
Evolution of Configuration Models –
a Focus on Correctness

Thorsten Krebs1

Abstract. Structure-based configuration models describe common-
ality and variability as well as restrictions within and between com-
ponents of a product domain. Innovation in the development of prod-
ucts drives the development of new components and adaptation of
existing components. As a consequence of evolution, the configura-
tion model has to evolve in parallel with its referants in the world. A
side effect of using configuration models for describing different and
evolving products in one model is an increasing possibility for errors.
Keeping an overview of the hundreds or thousands of configurable
components and the increasing number of interrelations and restric-
tions for combinations of those is hard, if not impossible, without tool
support. This paper focuses on how to keep a configuration model
correct despite its changes. Change operations implement changes to
the configuration model. After applying changes, syntactical correct-
ness of the configuration model is checked with pre-defined invari-
ants. A three-step process is introduced that consists of compiling
change operations, propagating changes and validating the model af-
ter change propagation.

1 Introduction

Configuration tools are widely used to assemble new products out of
a predefined set of existing components. The product line approach
helps to configure similar but different products that together form
a product family. These product family members are achieved by
different compositions of the product components, with respect to
technical possibilities and given customer requirements. In structure-
based configuration, configuration models are used, which contain a
textual description of the components, their capabilities, properties
and relations to other components. Thus, configuration models de-
scribe commonality and variability as well as restrictions within and
between components of a product domain. With this, all potentially
configurable product family members are implicitly represented.

Reusability is widely identified as a key to improving (software)
development productivity and quality. The reuse of (software) com-
ponents results in fewer developments for a new system and in less
time spent on development [2]. With reuse alone, however, innova-
tion is not considered. New components are developed and existing
components are evolved in order to derive new products. A conse-
quence of evolution is that the configuration model has to be evolved
in parallel with its referants in the world. Only then configuration
tools can use the new knowledge. In such a dynamic environment
the domain knowledge evolves continually [6].

Configuration models are input for configuration tools that offer
automated support for correct and consistent products. In order to

1 LKI, University of Hamburg, Germany, email: krebs@informatik.uni-
hamburg.de

achieve this, configuration models have to be correct and consistent
representations of the product domain. A side effect of continual evo-
lution is an increasing possibility for errors because of the hundreds
or thousands of configurable components in that model and the in-
creasing number of interrelations and restrictions for combinations
of those [19]. It is apparent that tool support can improve the evolu-
tion of configuration models. Modelling environments for creating,
evolving and diagnosing configuration models have been addressed
in recent years, but no one-fits-all solution is available.

This paper sketches the core ideas of a PhD thesis, which fo-
cuses on ensuring correctness of configuration models while apply-
ing changes. This paper describes work in progress and discusses
goals reached so far as well as also future goals.

The remainder of this paper is organized as follows. Section 2
compares similar topics to see if existing ideas for modeling and
reasoning about evolution of configuration models can be valuable.
Section 3 introduces basic notions of evolution such as correctness
of configuration models and change operations that implement the
applicable changes. Section 4 details the application of change oper-
ations and validation of correctness. Section 5 discusses related work
and Section 6 presents relevant topics for future work. Finally, Sec-
tion 7 concludes this paper.

2 Lessons Learned

Looking beyond one’s own nose, there are a number of related topics.
This section takes a look at them to see what can be learned and used
for evolution of structure-based configuration models.

2.1 Ontologies

Ontologies have gained popularity within the knowledge engineer-
ing community. Research in the area of ontology evolution quickens
the pace as the semantic web gains interest. Generally, ontologies
provide a ”shared and common” understanding of a domain and fa-
cilitate ”knowledge sharing and reuse” [5]. An ontology is an explicit
specification of a conceptualization of the objects and other entities
that are assumed to exist in some area of interest and the relationships
that hold among them [7].

