
Pre-Packaged Variability for Product Derivation
in Product Lines

Thorsten Krebs1 and Lothar Hotz 2 and Katharina Wolter 3

Abstract. Product configurators are widely used to generate prod-
ucts out of the vast amount of potential variants in product families.
This is a complex task that is hampered by the fact that configura-
tion models are abstractions of the real world and cannot contain all
dependencies between the artifacts and the environment. For embed-
ded systems this is crucial because calibration is used to adjust the
product to its operating environment. In this paper we show how pre-
packaged variability makes the configuration of complex embedded
systems easier. Packages of artifacts known to work well together
are introduced into the configuration model and used during product
derivation. Functionality of these artifacts is shown to the outside of
the package. Based on this functionality the packages are selected
and integrated into the product. We give an industrial example and
show how the concept of packages can be formalized in configura-
tion models used by the structure-based configuration approach.

1 Introduction

Product linesare a means of large scale reuse ofartifactsin domains
with lots of products that “share a common, managed set of features
satisfying the specific needs of a particular customer or market seg-
ment” [1]. Features are “prominent or distinctive user-visible aspects
of a system or systems” [6]. Substantial production economies are
achieved by deriving products from a common set of artifacts in a
prescribed way, in contrast to developing separately, form scratch
or in arbitrary fashion. Thus, product lines provide reuse strategies
and thereby reduce development time and cost. Reusable core arti-
facts form the basis for routine derivation. However, product-specific
adaptations might still be necessary to derive the requested product.

Configuration is a well known approach to support the composi-
tion of products out of a set of given domain objects. The configu-
ration of technical systems is one of the most successful application
areas of knowledge-based systems [4]. In structure-based configura-
tion, domain objects are represented inconfiguration modelsto ab-
stract from the “real world”. Configuration models describe the ad-
missible combinations of the predefined objects in a specific domain
– e.g. the configurable artifacts of a product line. Basic modeling fa-
cilities enable the differentiation between three kinds of knowledge:

1. With conceptual knowledgedomain objects are represented with
concepts, taxonomic and compositional relations as well as re-
strictions between arbitrary concepts and their properties (by
means of constraints).

1 Laboratory for Artificial Intelligence, University of Hamburg, Germany
email: krebs@informatik.uni-hamburg.de

2 HITeC c/o University of Hamburg, Germany
email: hotz@informatik.uni-hamburg.de

3 Laboratory for Artificial Intelligence, University of Hamburg, Germany
email: kwolter@informatik.uni-hamburg.de

2. Procedural knowledgedeclaratively describes the configuration
process – i.e. the order in which decisions are processed.

3. A task specificationspecifies properties and constraints that a
product must fulfill.

The configuration process itself is performed in an incremental
approach, where each step represents a configuration decision. After
each step, optionally constraint propagation and consistency check-
ing can be applied [2, 5]. Detected conflicts4 are handled by conflict
resolution mechanisms.

Product derivation can be divided into two parts, i.e. the configu-
ration process where a description of the product is derived and the
realization process where the “real” artifacts are generated and as-
sembled. In this paper we focus on the configuration part. Thereby,
configurable artifacts and features are seen as domain objects and
represented with the modeling facilities mentioned above.

In a perfect world there may be a perfect model perfectly reflect-
ing reusable artifacts and their dependencies. But in real life it is quite
common that not everything is modeled – indeed a model is used to
abstract from reality and to make configuring complex products eas-
ier. Software for embedded systems often has to be calibrated. Here
it is difficult, if not impossible, to foresee, model and configure ev-
erything before the software can be installed and tested. To go round
this problem,pre-packaged variabilityis used. Next to the single arti-
facts, a packaged set of artifacts that are known to work together can
be used without “reinventing the wheel”. This means that packages
are used just like single artifacts – i.e. selected to fulfill requested
functionality – in the configuration process.

The remainder of this paper is organized as follows: in Section
2 we explain the concept of packages and define requirements for
the integration in the structure-based configuration methodology. In
Section 3 we give an example application domain and show how we
realized pre-packaged variability with the configuration tool KON-
WERK [3]. Finally, in Section 4 we give a conclusion.

2 Packages

A packageis a pre-defined, valid combination of artifacts that also
exist as single definitions in the configuration model. Therefore, no
new functionality is introduced by defining a package. However, the
possibility to choose a package instead of choosing multiple artifacts
(and configuring their properties and dependencies) makes it easier
to reuse commonly used sets of artifacts throughout a large number
of configured products. Four concept types are concerned: artifacts,
features, packages and the system.

4 A conflict is defined as a situation where the decisions made by the user,
their logical impacts and the configuration model are not consistent.



• Artifacts realize features. Multiple artifacts can together realize
one feature (n−1) or each realize a single feature (1−1) and one
artifact can realize multiple features (1− n).

