2k−1, and splines scaled to Sn(2ku). Figure 3 depicts
the scale normalized RMS errors for a single downsampling step as a function of
the scale where the downsampling occurs, for various prefilters (with optimized
σ′ and with or without the projection filter). It can be seen that an error of 0.01
is achieved for the 3rd-order spline without projection at σ ' 2, and an error of
0.001 for the 5th-order spline with projection at σ ' 2.4. Instead of the rather
expensive 5th-order projection filter, 3rd-order projection has been used for 5th-
order splines as well, with only a marginal increase in error. Further analysis
showed that roughly the same accuracy levels are maintained if subsampling is
repeated in the same manner at octave intervals.

4 Continuity in the Scale Direction

If one wants to improve feature detection by means of scale selection or coarse-
to-fine tracking, function values or derivatives at arbitrary scales rather than
at precomputed ones are often needed. If one uses simple interpolation schemes
such as rounding to the nearest scale, linear interpolation or parabola fitting,
the true Gaussian scale-space is not approximated very well, and the resulting
representation is not differentiable with respect to scale. A much better interpo-
lation scheme can be derived by looking at the diffusion equation whose solution
for a given initial image is precisely the Gaussian scale-space

∂f

∂τ
=

1

2

∂2f

∂x2
, (τ = σ2) (11)
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According to this equation the smoothed image at some scale τ + ε can be cal-
culated from the image at scale τ and the corrsponding second derivative by
fτ+ε(x) = fτ (x) + ε f ′′

τ (x) if ε is small. This suggests that a better interpola-
tion scheme can be defined by a linear combination of smoothed images and

second derivatives (Laplacians in higher dimensions) at two neighboring scales.
In particular this means that a Gaussian at scale σ can be interpolated by:

g̃σ(x) ' a(σ)gσ1
(x) + b(σ)gσ2

(x) + c(σ)
∂2

∂x2
gσ1

(x) + d(σ)
∂2

∂x2
gσ2

(x) (12)

with σ1 ≤ σ ≤ σ2. In order for the interpolation to preserve the average gray
value, we must require b(σ) = 1− a(σ). Since the same relationship holds in the
Fourier domain, we can again formulate a least squares minimization problem

E[a, c, d] =

∫ 2π

0

∫ ∞

−∞

(Gσ(u) − G̃σ(u))2 u du dϕ (13)

Note that we defined the residual in 2D polar coordinates because this lead to a
simpler functional form than the 1D formulation and to higher accuracy in 2D.
Setting the derivatives with respect to a, c and d to zero leads to a linear system
for the interpolation coefficients. If σ2 = 2σ1, the solution to this system is

χ1 = σ2/σ2
1 , χ2 =

1

(1 + χ1)(4 + χ1)
,

a = (62 + χ2(−10560 + χ2(32000 + 72800χ1)))/54 (14)

c = σ2
1(15 + χ2(−2700 + χ2(6000 + 19500χ1)))/54 (15)

d = σ2
1(240 + χ2(−28800 + χ2(96000 + 168000χ1)))/54 (16)

This is indeed a continuous, differentiable interpolation scheme, as the original
Gaussians are recovered at the interpolation borders, and the diffusion equation
is fulfilled there, i.e g̃σ(x)|σ=σ1,2

= gσ1,2
(x) and ∂τ g̃σ(x)|σ=σ1,2

= ∂xx gσ1,2
(x)/2.

It is somewhat surprising that simple least squares error minimization results in
blending formulas which fulfill these requirements, because this was not enforced
during the derivation. Probably there is a (yet to be discovered) deeper reason
behind this. The accuracy of the scale interpolation scheme is very high. The
maximum scale normalized RMS error is 4.5 × 10−3 and is reached at σ =
1.398σ1. If desired, the error can be reduced by an order of magnitude if σ2 =√

2σ1 is chosen. Figure 4 depicts the blending functions a, b, c and d. Derivatives
are interpolated likewise by replacing gσ1,2

with the derivative and using its
Laplacian. Derivative interpolation thus requires splines of at least order 5.