The shared and common understanding of an ontology is repre-
sented in a domain-independent vocabulary. Typically, frame-based
languages are used to model ontologies. The central modeling prim-
itives are concepts (known as frames) with properties (known as
slots). Frames provide a context for modeling concepts in a taxon-
omy with slot-value pairs used to specify attributes of the concepts.
Slots are often treated as objects that can be arranged in a hierarchy
themselves.



Configuration models use considerably more formalisms to repre-
sent product structures:

• compositional relations build a partonomy in which parts are re-
lated to aggregates,

• a cardinality specifies the amount of potential instances for com-
positional relations,

• there are optional and alternative concept definitions, and
• constraints represent restrictions between concepts and concepts

properties.

Nonetheless, similar representation formalisms are used to rep-
resent objects in a taxonomic hierarchy. Some basic changes, like
adding and deleting concepts or adding, deleting and modifying
properties of concepts exist in both approaches. Hence, research on
ontology evolution is considered to be of interest also for evolution
of configuration models.

2.2 Knowledge Representation
A lot of effort has been put into formalizing configuration models
over the last decades. Alternative formalisms for modeling product
structures exist. This is apparent since a model is a representation: it
imitates, resembles or stands for things that exist in the world [4, 15].
Most representation formalisms have a common basis. A configu-
ration model uniquely identifies the components of a system, their
properties, structure and possible variability. Modeling facilities of
structure-based configuration models are:

Concepts represent products, components and other entities of the
domain. Each concept c ∈ C carries a name which makes it
uniquely identifyable within a domain. A concept may specify an
arbitrary number of attributes. An attribute is a binary tuple that
consists of a uniquely identifyable name within the specialization
relation, and a value. The value of an attribute is restricted to a set
of predefined value domains like integers, floats, strings, intervals
of integers or floats and sets of all three. The set of attributes of a
concept c is denoted with Ac.

Specialization relations relate a concept c1 to its subconcepts c2

and with this form a taxonomic hierarchy (c1, c2) ∈ H. Every
concept has exactly one ancestor and can have an arbitrary number
of descendants. Multiple inheritance is explicitly ruled out with
the definition of a tree structure. The specialization relation is tran-
sitive. Therefore, the superconcept of a superconcept of a concept
c is an indirect superconcept of c. The set of relations in which
concept c is the aggregate is denoted with Rc.

Compositional relations relate a part p to its aggregate a and with
this form a partonomy (a, p) ∈ P . Objects are either primitive or
composite, i.e. they reside at the leaves of a component hierarchy
or are the root of a subgraph, respectively. One aggregate can have
multiple parts in compositional relations.

Constraints express interdependencies and restrictions between
concept definitions and their properties such as incompatibilities,
attribute values that depend on other attributes (of other concepts),
and so on. There are local and global constraints L∪G = Γ . Lo-
cal constraints are applied to single attributes, a single concept or
to a relation between two concepts. Global constraints involve a
larger number of concepts and attributes or relations.

Usually, this is a static structure that does not take versioning into
account. It can be represented by a graph whose nodes and edges cor-
respond to concepts and relationships, respectively [3]. For modeling

product families (i.e. modeling a set of products within one model),
this static, non-variable representation is enriched with notions to de-
scribe variability; like optional and alternative definitions.

Evolution of knowledge strutcures that are represented by con-
cepts and relations is a well-understood domain. Usually, evolution is
divided into historical and logical versioning – i.e. a two-dimensional
representation in time and space, respectively. Typically, versions are
characterized as ”descendants of some existing version, if not the first
one, and can serve as an ancestor for multiple versions” [8].

There are numerous problems within the domain of evolution and
versioning. However, this paper focuses on correctness of configu-
ration models and considers versions of models more appropriate.
A change transforms a configuration model M into a new configu-
ration model M′. A valid change c, in addition, is a function that
transforms a correct configuration model into another correct con-
figuration model c : M 7→ M′. Changed configuration models
are different from each other but still represent the same underly-
ing product domain. They are different versions of the same model.
A version captures a specific point in time. This means that different
versions describe different sets of configurable products – according
to the existing configurable components at that time.