• Packagescontainartifacts andsupplythe corresponding features.
One package can contain multiple artifacts. In the definition arti-
facts can be referred to in multiple packages – artifact instances
belong to exactly one package instance.

• Systemshave packages, have artifactsandhave features. One sys-
tem can have multiple packages but (also for reasons of structuring
and maintenance) one package belongs to exactly one system.

Legend:

SystemSystem
Feature 2Feature 2

Artifact 3Artifact 3

PackagePackage

Feature 1Feature 1

Artifact 1Artifact 1 Artifact 2Artifact 2

ArtifactArtifact

FeatureFeature

realizes

Figure 1. Interplay between System, Package, Artifact and Feature

In Figure 1, a package containing two artifacts that together realize
a feature is depicted. Furthermore, single artifacts can coexist next to
packages. Therefore, the system represented in this figure consists of
three artifacts and offers two features.

For including packages in the configuration model, the composi-
tional relation as it is defined in structure-based configuration has to
allow for shared objects. When a package contains an artifact, the
system that contains this package, also contains the artifact – i.e. the
relation istransitiveand the artifact is part of both, the package and
the system. Thus, for the compositional relation an − m relation
is used – i.e. one feature can berealized byn artifacts that together
realizem− 1 other features.

For arealizesrelation between an artifact and a feature this goes
even one step further. The same feature can be realized by multiple
artifacts but when multiple instances of that artifact exist, the feature
still is realized only once.Constraintsare needed to ensure this: when
an artifact that realizes a feature is instantiated and an instance of
that feature already exists, then this feature instance is automatically
taken for therealizesrelation of that artifact. Therefore, this feature
is shared by multiple artifacts.

3 Example Application Domain

As an example we give the product family of Car Periphery Super-
vision (CPS) systems introduced by [9]. A CPS system consists of
automotive systems that are based on sensors installed around the
car to monitor its local environment. Sensor measurement methods
and evaluation mechanisms provide information for various kinds of
high-level comfort and safety related applications like Parking As-
sistance and Pre-Crash Detection. In such systems, usually sets of
sensors are mounted on the vehicle (e.g. ultrasonic sensors hidden in
the bumper).

The general ideas presented in Figure 1 are formalized in a con-
figuration model for KONWERK. Additionally, the CPS-specific ar-
tifacts have been placed under these concepts. Parts of this example
model also shown in Figure 2 are:

Hardware Typical hardware artifacts in CPS systems are sensors.
These are grouped into front and rear sensors as well as into ultra-
sonic and short range radar (in the figure there is only US).

Software The only Software in our example model are applications,
i.e. parking assistance and pre-crash detection.

Features Two features are modeled: front supervision and rear su-
pervision.

System The CPS system is the goal concept (i.e. the task specifica-
tion). It contains hard- and software artifacts and packages, and
realizes features.

Package One package – a rear sensor set – is defined. It contains
four ultrasonic rear sensors and realizes rear supervision.

SystemSystem

ArtifactArtifact

PackagePackage

FeatureFeature

SoftwareSoftwareHardwareHardware

SensorSensor

Rear SensorRear SensorFront SensorFront Sensor

ApplicationApplication

Parking Ass.Parking Ass.

Rear SupervisionRear SupervisionFront SupervisionFront Supervision

CPS SystemCPS System

Rear Sensor SetRear Sensor Set
Rear USRear US

Legend:

ArtifactArtifact

FeatureFeature

realizes

is a

has Parts

Figure 2. Example from the CPS Domain

3.1 Implementation

All sensors in one package have to be of the same type – e.g. no ultra-
sonic and radar sensors should be mixed. This can be easily modeled
with a constraint that sets the type of all instances of the concept
sensors in one package to be equal so that different sensors in one
package are explicitly ruled out.

A number restriction constraintensures that featuresrealized by
the artifacts inside a package are also shown to the outside of this
package. This constraint sets the number of features in thesupplies
relation of the package to the number of features that the artifacts to-
getherrealize. The abstract package concept cansupplyan arbitrary
number of features; a specific package contains a fixed number of
artifacts and thereforesuppliesa fixed number of features (e.g. the
rear sensor setsuppliesexactly one feature: rear supervision). This
means, each sensor of the rear sensor set realizes rear supervision –
but all sensors together still realize this feature only once, not once
for every sensor. To get the same feature instance in therealizesrela-
tion of all sensors we extended this constraint such that it relates the
feature instances and the artifact instances. This is done by setting
the correspondingrealizesandrealized byentries accordingly.

3.2 Process

In the structure-based configuration process the order of configura-
tion decisions can be defined with procedural knowledge. For us-
ing pre-packaged variability, however, certain aspects have to be re-
stricted:

1. In a feature-driven configuration approach (see e.g. [5]) first the
product capabilities are selected. This is achieved by selecting the
system as goal concept and focusing on thehas featurerelation of
the system in the first configuration step.