5 Results and Conclusions

Our analysis suggests that an accurate continuous scale-space approximation
can be obtained in two phases: First, an intermediate pyramid representation is
computed by means of some optimized discrete filter. Second, function values
and derivatives at arbitrary real-valued coordinates and scales are calculated on
demand, using spline reconstruction and scale interpolation. These procedures
can be encapsulated in an abstract data type, so that algorithms never see the
complications behind the calculations. The scale-space starts at base scale σbase

which should be at least 0.5. The Gaussian should be windowed at w ≥ 3σ.

Phase 1: Intermediate Pyramid Representation

1. Pyramid level ”-1” (scale σbase): Convolve original image with oversampled Gaus-
sian ĝσ−1↑. Optionally apply the direct spline transform (interpolation prefilter).

2. Level ”0” (scale 2σbase): Convolve original image with sampled Gaussian ĝσ0
.

Optionally apply the direct spline transform.
3. Level ”1” (scale 4σbase): Convolve original image with sampled Gaussian ĝσ1

.
Optionally apply the projection filter. Drop odd samples.

4. Level ”k” (k > 1): Convolve the intermediate image at level k−1 with sampled
Gaussian ĝσ2

. Optionally apply the projection filter. Drop odd samples.

The optimal values for σ−1, ..., σ2 depend on the order of the spline used, on the
value of σbase and on whether or not the interpolation/projection prefilters are
applied. Table 1 gives the values for some useful choices. They were calculated
by minimizing the scale normalized RMS error between the approximation and
the true Gaussian. It can be seen (last column) that these errors decrease for
higher order splines, larger σbase and use of interpolation/projection.

Phase 2: On-demand Calculation of Function Values or Derivatives at (x, y, σ)

1. If σ = 2k+1σbase (k ≥ −1): Work on level k of the intermediate representation.
Calculate spline coefficients for (δx, δy) = (x/2k, y/2k)− (bx/2kc, by/2kc) and
convolve with the appropriate image window around (bx/2kc, by/2kc).

2. If 2k+1σbase < σ < 2k+2σbase (k ≥ −1): Use the algorithm from Phase 2.1 to
calculate function values and corresponding Laplacians at levels k and k + 1.
Use the scale interpolation formula to interpolate to scale σ.

The computation time for a single point during phase 2 is independent of the
image size. It involves only additions and multiplications (in roughly equal pro-
portions). If σ coincides with one of the precalculated levels, we need 44 multi-
plications per point for a 3rd-order spline and 102 for a 5th-order one. When an
intermediate scale must be interpolated, the numbers are 154 and 342 respec-
tively. Derivative calculations are cheaper as the polynomial order of the splines
reduces. When the data are accessed in a fixed order rather than randomly, the
effort significantly decreases because intermediate results can be reused. On a
modern machine (2.5 GHz Pentium), our implementation provides about a mil-
lion random point accesses per second for the 5th-order spline. While this is not
suitable for real time processing, it is fast enough for practical applications.



algorithm variant σbase σ
−1 σ0 σ1 σ2 max. resid.

3rd-order spline without 1/2 0.4076 0.8152 1.6304 1.4121 0.018
interpolation/projection 0.6 0.5249 1.0498 2.0995 1.8183 0.0070

√

2/2 0.6448 1.2896 2.5793 2.2337 0.0031

5th-order spline without 1/2 0.3531 0.7062 1.4124 1.0586 0.017
interpolation/projection 0.6 0.4829 0.9658 1.9316 1.6728 0.0035

√

2/2 0.6113 1.2226 2.4451 2.1175 0.0018

5th-order spline with 1/2 0.4994 0.9987 1.7265 1.5771 0.0062
interpolation/projection 0.6 0.5998 1.1996 2.1790 1.9525 0.0025

√

2/2 0.7070 1.4141 2.6442 2.3441 0.0009

Table 1. Optimal scales for sampled Gaussian prefilters for various algorithm variants.
”Optional interpolation” refers to levels -1 and 0, ”optional projection” (always with
3rd-order projection filter) to levels 1 and higher.

In the future, we will apply the new method to design high-quality subpixel fea-
ture detectors. Preliminary results (which we cannot report here due to space)
are very encouraging. We also believe that a continuous scale-space representa-
tion will open up new roads to scale selection and scale adaptation. For example,
variable resolution as in the human eye can be achieved by simply using a posi-
tion dependent scale instead of an irregular (e.g. log-polar) sampling grid.
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