2.3 Configuration Management
Configuration management (CM) systems are concerned with man-
aging the evolution of large and complex systems represented in an
explicit, unambiguous configuration model [23, 24]. CM serves man-
agement support (i.e. controlling changes to products) as well as de-
velopment support (i.e. providing functions which assist developers
in performing coordinated changes to products) [3].

Basic requirements for configuration management are version
control (keeping track of changes to components, supporting parallel
development and enabling branching and merging), build manage-
ment (the process of building components and producing a ”bill-of-
materials”), and process control (a set of policies, including monitor-
ing changes, notification on changes, access control and reporting)
[14].

Typically, CM systems distinguish between the product space and
the version space. The product space consists of the configurable ob-
jects and their relationships, while the version space organizes the
versions of these objects. Versions are organized into a derivation
history [8]. Key features of versioning are the organization of the
version space, the interrelations between product space and version
space, and operations for retrieving existing versions and construct-
ing new ones.

Traditional configuration models capture the versioning in space.
This means they represent all admissible configurations. Evolution,
i.e. versioning in space and time, is typically not supported [11].
Methods from CM can help at this point.

3 Evolution
One of the key benefits of configuration mechanisms is to guaran-
tee consistency and correctness of configured products. To reach this
goal, the configuration model has to be consistent and correct. In
a dynamic environment with continual changes to the configuration
model it is apparent that a major goal of the evolution process is
keeping the model consistent and correct despite its changes.

Consistency means that none of the facts deducible from a config-
uration model contradict one another. Thus, consistency can be con-
sidered as an agreement among the knowledge entities with respect to



the semantic of the underlying modeling language [20]. Correctness
of a configuration model is asserted when it is correct with respect to
the underlying modeling language.

Therefore, two levels of analyzing configuration models can be
distinguished: a syntactic and a semantic level. This section deals
with the syntactic analysis of configuration models. As a first step
towards an evolution process that keeps configuration models consis-
tent and correct, the following subsections discuss well-formed (i.e.
syntactically correct) configuration models and introduce invariants
to check the model against.

3.1 Correctness
A configuration model M is well-formed with respect to a set of
syntax invariants I if for all i ∈ I, M satisfies the invariant i(M).

Invariants are conditions that must hold for every configuration
model [1]. Every change applied to a configuration model must main-
tain the correctness defined by the invariants. Three syntax invariants
that are needed to understand the upcoming example are introduced
in the following.

I1 - Specialization Relation Invariant A concept has exactly one
superconcept; if not the root concept.

∀c1 ∈ C \ {root} ∃c2 ∈ C such that (c2, c1) ∈ H
and ∀c3 ∈ C with (c3, c1) ∈ H ⇒ c2 = c3

I2 - Inheritance Invariant The value of every attribute a of a con-
cept c1 that is inherited from c2 has to be a subset of the corre-
sponding value of a′ of c2.

∀c1, c2 ∈ C with (c2, c1) ∈ H,∀a′ ∈ Ac2 ∃a ∈ Ac1

such that name(a) = name(a′) ∧ value(a) ⊆ value(a′)

I3 - Composition Reference Invariant All parts that are refer-
enced in a compositional relation have to be defined as concepts.

∀(a, p) ∈ P ∃c ∈ C such that name(p) = name(c)

Of course, these are just simple examples of invariants. A lot more
invariants need to be defined for guaranteeing well-formed configu-
ration models.

3.2 Example
A PC consists, among others, of a VGA card. Two types of VGA
cards are shown in Figure 1, AGP cards and the new type, PCIe.
Because PCIe is the new type, AGP cards are no longer produced and
should be removed from the configuration model. This is indicated
by the large “X” in place of where the AGP card is in the hierarchy.