2



2. Based on this selection, the mandatory artifacts are inferred. This
is achieved by mappings defined between features and artifacts
in the configuration model. After this, the artifacts can be further
configured.

Our approach first checks whether a package is defined that re-
alizes the requested product capabilities. When this is the case, the
complete package is instantiated and included in thepartial config-
uration. When no package can be found such that a subset of the
requested features can be satisfied, single artifacts are selected, in-
stantiated and integrated into the configuration. This is achieved by
defining a focus on thesupplied byrelation (inverse ofsupplies) that
is defined for packages – single artifacts and features are connected
via therealizesrelation. Thus, with this focus packages are preferred
over single artifacts. This approach can be applied after the features
of the CPS system have been determined.

Conflict situations regarding the configuration of packages can
be handled with the standard conflict resolution mechanisms from
structure-based configuration since these are defined for all concept
types and a package is a concept definition.

We successfully implemented the approach shown here with the
CPS example (as a configuration model for KONWERK). The con-
figuration solution presented in Figure 3 shows a CPS system that
realizes rear supervision. This rear supervision is supplied by a rear
sensor set containing four rear ultrasonic sensors. It is clearly visible
how only one feature instance (Feature-2 ) has been instantiated
and propagated to all hardware artifacts and the package and system.

4 Conclusion

We have shown how pre-packaged variability can be integrated into
structure-based configuration. Therefore we provide a configuration
model with a special type of concept namedpackage. Packages con-
tain an arbitrary number of artifacts and show the functionality these
artifacts realize as also their own functionality. We have further de-
scribed how to cope with the fact that one feature can be realized
by multiple artifacts and how the same feature instance can be prop-
agated to the instances of packages and systems. Finally, we have
sketched how the configuration process can be modeled to prefer
packages over single artifacts.

The idea of composed variability as a (former) subproblem is not
new as it was e.g. previously addressed as the composite constraint
satisfaction problem [7]. Having packages of artifacts next to the def-
inition of these single artifacts – as some sort of combination of for-
mer cases and the current configuration problem – in structure-based

Figure 3. Example Configuration Solution

configuration models, however is a novel approach.
New packages can be defined by simply configuring them. How-

ever, tool support for maintaining package definitions in the configu-
ration model is not yet available. Methods fromcase-basedreasoning
can be applied to achieve this (see e.g. [8] for case-based reasoning
in software reuse).

Another topic of future research is how the selection of packages
and single artifacts can be improved. Selecting one package e.g. can
rule out the selection of two further packages that together would
supply all the requested product capabilities. When the one package
only supplies part of this functionality, the remaining artifacts have
to be configured “the traditional way”.

ACKNOWLEDGEMENTS

This research has been supported by the European Community un-
der the grant IST-2001-34438, ConIPF - Configuration in Industrial
Product Families.

REFERENCES
[1] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, and K. Pohl,

‘Variability Issues in Software Product Lines’, inProc. of the Fourth
International Workshop on Product Family Engineering(PFE-4), Bilbao,
Spain, (October 3-5 2001).

[2] A. Günter,Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.
[3] A. Günter and L. Hotz, ‘KONWERK - A Domain Independent Config-

uration Tool’, Configuration Papers from the AAAI Workshop, 10–19,
(July 19 1999).

[4] A. Günter and C. K̈uhn, ‘Knowledge-based Configuration - Survey and
Future Directions’, inXPS-99: Knowledge Based Systems, Proceed-
ings 5th Biannual German Conference on Knowledge Based Systems,
ed., F. Puppe, Springer Lecture Notes in Artificial Intelligence 1570,
Würzburg, (March 3-5 1999).

[5] L. Hotz and T. Krebs, ‘Supporting the product derivation process with
a knowledge-based approach’, inProc. of Software Variability Manage-
ment Workshop at ICSE 2003, Portland, Oregon, USA, (May 3rd 2003).

[6] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, ‘Feature-
oriented Domain Analysis (FODA) Feasibility Study’,Technical Report
CMU/SEI-90-TR-021, (1990).

[7] D. Sabin and E.C. Freuder, ‘Configuration as Composite Constraint Sat-
isfaction’, pp. 153–161. AAAI Press, (1996).

[8] M. Sasikumar, ‘Case-based Reasoning for Software Reuse’, inKnowl-
edge Based Computer Systems-Research and Applications (International
Conference on Knowledge-Based Computer Systems), pp. 31–42, Bom-
bai, India, (December 12-15 1996). Narosa Publishing House, London.

[9] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick, ‘A Case Study in
Applying a Product Line Approach for Car Periphery Supervision Sys-
tems’, inProceedings of In-Vehicle Software 2001 (SP-1587), pp. 43–55,
Detroit, Michigan, USA, (March, 5-8 2001).

3