Figure 1. Extract of the PC domain. The taxonomic hierarchy of VGA
cards is shown for two types: AGP and PCIe.

The following discussions focus on two issues of this removal. The
first issue is concerned with the 4x AGP and the 8x AGP cards that
are specializations of the AGP card. The second issue is concerned
with the AGP card being a part of a PC.

3.3 Change Operations
Change operations have to be clearly defined. They must compare
and present structural and semantic changes rather than syntactical
changes in text representation. The latter is e.g. common when com-
paring versions of software code. But the same content can be mod-
eled with different syntactical means or simply in different order.
Two configuration models can be the same conceptually, but have
very different text representations [18].

Base operations represent elementary changes that cannot be de-
composed into simpler changes. Base operations are for example
adding or deleting a concept definition, adding and deleting a con-
cept attribute or a compositional relation, etc. This fine granular-
ity of separated changes is not always appropriate. Changes should
also be defined on a higher level that allows semantic interpretation.
Compound operations group base operations into a meaningful unity
[10]. Compound operations are for example modifications to com-
positional relations or constraints, that affect multiple concepts, or
tree-level changes such moving a subtree of concepts or modifying
an attribute value, which affects all descendants as well, due to in-
heritance within the taxonomy.

Grouping base operations to more meaningful compound oper-
ations is reasonable due to the fact that one (compound) opera-
tion is more concise than multiple (base) operations that might be
needed because a change implies action in different places of the
configuration model. This makes the use of compound operations
more suitable for a user interface. And last but not least, they are
needed because elementary changes may lead to incorrect configu-
ration models [22]. In this case, additional change operations should
re-transform the configuration model into a correct state [13].

Figure 2. Definition of the compound operation delete-subtree(apg). The
arrows indicate its composition.

An example for a compound change operation is deleting a
subtree of concept definitions. Figure 2 depicts how this oper-
ation delete-subtree(apg) is composed of deleting concept agp
(delete-concept(agp)) and recursively deleting its descendants
4xagp, 8xagp ∈ C with (agp, 4xagp), (agp, 8xagp) ∈ H
(delete-concept(4xagp) and delete-concept(8xagp)).

Compound operations can be composed of base operations and
possibly other compound operations. The compositions forms a tree
structure in which compound operations have further descendants
and base operations are the leaf nodes, respectively.

Change operations have preconditions. This means that they can
only be applied if certain assertions are satisfied by the configuration
model. Typical preconditions are that some knowledge entity exists
– i.e. it is defined in the configuration model. Deleting a concept c
for example can only be applied if c is modeled: c ∈ C.



The application of a change operation also has postconditions on
the model: it changes assertions, introduces or deletes assertions. The
set of assertions that is satisfied by the configuration model can in-
crease or decrease, but definitely changes when an operation is ap-
plied. Adding elements to the configuration model usually increases
the set of assertions while removing elements usually decreases it.
Deleting concept c for example removes the assertion that c is mod-
eled: c /∈ C.

Preconditions and postconditions both are represented by propo-
sitions that describe the content of assertions in a way that they are
either true or false. A proposition p ∈ P can define the existence
(e.g. c ∈ C) or absence (e.g. c /∈ C) of any knowledge entity as
well as specific values for attributes, relations and constraints (e.g.
value(a) = 1).

By organizing base operations in a taxonomy, the inheritance
mechanism can be exploited to specify common properties of the op-
erations in an efficient way. Common and varying properties of base
operations are the preconditions defining their applicability and the
postconditions they have on the configuration model. A taxonomy of
change operations for ontology evolution is for example given in [9].

A change operation is sound if the operation itself is applicable
and all operations it contains are applicable in some order. All sound
changes to manipulate a configuration model can be specified by base
or compound operations. Changes can be applied to a correct version
of the model M, and after all operations are performed, the model
must transform into another correct version M′ [22].

However, simply concatenating base operations to a compound
operation in a pre-defined manner has some drawbacks:

• There may be a mismatch between the intent of the change and
the way the pre-defined operation is composed.

• Unnecessary changes may be performed if they are applied inde-
pendent from each other.

• The applicability of change operations depends on what is cur-
rently modeled. Therefore, the order in which base operations in-
side a compound operation are applicable can vary.

The first two items have also been identified by [21]. The third
item introduces the fact that the knowledge inside the configuration
model dictates when certain operations are applicable and when they
can not. The following section details the dynamic composition of
base operations into a compound operation.

4 Evolution Process
In the ideal case, a change operation can simply be applied to a con-
figuration model. But two issues make this process a bit more com-
plex. These issues are

1. that change operations are not always applicable – depending on
the model, and

2. the interrelations of concept definitions according to taxonomic
and compositional relations and constraints.

The latter means that a change operation can have unforeseen con-
sequences leading to an incorrect configuration model, which has to
be resolved by additional changes.

One change to the configuration model is implemented with one
change operation. The issues mentioned above show the necessity of
arranging the evolution process in three steps:

Compilation of Complex Change Operations: Complex change
operations are compiled, based on the preconditions and post-
conditions of the corresponding base operations, before this

operation is applied. A particular change may be implemented
with different operations, depending on the configuration model.

Change Propagation: The identified change operations are applied
to the configuration model with respect to their applicability. Spe-
cific combinations of changes and the affected knowledge entities
require an analysis of the model for additional change operations.

Change Validation: After a change to the configuration model has
been propagated, all defined syntax invariants are checked against
the model. When an incorrectness is detected, additional change
operations have to be identified to implement changes resolving
this incorrectness. This means that the previous steps are per-
formed again – leading to an iterative process.

The following three sections detail the compilation of complex
change operations, the change propagation and the change validation,
respectively.

4.1 Compilation of Complex Change Operations
Applying changes to a configuration model modifies its contents and
/ or structure. This is wanted since evolution intends to change the
model. However, some changes can have unforeseen consequences.
These can arise because of constraints and other, change-dependent,
interrelations. Changing concept attributes for example also affects
all descendants – see the inheritance invariant (I2).

Consequences of change operations can be evaluated by analyzing
the configuration model. Additional changes that become necessary
for repairing an incorrect model can be identified based on infor-
mation about the nature of the change and the affected knowledge
entities.

Figure 3. The concept VGA card is deleted. In the left its subconcepts are
kept while in the right they are also deleted.

Deleting the AGP card, for example, is a simple operation
when this concept is a leaf node.2 Because there are descendants
4xagp, 8xagp ∈ C with (agp, 4xagp), (agp, 8xagp) ∈ H, however,
agp cannot be simply deleted. This would violate the specialization
relation invariant (I1). There are two possible resolutions for this in-
correctness: the 4x agp and 8x agp are also deleted (see Figure 3 on
the right), or they are moved to some new parent. Considering the se-
mantics of inheritance, vga, the parent of agp, is the next indirect su-
perconcept and should be used as a new superconcept. This is shown
in Figure 3 on the left. Another violation is that of the composition
reference invariant (I3) because agp is referenced in a compositional
relation (pc, agp) ∈ P . In this case the compositional relation should
also be deleted.

Both violations of invariants and the additional change operations
identified to repair them are given in Table 1.

Note that in general there are two possible changes to repair the
violated composition reference invariant (see Table 1). These are

2 For reasons of simplicity, at this point only dependencies concerning spe-
cialization and compositional relations are discussed, not considering con-
straints.



Change Incorrectness Additional Changes
Remove Concept ∃c2 ∈ C such that ∀c1 ∈ C, (c1, c2) /∈ H

add-specialization(c1, c2)
delete-concept(c2)

∃(a, p) ∈ P ∧ ¬∃c ∈ C with name(p) = name(c)
add-concept(c)
delete-composition(a, p)

Table 1. Identifying additional change operations.

adding the corresponding concept and deleting the relation. Both are
meaningful to repair the incorrectness – depending on the nature of
change that led to this incorrectness. Adding the concept that is miss-
ing for the compositional relation, however, is not appropriate in the
case that it has been deleted before due to the fact that this inverts the
intended deletion.

Change operations that are inappropriate for repair can generally
be identified based in their preconditions and postconditions. Delet-
ing a concept c has the precondition c ∈ C and postcondition c /∈ C,
while deleting concept c has the exactly inverse precondition c /∈ C
and postcondition c ∈ C. It is apparent that either of these changes is
not appropriate to repair an incorrectness that occurred because the
other change.

Not every incorrectness can be resolved automatically. Some alter-
native resolutions can seem equally well suited. Figure 3 for example
shows two conceivable scenarios. The descendants of the AGP card
do not have to be deleted; they may be kept for legacy support.

4.2 Change Propagation

The preconditions and postconditions of change operations can be
used to compute a temporal order. For some base operations there
might not be any limitations while further operations can only be
applied after postconditions of others satisfy preconditions of these.

Figure 4. Temporal order of the compound operation delete-subtree(agp).
Time proceeds from left to right. Arrows represent pre- and postconditions.

Dashed lines indicate persistence of propositions, if not negated.

Figure 4 depicts the temporal order of operations inside
delete-subtree(agp). The descendants of agp and the compositional
relation between pc and agp are deleted first (delete-subtree(4xagp),
delete-subtree(8xagp) and delete-composition(pc, agp)). Precon-
ditions for these are their existence – that is 4xagp, 8xagp ∈
C such that (agp, 4xagp), (agp, 8xagp) ∈ H and (pc, agp) ∈ P .
After that, agp itself can be deleted (delete-concept(agp)). Precon-
ditions for this are the existence agp ∈ C and that there are no

descendants d /∈ C such that (agp, d) ∈ H and no compositions
c /∈ C such that (c, agp) ∈ P .

The existence preconditions (agp ∈ C and 4xagp, 8xagp ∈
C such that (agp, 4xagp), (agp, 8xagp) ∈ H) have to be satisfied
before the compound operation can be applied. Therefore, they are
also preconditions of this compound operation. This is different for
the absence preconditions (c /∈ C such that (agp, c) ∈ H and
c /∈ C such that (c, agp) ∈ P): they are postconditions of other
operations inside this compound operation and therefore do not have
to be satisfied beforehand.

Note that in Figure 4 the propositions (pc, agp) /∈ P and c /∈
C such that (a, agp) ∈ P are treated equally because the PC is the
only aggregate that the AGP card is part of. Analogously, the propo-
sitions 4xagp, 8xagp /∈ C and c /∈ C such that (agp, c) ∈ H are also
treated equally.

At least one operation within a sound compound operation must
be applicable! If there are base operations that do not have precon-
ditions or that only have preconditions satisfied by the configuration
model, these can be applied first; in an arbitrary order. After a change
operation has been applied, the assertions represented by the config-
uration model have changed. This means that preconditions for other
base operations may have become satisfied. Therefore, the applica-
bility of all operations has to be verified after each application of an
operation.

The algorithm to compute a temporal order between the base op-
erations B within a sound compound operation o is given in the fol-
lowing. The configuration model is denoted with M.

ALGORITHM: computeTemporalOrder(o)

1. Initialize the set of applicable operations A = ∅.
2. If B = ∅, then return A.
3. For all b ∈ B do:

(a) If the set of preconditions of b is empty (Pb = ∅), then

i. add b to the set of applicable operations (A = A ∪ {b})
ii. remove b (B = B \ {b}).

(b) Else, for all p ∈ Pb, do:

i. If p is not satisfied (M∩ p = ∅), then
• move b to the end of B ({b, b1, . . . , bn} → {b1, . . . , bn, b})
• continue with next b.

ii. Else if p is the last element of Pb, then
• add b to the set of applicable operations (A = A ∪ {b})
• remove b (B = B \ {b}).
• continue with next b.

iii. Else continue with next p.

4. Continue with step (2).

In principle, the set of operations that belong to a compound op-
eration can be split into two sets, according to whether they are ap-
plicable or not. An operation is applicable if all its preconditions are
satisfied, if any, and cannot be applied elsewise. The order in which
applicable operations are applied is not of importance.

4.3 Change Validation
After change propagation has taken place, all invariants defined for
the configuration have to be checked against the model. If no viola-
tion is detected, the configuration model is transformed into a new,



correct, state – i.e. into a new version of that model. If a violation of
an invariant is detected, this means that the change has introduced an
incorrectness.

Incorrect configuration models are not viable. There are two pos-
sibilities to cope with this:

1. the configuration model has to be repaired by applying additional
changes, or

2. the intended change has to be undone.

The latter indicates the need to define transaction sets for the the
changes to a configuration model. All changes are accepted in one go
if the new version of the configuration model is correct. If the new
version is not correct and no additional changes are intended, it is
always possible to reclaim the version from before the change.

5 Related Work
There are a few research groups also dedicated to the evolution of
structure-based configuration models and models for product fami-
lies. For example, in [17, 16] the notion of generic objects and the
division of versions into variants and revisions [8] is used for evo-
lution of configuration knowledge. A lot of ideas also come from
previous work, for example [12, 13].

Ontology evolution has gained interest in recent years. This may
have a lot to do with the Semantic Web. In [9] for example there is a
taxonomy of change operations defined for ontology evolution. [20]
focuses on consistency of evolving ontologies and defines invariants
to check consistency of an ontology.

6 Outlook
This paper describes work in progress. This means that some work
still has to be done. Future work includes the following issues:

• Invariants define well-formed configuration models. A list of in-
variants that completely cover all facilities of the modeling lan-
guage is needed in order to guarantee correctness of a model de-
spite its changes.

• Change operations are to be defined in a taxonomy. The charac-
teristics according to which they may be aligned have to be identi-
fied. Possible choices are the types of changes (add, delete, mod-
ify), the knowledge entities they operate on (concept, specializa-
tion relation, compositional relation, constraint) or the precondi-
tions defining their applicability and the postconditions the opera-
tions have on the configuration model.

• Changes applied to a configuration model may potentially violate
invariants. Different types of changes applied to different knowl-
edge entities are conceivable (see Section 4.3). The identification
of appropriate change operations for all cases is still an open issue.
Possible choices of characteristics for this identification are the ar-
guments of an operation, its preconditions and postconditions, or
a semantic interpretation of the nature of the change.

7 Conclusion
This paper addresses potential problems that may arise within con-
tinual evolution of configuration models. It presents an approach to
prevent incorrect configuration models. This approach consists of a
set of invariants to check the syntactical correctness of model, clear
semantics of changes to the configuration model and their implemen-
tation in change operations. A three-step evolution process defines
how to compile compound change operations, propagate changes and
validate the configuration model after change propagation.

REFERENCES
[1] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth, ‘Se-

mantics and implementation of schema evolution in object-oriented
databases’, in Proceedings of the 1987 ACM SIGMOD International
Conference on Management of Data, pp. 311–322. ACM Press, (1987).

[2] Ted J. Biggerstaff and Charles Richter, ‘Reusability framework, assess-
ment, and diretions.’, IEEE Software, 4(2), 41–49, (1987).

[3] Reidar Conradi and Bernhard Westfechtel, ‘Version models for soft-
ware configuration management’, ACM Computing Surveys (CSUR)
archive, 30(2), 232–282, (1998).

[4] Randall Davis, Howard E. Shrobe, and Peter Szolovits, ‘What is a
knowledge representation?’, AI Magazine, 14(1), 17–33, (1993).

[5] Dieter Fensel, Ontologies – A Silver Bullet for Knowledge Management
and Electronic Commerce, Springer Verlag, 2001.

[6] Dieter Fensel, ‘Ontologies: Dynamics networks of meaning’, in Pro-
ceedings of the 1st Semantic web working symposium, (2001).

[7] Thomas R. Gruber, ‘Ontolingua: A mechanism to support portable on-
tologies’, Technical Report KSL 91-66, Version 3.0, Stanford Univer-
sity, Knowledge Systems Laboratory, (1992).

[8] Randy H. Katz, Ellis E. Chang, and Rajiv Bhateja, ‘Version model-
ing concepts for computer-aided design databases’, in Proceedings of
the 1986 ACM SIGMOD International Conference on Management of
Data, pp. 379–386. ACM Press, (1986).

[9] Michel Klein, Change Management for Distributed Ontologies, Ph.D.
dissertation, Vrije Universiteit Amsterdam, 2004.

[10] Michel Klein and Natalya Noy, ‘A component-based framework for on-
tology evolution’, Technical Report IR-504, Department of Computer
Science, Vrije Universiteit Amsterdam, (2003).

[11] Tero Kojo, Tomi Männistö, and Timo Soininen, ‘Towards intelligent
support for managing evolution of configurable software product fam-
ilies’, in Proceedings of 11th International Workshop on Software
Configuration Management (SCM-11), pp. 86–101. Springer Verlag,
(2003).

[12] Thorsten Krebs, Lothar Hotz, Christoph Ranze, and Guido Vehring,
‘Towards evolving configuration models’, in PuK2003 – Papers from
the KI Workshop, pp. 123–134, (2003).

[13] Thorsten Krebs, Katharina Wolter, and Lothar Hotz, ‘Mass customiza-
tion for evolving product families’, in Proceedings of International
Conference on Economic, Technical and Organizational Apects of
Product Configuration Systems, pp. 79–86, (2004).

[14] David B. Leblang and Paul H. Levine, ‘Software configuration man-
agement: Why is it needed and what should it do?’, in Selected papers
from the ICSE SCM-4 and SCM-5 Workshops, on Software Configura-
tion Management, pp. 53–60. Springer-Verlag, (1995).

[15] Mark H. Lee, ‘On models, modelling and the distinctive nature of
model-based reasoning’, AI Communications, 12(3), 127–137, (1999).

[16] Tomi Männistö, A Conceptual Modelling Approach to Product Families
and Their Evolution, Ph.D. dissertation, 2000.

[17] Tomi Männistö, Hannu Peltonen, and Reijo Sulonen, ‘View to product
configuration knowledge modelling and evolution’, in Configuration
– Papers from the 1996 Fall Symposium, pp. 111–118. AAAI Press,
(1996).

[18] Natalya F. Noy, Sandhya Kunnatur, Michel Klein, and Mark A. Musen,
‘Tracking changes during ontology evolution’, 259–273, (2004).

[19] Daniel Sabin and Rainer Weigel, ‘Product configuration frameworks –
a survey’, IEEE Intelligent Systems, 13(4), 42–49, (1998).

[20] Ljiljana Stojanovic, Methods and Tools for Ontology Evolution, Ph.D.
dissertation, Universität Karlsruhe, 2004.

[21] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Sto-
janovic, ‘User-driven ontology evolution management’, in Proceed-
ings of the 13th European Conference on Knowledge Engineering and
Knowledge Management, (2002.).

[22] Ljiljana Stojanovic and Boris Motik. Ontology evolution within ontol-
ogy editors, 2002.

[23] W. F. Tichy, ‘Tools for software configuration management’, in Pro-
ceedings of the International Workshop on Software Version and Con-
figuration Control, pp. 1–20. Teubner Verlag, (1988).

[24] David Whitgift, Methods and Tools for Software Configuration Man-
agement, Wiley & Sons Ltd., 1991.


